Skip to main content

An Overview of rAAV Vector Product Development for Gene Therapy

  • Chapter
  • First Online:
Regenerative Medicine for Degenerative Muscle Diseases

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

The drug product development pathway involves proof-of-concept efficacy studies, toxicology studies, and human clinical trials conducted in preparation for commercialization. For time and financial efficiency, a perspective of clinical use, product licensure, and commercialization is beneficial at the outset. For gene transfer products, an understanding of the unmet need for the disease target, the market and competing products, the vector configuration, patient population profile, organ target, delivery method, and time and resources involved is essential. Addressing these variables leads to interconnected strategies and plans for business and finance, regulatory affairs, product supply, R&D, clinical investigations, and commercial launch. Establishing an organization with experienced personnel who have defined responsibilities, departments that are working together but are independently responsible, a network of consultants and contract organizations, and a high level of communication is essential to ensure the quality of the product and protection of patients and give the highest chance for success.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McCarty DM. Self-complementary AAV, vectors; advances and applications. Mol Ther. 2008;16(10):1648–56. Epub 2008/08/07.

    Article  CAS  PubMed  Google Scholar 

  2. Gao G, Vandenberghe LH, Alvira MR, Lu Y, Calcedo R, Zhou X, et al. Clades of adeno-associated viruses are widely disseminated in human tissues. J Virol. 2004;78(12):6381–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kotterman MA, Schaffer DV. Engineering adeno-associated viruses for clinical gene therapy. Nat Rev Genet. 2014;15(7):445–51. Epub 2014/05/21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Marsic D, Govindasamy L, Currlin S, Markusic DM, Tseng YS, Herzog RW, et al. Vector design tour de force: integrating combinatorial and rational approaches to derive novel adeno-associated virus variants. Mol Ther. 2014;22(11):1900–9. Epub 2014/07/23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rabinowitz JE, Bowles DE, Faust SM, Ledford JG, Cunningham SE, Samulski RJ. Cross-dressing the virion: the transcapsidation of adeno-associated virus serotypes functionally defines subgroups. J Virol. 2004;78(9):4421–32. Epub 2004/04/14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Warrington Jr KH, Gorbatyuk OS, Harrison JK, Opie SR, Zolotukhin S, Muzyczka N. Adeno-associated virus type 2 VP2 capsid protein is nonessential and can tolerate large peptide insertions at its N terminus. J Virol. 2004;78(12):6595–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gigout L, Rebollo P, Clement N, Warrington Jr KH, Muzyczka N, Linden RM, et al. Altering AAV tropism with mosaic viral capsids. Mol Ther. 2005;11(6):856–65. Epub 2005/06/01.

    Article  CAS  PubMed  Google Scholar 

  8. Burger C, Gorbatyuk OS, Velardo MJ, Peden CS, Williams P, Zolotukhin S, et al. Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol Ther. 2004;10(2):302–17.

    Article  CAS  PubMed  Google Scholar 

  9. Chao H, Liu Y, Rabinowitz J, Li C, Samulski RJ, Walsh CE. Several log increase in therapeutic transgene delivery by distinct adeno-associated viral serotype vectors. Mol Ther. 2000;2(6):619–23.

    Article  CAS  PubMed  Google Scholar 

  10. Davidson BL, Chiorini JA. Recombinant adeno-associated viral vector types 4 and 5. Preparation and application for CNS gene transfer. Methods Mol Med. 2003;76:269–85.

    CAS  PubMed  Google Scholar 

  11. Grimm D, Kay MA, Kleinschmidt JA. Helper virus-free, optically controllable, and two-plasmid-based production of adeno-associated virus vectors of serotypes 1 to 6. Mol Ther. 2003;7(6):839–50.

    Article  CAS  PubMed  Google Scholar 

  12. Rutledge EA, Halbert CL, Russell DW. Infectious clones and vectors derived from adeno-associated virus (AAV) serotypes other than AAV type 2. J Virol. 1998;72(1):309–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Xiao W, Chirmule N, Berta SC, McCullough B, Gao G, Wilson JM. Gene therapy vectors based on adeno-associated virus type 1. J Virol. 1999;73(5):3994–4003.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Gao GP, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci U S A. 2002;99(18):11854–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Agbandje-McKenna M, Kleinschmidt J. AAV capsid structure and cell interactions. Methods Mol Biol. 2011;807:47–92. Epub 2011/10/29.

    Article  CAS  PubMed  Google Scholar 

  16. Schwartz RA, Palacios JA, Cassell GD, Adam S, Giacca M, Weitzman MD. The Mre11/Rad50/Nbs1 complex limits adeno-associated virus transduction and replication. J Virol. 2007;81(23):12936–45. Epub 2007/09/28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Choi VW, McCarty DM, Samulski RJ. Host cell DNA repair pathways in adeno-associated viral genome processing. J Virol. 2006;80(21):10346–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Snyder RO, Xiao X, Samulski RJ, et al. Production of recombinant adeno-associated viral vectors. In: Dracopoli N, Haines J, Krof B, Moir D, Morton C, Seidman C, editors. Current protocols in human genetics. New York: Wiley; 1996. p. 12.1.1–24.

    Google Scholar 

  19. Mietzsch M, Grasse S, Zurawski C, Weger S, Bennett A, Agbandje-McKenna M, et al. OneBac: platform for scalable and high-titer production of adeno-associated virus serotype 1–12 vectors for gene therapy. Hum Gene Ther. 2014;25(3):212–22. Epub 2013/12/05.

    Article  CAS  PubMed  Google Scholar 

  20. Cecchini S, Virag T, Kotin RM. Reproducible high yields of recombinant adeno-associated virus produced using invertebrate cells in 0.02- to 200-liter cultures. Hum Gene Ther. 2011;22(8):1021–30. Epub 2011/03/09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gao GP, Qu G, Faust LZ, Engdahl RK, Xiao W, Hughes JV, et al. High-titer adeno-associated viral vectors from a Rep/Cap cell line and hybrid shuttle virus [In Process Citation]. Hum Gene Ther. 1998;9(16):2353–62.

    Article  CAS  PubMed  Google Scholar 

  22. Clark KR, Voulgaropoulou F, Fraley DM, Johnson PR. Cell lines for the production of recombinant adeno-associated virus. Hum Gene Ther. 1995;6(10):1329–41.

    Article  CAS  PubMed  Google Scholar 

  23. Thomas DL, Wang L, Niamke J, Liu J, Kang W, Scotti MM, et al. Scalable recombinant adeno-associated virus production using recombinant herpes simplex virus type 1 coinfection of suspension-adapted mammalian cells. Hum Gene Ther. 2009;20(8):861–70. Epub 2009/05/08.

    Article  CAS  PubMed  Google Scholar 

  24. Mingozzi F, Anguela XM, Pavani G, Chen Y, Davidson RJ, Hui DJ, et al. Overcoming preexisting humoral immunity to AAV using capsid decoys. Sci Transl Med. 2013;5(194), 194ra92. Epub 2013/07/19.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ayuso E, Mingozzi F, Montane J, Leon X, Anguela XM, Haurigot V, et al. High AAV vector purity results in serotype- and tissue-independent enhancement of transduction efficiency. Gene Ther. 2010;17(4):503–10. Epub 2009/12/04.

    Article  CAS  PubMed  Google Scholar 

  26. Zolotukhin S, Byrne BJ, Mason E, Zolotukhin I, Potter M, Chesnut K, et al. Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield. Gene Ther. 1999;6(6):973–85.

    Article  CAS  PubMed  Google Scholar 

  27. Snyder RO, Audit M, Francis JD. rAAV vector product characterization and stability studies. Methods Mol Biol. 2011;807:405–28. Epub 2011/10/29.

    Article  CAS  PubMed  Google Scholar 

  28. Snyder RO, Francis J. Adeno-associated viral vectors for clinical gene transfer studies. Curr Gene Ther. 2005;5(3):311–21. Epub 2005/06/25.

    Article  CAS  PubMed  Google Scholar 

  29. Senis E, Fatouros C, Grosse S, Wiedtke E, Niopek D, Mueller AK, et al. CRISPR/Cas9-mediated genome engineering: an adeno-associated viral (AAV) vector toolbox. Biotechnol J. 2014;9(11):1402–12. Epub 2014/09/05.

    Article  CAS  PubMed  Google Scholar 

  30. Li H, Haurigot V, Doyon Y, Li T, Wong SY, Bhagwat AS, et al. In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature. 2011;475(7355):217–21. Epub 2011/06/28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Le Guiner C, Montus M, Servais L, Cherel Y, Francois V, Thibaud JL, et al. Forelimb treatment in a large cohort of dystrophic dogs supports delivery of a recombinant AAV for exon skipping in Duchenne patients. Mol Ther. 2014;22(11):1923–35. Epub 2014/09/10.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bailey AM, Mendicino M, Au P. An FDA perspective on preclinical development of cell-based regenerative medicine products. Nat Biotechnol. 2014;32(8):721–3. Epub 2014/08/06.

    Article  CAS  PubMed  Google Scholar 

  33. MacLachlan TK, McIntyre M, Mitrophanous K, Miskin J, Jolly DJ, Cavagnaro JA. Not reinventing the wheel: applying the 3Rs concepts to viral vector gene therapy biodistribution studies. Hum Gene Ther Clin Dev. 2013;24(1):1–4. Epub 2013/05/23.

    Article  CAS  PubMed  Google Scholar 

  34. USFDA. Guidance for Industry, Formal meetings between the FDA and sponsors or applicants. 2009.

    Google Scholar 

  35. Lenzi RN, Altevogt BM, Gostin LO, editors. Oversight and review of clinical gene transfer protocols: assessing the role of the recombinant DNA advisory committee. Washington, DC; 2014.

    Google Scholar 

  36. USFDA. Prescription drug user fee rates for fiscal year 2016. Fed Regist. 2015;80(148):46028–32.

    Google Scholar 

  37. USFDA. Guidance for Industry, expedited programs for serious conditions – drugs and biologics. 2014.

    Google Scholar 

  38. Field MJ, Boat TF, editors. Rare diseases and orphan products: accelerating research and development. Washington, DC; 2010.

    Google Scholar 

  39. Ridic G, Gleason S, Ridic O. Comparisons of health care systems in the United States, Germany and Canada. Mater Sociomed. 2012;24(2):112–20. Epub 2012/01/01.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Brennan TA, Wilson JM. The special case of gene therapy pricing. Nat Biotechnol. 2014;32(9):874–6. Epub 2014/09/10.

    Article  CAS  PubMed  Google Scholar 

  41. Philippidis A. Orphan drugs, big pharma. Hum Gene Ther. 2011;22(9):1035–8. Epub 2011/09/22.

    Article  PubMed  Google Scholar 

  42. Philippidis A. Crafting a robust business model for orphan drug development. Hum Gene Ther. 2011;22(7):781–3. Epub 2011/07/16.

    Article  CAS  PubMed  Google Scholar 

  43. Philippidis A. Developing a balanced business model for gene therapy. Hum Gene Ther. 2011;22(6):645–6. Epub 2011/05/19.

    Article  CAS  PubMed  Google Scholar 

  44. Abou-El-Enein M, Bauer G, Reinke P. The business case for cell and gene therapies. Nat Biotechnol. 2014;32(12):1192–3. Epub 2014/12/10.

    Article  CAS  PubMed  Google Scholar 

  45. USFDA. Guidance for Industry (Draft), Fulfilling regulatory requirements for postmarketing submissions of interactive promotional media for prescription human and animal drugs and biologics. 2014.

    Google Scholar 

  46. Nathwani AC, Reiss UM, Tuddenham EG, Rosales C, Chowdary P, McIntosh J, et al. Long-term safety and efficacy of factor IX gene therapy in hemophilia B. N Engl J Med. 2014;371(21):1994–2004. Epub 2014/11/20.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Carvalho LS, Vandenberghe LH. Promising and delivering gene therapies for vision loss. Vis Res. 2014. Epub 2014/08/06.

    Google Scholar 

  48. Hacein-Bey-Abina S, Pai SY, Gaspar HB, Armant M, Berry CC, Blanche S, et al. A modified gamma-retrovirus vector for X-linked severe combined immunodeficiency. N Engl J Med. 2014;371(15):1407–17. Epub 2014/10/09.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Gill S, June CH. Going viral: chimeric antigen receptor T-cell therapy for hematological malignancies. Immunol Rev. 2015;263(1):68–89. Epub 2014/12/17.

    Article  CAS  PubMed  Google Scholar 

  50. Cavazzana-Calvo M, Payen E, Negre O, Wang G, Hehir K, Fusil F, et al. Transfusion independence and HMGA2 activation after gene therapy of human beta-thalassaemia. Nature. 2010;467(7313):318–22. Epub 2010/09/17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kastelein JJ, Ross CJ, Hayden MR. From mutation identification to therapy: discovery and origins of the first approved gene therapy in the Western world. Hum Gene Ther. 2013;24(5):472–8. Epub 2013/04/13.

    Article  CAS  PubMed  Google Scholar 

  52. Burger L, HIirschler B. First gene therapy drug sets million-euro price record. Reuters. 2014.

    Google Scholar 

  53. Ledley FD, McNamee LM, Uzdil V, Morgan IW. Why commercialization of gene therapy stalled; examining the life cycles of gene therapy technologies. Gene Ther. 2014;21(2):188–94. Epub 2013/12/07.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest Statement

RS is an inventor on patents related to recombinant AAV technology. RS owns equity in a gene therapy company that is commercializing AAV for gene therapy applications. To the extent that the work in this manuscript increases the value of these commercial holdings, RS has a conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard O. Snyder Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Snyder, R.O. (2016). An Overview of rAAV Vector Product Development for Gene Therapy. In: Childers, M. (eds) Regenerative Medicine for Degenerative Muscle Diseases. Stem Cell Biology and Regenerative Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3228-3_2

Download citation

Publish with us

Policies and ethics