Canine-Inherited Dystrophinopathies and Centronuclear Myopathies

  • Joe N. KornegayEmail author
  • Martin K. Childers
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)


The inherited myopathies include channelopathies, myotonias, metabolic and mitochondrial conditions, congenital myopathies, and muscular dystrophies. This chapter focuses on Duchenne muscular dystrophy (DMD) and one of the centronuclear (congenital) myopathies, X-linked myotubular myopathy (XLMTM). The pattern of disease varies between these two diseases. Initial symptoms principally relate to the appendicular musculature in DMD, with respiratory function becoming impaired in the later stages. In contrast, many XLMTM patients are never able to walk and must receive ventilator support soon after birth. Genetically homologous conditions in dogs, namely, golden retriever muscular dystrophy (GRMD) and XLMTM of Labrador retrievers, are valuable models for preclinical studies. In developing preclinical trials in dogs, the clinical course must be carefully considered. Studies in GRMD dogs are typically conducted over the 3–6-month age period when signs progress relatively quickly. On the other hand, the XLMTM syndrome of Labrador retrievers evolves more rapidly, so affected dogs must be treated and assessed even earlier then 3–6 months. A number of preclinical trials have been conducted in GRMD, in some cases providing support for moving the investigative therapy forward to human trials. While studies in XLMTM dogs have been more limited, promising results have already been seen. Future studies in both of these canine-inherited myopathies should shed further light on homologous human diseases.


Inherited myopathies Duchenne muscular dystrophy Centronuclear myopathies Dogs Golden retriever muscular dystrophy (GRMD) X-linked myotubular myopathy (XLMTM) Preclinical trials 


  1. 1.
    Barohn RJ, Dimachkie MM, Jackson CE. A Pattern recognition approach to patients with a suspected myopathy. Neurol Clin. 2014;32(3):569–93. doi: 10.1016/j.ncl.2014.04.008.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Rakowicz WP, Lane RJM. Myopathies. Medicine. 2004;32:119–23.CrossRefGoogle Scholar
  3. 3.
    Wicklund MP. The muscular dystrophies. Continuum (Minneap Minn). 2013;19:1535–70. doi: 10.1212/01.CON.0000440659.41675.8b.Google Scholar
  4. 4.
    Amato AA, Griggs RC. Overview of the muscular dystrophies. Handb Clin Neurol. 2011;101:1–9. doi: 10.1016/B978-0-08-045031-5.00001-3.CrossRefPubMedGoogle Scholar
  5. 5.
    Cohn RD, Campbell KP. Molecular basis of muscular dystrophies. Muscle Nerve. 2000;23:1456–71.CrossRefPubMedGoogle Scholar
  6. 6.
    Cowling BS, Toussaint A, Muller J, Laporte J. Defective membrane remodeling in neuromuscular diseases: insights from animal models. PLoS Genet. 2012;8, e1002595. doi: 10.1371/journal.pgen.1002595. Epub 2012 Apr 5.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Gilbreath HR, Castro D, Iannaccone ST. Congenital myopathies and muscular dystrophies. Neurol Clin. 2014;32:689–703. doi: 10.1016/j.ncl.2014.04.006.CrossRefPubMedGoogle Scholar
  8. 8.
    Iannaccone ST, Castro D. Congenital muscular dystrophies and congenital myopathies. Continuum (Minneap Minn). 2013;19:1509–34. doi: 10.1212/01.Google Scholar
  9. 9.
    Laing NG, Sewry CA, Lamont P. Congenital myopathies. In: Mastaglia FL, Hilton-Jones D, editors. Handbook of clinical neurology, 3rd series, vol. 86. Edinburgh: Elsevier; 2007. p. 1–33.Google Scholar
  10. 10.
    National Research Council. Biomedical models and resources: current needs and future opportunities. Washington, DC: The National Academies Press; 1998.Google Scholar
  11. 11.
    National Research Council. Models for biomedical research. A new perspective. Washington, DC: The National Academy Press; 1985.Google Scholar
  12. 12.
    Capecchi MR. Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat Rev Genet. 2005;6:507–12.CrossRefPubMedGoogle Scholar
  13. 13.
    Sacca R, Engle SJ, Qin W, Stock JL, McNeish JD. Genetically engineered mouse models in drug discovery research. Methods Mol Biol. 2010;602:37–54.CrossRefPubMedGoogle Scholar
  14. 14.
    Lin JH. Applications and limitations of genetically modified mouse models in drug discovery and development. Curr Drug Metabol. 2008;9:419–38.CrossRefGoogle Scholar
  15. 15.
    Partridge TA. The mdx mouse model as a surrogate for Duchenne muscular dystrophy. FEBS J. 2013;280:4177–86. doi: 10.1111/febs.12267.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Schneider MR, Wolf E, Braun J, Kolb HJ, Adler H. Canine embryo-derived stem cells and models for human diseases. Hum Mol Genet. 2007;17(R1):R42–7.CrossRefGoogle Scholar
  17. 17.
    Tsai KL, Clark LA, Murphy KE. Understanding hereditary diseases using the dog and human as companion model systems. Mamm Genome. 2007;18:444–51.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature. 2005;438:803–19.CrossRefPubMedGoogle Scholar
  19. 19.
    Reichel MP, Ellis JT, Dubey JP. Neosporosis and hammondiosis in dogs. J Small Anim Pract. 2007;48:308–12.CrossRefPubMedGoogle Scholar
  20. 20.
    Shelton GD. From dog to man: the broad spectrum of inflammatory myopathies. Neuromuscul Disord. 2007;17:663–70.CrossRefPubMedGoogle Scholar
  21. 21.
    Platt SR. Neuromuscular complications in endocrine and metabolic disorders. Vet Clin North Am Small Anim Pract. 2002;32:125–46.CrossRefPubMedGoogle Scholar
  22. 22.
    Kornegay JN, Bogan JR, Bogan DJ, Childers MK, Li J, Nghiem P, et al. Canine models of Duchenne muscular dystrophy and their use in therapeutic strategies. Mamm Genome. 2012;23:85–108. doi: 10.1007/s00335-011-9382-y.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Sharp NJH, Kornegay JN, Van Camp SD, Herbstreith MH, Secore SL, Kettle S, et al. An error in dystrophin mRNA processing in golden retriever muscular dystrophy, an animal homologue of Duchenne muscular dystrophy. Genomics. 1992;13:115–21.CrossRefPubMedGoogle Scholar
  24. 24.
    Schatzberg SJ, Olby NJ, Breen M, Anderson LV, Langford CF, Dickens HF, et al. Molecular analysis of a spontaneous dystrophin ‘knockout’ dog. Neuromuscul Disord. 1999;9:289–95.CrossRefPubMedGoogle Scholar
  25. 25.
    Smith BF, Yue Y, Woods PR, Kornegay JN, Shin JH, Williams RR, et al. An intronic LINE-1 element insertion in the dystrophin gene aborts dystrophin expression and results in Duchenne-like muscular dystrophy in the corgi breed. Lab Invest. 2011;91:216–31. doi: 10.1038/labinvest.2010.146.CrossRefPubMedGoogle Scholar
  26. 26.
    Walmsley GL, Arechavala-Gomeza V, Fernandez-Fuente M, Burke MM, Nagel N, Holder A, et al. A duchenne muscular dystrophy gene hot spot mutation in dystrophin-deficient cavalier king charles spaniels is amenable to exon 51 skipping. PLoS ONE. 2010;5(1), e8647. doi: 10.1371/journal.pone.0008647.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Winand N, Pradham D, Cooper B. Molecular characterization of severe Duchenne-type muscular dystrophy in a family of Rottweiler dogs. In: Molecular mechanisms of neuromuscular disease. Tucson, AZ: Muscular Dystrophy Association; 1994.Google Scholar
  28. 28.
    Beggs AH, Böhm J, Snead E, Kozlowski M, Maurer M, Minor K, et al. MTM1 mutation associated with X-linked myotubular myopathy in Labrador Retrievers. Proc Natl Acad Sci USA. 2010;107:14697–702. doi: 10.1073/pnas.1003677107.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Cosford KL, Taylor SM, Thompson L, Shelton GD. A possible new inherited myopathy in a young Labrador Retriever. Can Vet J. 2008;49:393–7.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Blot S, Tiret L, Devillaire AC, Fardeau M, Dreyfus PA. Phenotypic description of a canine centronuclear myopathy. J Neurol Sci. 2002;199:S9.CrossRefGoogle Scholar
  31. 31.
    Kramer JW, Hegreberg GA, Bryan GM, Meyers K, Ott RL. A muscle disorder of Labrador Retrievers characterized by deficiency of type II muscle fibers. J Am Vet Med Assoc. 1976;169:817–20.PubMedGoogle Scholar
  32. 32.
    Maurer M, Mary J, Guillaud L, Fender M, Pelé M, Bilzer T, et al. Centronuclear myopathy in Labrador retrievers: a recent founder mutation in the PTPLA gene has rapidly disseminated worldwide. PLoS ONE. 2012;7(10), e46408. doi: 10.1371/journal.pone.0046408. Epub 2012 Oct 5.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Böhm J, Vasli N, Maurer M, Cowling BS, Shelton GD, Kress W, et al. Altered splicing of the BIN1 muscle-specific exon in humans and dogs with highly progressive centronuclear myopathy. PLoS Genet. 2013;9(6), e1003430. doi: 10.1371/annotation/22ca13f1-1ce9-4bb5-9c9e-98670f7c4240.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Luján-Feliu-Pascual A, Shelton GD, Targett MP, Long SN, Comerford EJ, McMillan C, et al. Inherited myopathy of great Danes. J Small Anim Pract. 2006;47:249–54.CrossRefPubMedGoogle Scholar
  35. 35.
    Lorenz MD, Coates JR, Kent M. Handbook of veterinary neurology. 5th ed. St Louis, MO: Elsevier Saunders; 2011.Google Scholar
  36. 36.
    Shelton GD, Engvall E. Canine and feline models of human inherited muscle diseases. Neuromuscul Disord. 2005;15(2):127–38.CrossRefPubMedGoogle Scholar
  37. 37.
    Mendell JR, Shilling C, Leslie ND, Flanigan KM, al-Dahhak R, Gastier-Foster J, et al. Evidence-based path to newborn screening for Duchenne muscular dystrophy. Ann Neurol. 2012;71:304–13. doi: 10.1002/ana.23528.CrossRefPubMedGoogle Scholar
  38. 38.
    Hoffman EP, Brown Jr RH, Kunkel LM. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell. 1987;51:919–28.CrossRefPubMedGoogle Scholar
  39. 39.
    Bulfield G, Siller WG, Wight PAL, Moore KJ. X chromosome-linked muscular dystrophy (mdx) in the mouse. Proc Natl Acad Sci USA. 1984;81:1189–92.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Gillis JM. Understanding dystrophinopathies: an inventory of the structural and functional consequences of the absence of dystrophin in muscles of the mdx mouse. J Muscle Res Cell Motil. 1999;20:605–25.CrossRefPubMedGoogle Scholar
  41. 41.
    Carpenter JL, Hoffman EP, Romanul FC, Kunkel LM, Rosales RK, Ma NS, et al. Feline muscular dystrophy with dystrophin deficiency. Am J Pathol. 1989;135:909–19.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Gaschen FP, Hoffman EP, Gorospe JR, Uhl EW, Senior DF, Cardinet 3rd GH, et al. Dystrophin deficiency causes lethal muscle hypertrophy in cats. J Neurol Sci. 1992;110:149–59.CrossRefPubMedGoogle Scholar
  43. 43.
    Hollinger K, Yang CX, Montz RE, Nonneman D, Ross JW, Selsby JT. Dystrophin insufficiency causes selective muscle histopathology and loss of dystrophin-glycoprotein complex assembly in pig skeletal muscle. FASEB J. 2014;28:1600–9. doi: 10.1096/fj.13-241141.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Brinkmeyer-Langford C, Kornegay JN. Comparative genomics of X-linked muscular dystrophies: the golden retriever model. Curr Genomics. 2013;14:330–42. doi: 10.2174/13892029113149990004.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Sicinski P, Geng Y, Ryder-Cook AS, Barnard EA, Darlison MG, Barnard PJ. The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. Science. 1989;244:1578–80.CrossRefPubMedGoogle Scholar
  46. 46.
    Deconinck AE, Rafael JA, Skinner JA, Brown SC, Potter AC, Metzinger L, et al. Utrophin-dystrophin-deficient mice as a model for Duchenne muscular dystrophy. Cell. 1997;90:717–27.CrossRefPubMedGoogle Scholar
  47. 47.
    Buj-Bello A, Laugel V, Messaddeq N, Zahreddine H, Laporte J, Pellissier JF, Mandel JL. The lipid phosphatase myotubularin is essential for skeletal muscle maintenance but not for myogenesis in mice. Proc Natl Acad Sci USA. 2002;99:15060–5.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Pierson CR, Dulin-Smith AN, Durban AN, Marshall ML, Marshall JT, Snyder AD, et al. Modeling the human MTM1 p.R69C mutation in murine Mtm1 results in exon 4 skipping and a less severe myotubular myopathy phenotype. Hum Mol Genet. 2012;21:811–25.CrossRefPubMedGoogle Scholar
  49. 49.
    Durieux AC, Vignaud A, Prudhon B, Viou MT, Beuvin M, Vassilopoulos S, Fraysse B, Ferry A, Laine J, Romero NB, Guicheney P, Bitoun M. A centronuclear myopathy-dynamin 2 mutation impairs skeletal muscle structure and function in mice. Hum Mol Genet. 2010;19:4820–36.CrossRefPubMedGoogle Scholar
  50. 50.
    Gentilini F, Zambon E, Gandini G, Rosati M, Spadari A, Romagnoli N, Turba ME, Gernone F. Frequency of the allelic variant of the PTPLA gene responsible for centronuclear myopathy in Labrador Retriever dogs as assessed in Italy. J Vet Diagn Invest. 2011;23:124–6.CrossRefPubMedGoogle Scholar
  51. 51.
    Tjondrokoesoemo A, Park KH, Ferrante C, Komazaki S, Lesniak S, Brotto M, et al. Disrupted membrane structure and intracellular Ca(2)(+) signaling in adult skeletal muscle with acute knockdown of Bin1. PLoS ONE. 2011;6, e25740.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Zvaritch E, Kraeva N, Bombardier E, McCloy RA, Depreux F, Holmyard D, et al. Ca2+ dysregulation in Ryr1(I4895T/wt) mice causes congenital myopathy with progressive formation of minicores, cores, and nemaline rods. Proc Natl Acad Sci USA. 2009;106:21813–8.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Garvey SM, Rajan C, Lerner AP, Frankel WN, Cox GA. The muscular dystrophy with myositis (mdm) mouse mutation disrupts a skeletal muscle-specific domain of titin. Genomics. 2002;79:146–9.CrossRefPubMedGoogle Scholar
  54. 54.
    Romero NB, Bitoun M. Centronuclear myopathies. Semin Pediatr Neurol. 2011;18:250–6. doi: 10.1016/j.spen.2011.10.006.CrossRefPubMedGoogle Scholar
  55. 55.
    Laporte J, Blondeau F, Buj-Bello A, Mandel JL. The myotubularin family: from genetic disease to phosphoinositide metabolism. Trends Genet. 2001;17:221–8.CrossRefPubMedGoogle Scholar
  56. 56.
    Jungbluth H, Wallgren-Pettersson C, Laporte J. Centronuclear (myotubular) myopathy. Orphanet J Rare Dis. 2008;3:26. doi: 10.1186/1750-1172-3-26.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Smith BK, Goddard M, Childers MK. Respiratory assessment in centronuclear myopathies. Muscle Nerve. 2014. doi: 10.1002/mus.24249.PubMedCentralGoogle Scholar
  58. 58.
    Patronek GJ, Waters DJ, Glickman LT. Comparative longevity of pet dogs and humans: implications for gerontology research. J Gerontol A Biol Sci Med Sci. 1997;52:B171–8.CrossRefPubMedGoogle Scholar
  59. 59.
    Valentine BA, Cooper BJ, de Lahunta LA, O’Quinn R, Blue JT. Canine X-linked muscular dystrophy. An animal model of Duchenne muscular dystrophy: clinical studies. J Neurol Sci. 1988;88:69–81.CrossRefPubMedGoogle Scholar
  60. 60.
    Nakamura A, Kobayashi M, Kuraoka M, Yuasa K, Yugeta N, Okada T, et al. Initial pulmonary respiration causes massive diaphragm damage and hyper-CKemia in Duchenne muscular dystrophy dog. Sci Rep. 2013;3:2183.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Kornegay JN, Bogan DJ, Bogan JR, Childers MK, Cundiff DD, Petroski GF, et al. Contraction force generated by tibiotarsal joint flexion and extension in dogs with golden retriever muscular dystrophy. J Neurol Sci. 1999;166:115–21.CrossRefPubMedGoogle Scholar
  62. 62.
    Bushby KMD, Hill A, Steele JG. Failure of early diagnosis in symptomatic Duchenne muscular dystrophy. Lancet. 1999;353:557–8.CrossRefPubMedGoogle Scholar
  63. 63.
    Fine DM, Shin JH, Yue Y, Volkmann D, Leach SB, Smith BF, et al. Age-matched comparison reveals early electrocardiography and echocardiography changes in dystrophin-deficient dogs. Neuromuscul Disord. 2011;21:453–61.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Nigro G. Importance of cardiological studies in the muscular dystrophies. Cardiomyology. 1983;2:209–19.Google Scholar
  65. 65.
    Kornegay JN, Sharp NJ, Schueler RO, Betts CW. Tibiotarsal joint contracture in dogs with golden retriever muscular dystrophy. Lab Anim Sci. 1994;44:331–3.PubMedGoogle Scholar
  66. 66.
    Brooke MH, Fenichel GM, Griggs RC, Mendell JR, Moxley R, Miller JP, et al. Clinical investigation in Duchenne dystrophy: 2. Determination of the “power” of therapeutic trials based on the natural history. Muscle Nerve. 1983;6:91–103.CrossRefPubMedGoogle Scholar
  67. 67.
    McDonald CM, Abresch RT, Carter GT, Fowler Jr WM, Johnson ER, Kilmer DD, et al. Profiles of neuromuscular diseases. Duchenne muscular dystrophy. Am J Phys Med Rehabil. 1995;74(5 Suppl):S70–92.CrossRefPubMedGoogle Scholar
  68. 68.
    Nicholson LVB, Johnson MA, Bushby KMD, Gardner-Medwin D, Curtis A, Ginjaar IB, et al. Integrated study of 100 patients with Xp21 linked muscular dystrophy using clinical, genetic, immunochemical, and histopathological data. Part 1. Trends across the clinical groups. J Med Genet. 1993;30:728–37.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Barthélémy I, Pinto-Mariz F, Yada E, Desquilbet L, Savino W, Silva-Barbosa SD, et al. Predictive markers of clinical outcome in the GRMD dog model of Duchenne muscular dystrophy. Dis Model Mech. 2014;7:1253–61. doi: 10.1242/dmm.016014.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Duan D, Hakim CH, Ambrosio CE, Smith BF, Sweeney HL. Early loss of ambulation is not a representative clinical feature in Duchenne muscular dystrophy dogs: remarks on the article of Barthélémy et al. Dis Model Mech. 2015;8:193–4. doi: 10.1242/dmm.019216.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Kornegay JN, Peterson JM, Bogan DJ, Kline W, Bogan JR, Dow JL, et al. NBD delivery improves the disease phenotype of the golden retriever model of Duchenne muscular dystrophy. Skelet Muscle. 2014;4:18. doi: 10.1186/2044-5040-4-18.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Moise NS, Valentine BA, Brown CA, Erb HN, Beck KA, Cooper BJ, et al. Duchenne’s cardiomyopathy in a canine model: electrocardiographic and echocardiographic studies. J Am Coll Cardiol. 1991;17:812–20.CrossRefPubMedGoogle Scholar
  73. 73.
    Nigro G, Comi LI, Politano L, Bain RJI. The incidence and evolution of cardiomyopathy in Duchenne muscular dystrophy. Int J Cardiol. 1990;26:271–7.CrossRefPubMedGoogle Scholar
  74. 74.
    Markham LW, Michelfelder EC, Border WL, Khoury PR, Spicer RL, Wong BL, et al. Abnormalities of diastolic function precede dilated cardiomyopathy associated with Duchenne muscular dystrophy. J Am Soc Echocardiogr. 2006;19:865–71.CrossRefPubMedGoogle Scholar
  75. 75.
    Zatz M, Vieira NM, Zucconi E, Pelatti M, Gomes J, Vainzof M, et al. A normal life without dystrophin. Neuromuscul Disord. 2015;25:371–4.CrossRefPubMedGoogle Scholar
  76. 76.
    Inkley SR, Oldenburg FC, Vignos Jr PJ. Pulmonary function in Duchenne muscular dystrophy related to stage of disease. Am J Med. 1974;56:297–306.CrossRefPubMedGoogle Scholar
  77. 77.
    Laghi F, Tobin MJ. Disorders of the respiratory muscles. Am J Respir Crit Care Med. 2003;168:10–48.CrossRefPubMedGoogle Scholar
  78. 78.
    Toussaint M, Steens M, Wasteels G, Soudon P. Diurnal ventilation via mouthpiece: survival in end-stage Duchenne patients. Eur Respir J. 2006;28:549–55.CrossRefPubMedGoogle Scholar
  79. 79.
    DeVanna JC, Kornegay JN, Bogan DJ, Bogan JR, Dow JL, Hawkins EC. Respiratory dysfunction in unsedated dogs with golden retriever muscular dystrophy. Neuromuscul Disord. 2014;24:63–73. doi: 10.1016/j.nmd.2013.10.001.CrossRefPubMedGoogle Scholar
  80. 80.
    Khirani S, Ramirez A, Aubertin G, Boulé M, Chemouny C, Forin V, et al. Respiratory muscle decline in Duchenne muscular dystrophy. Pediatr Pulmonol. 2014;49:473–81.CrossRefPubMedGoogle Scholar
  81. 81.
    Barthélémy I, Barrey E, Aguilar P, Uriarte A, Le Chevoir M, Thibaud JL, et al. Longitudinal ambulatory measurements of gait abnormality in dystrophin-deficient dogs. BMC Musculoskelet Disord. 2011;12:75.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Liu JMK, Okamura CS, Bogan DJ, Bogan JR, Childers MK, Kornegay JN. Effects of prednisone in canine muscular dystrophy. Muscle Nerve. 2004;30:767–73.CrossRefPubMedGoogle Scholar
  83. 83.
    Armstrong RB, Warren GL, Warren JA. Mechanisms of exercise- induced muscle fibre injury. Sports Med. 1991;12:184–207.CrossRefPubMedGoogle Scholar
  84. 84.
    Childers MK, Okamura CS, Bogan DJ, Bogan JR, Petroski GF, McDonald K, et al. Eccentric contraction injury in dystrophic canine muscle. Arch Phys Med Rehabil. 2002;83:1572–8.CrossRefPubMedGoogle Scholar
  85. 85.
    Tegler CJ, Grange RW, Bogan DJ, Markert CD, Case D, Kornegay JN, et al. Eccentric contractions induce rapid isometric torque drop in dystrophic-deficient dogs. Muscle Nerve. 2010;42:130–2.CrossRefGoogle Scholar
  86. 86.
    Faulkner JA, Jones DA, Round JM. Injury to skeletal muscles of mice by forced lengthening during contractions. Q J Exp Physiol. 1989;74:661–70.CrossRefPubMedGoogle Scholar
  87. 87.
    Barthélémy I, Barrey E, Thibaud J-L, Uriarte A, Voit T, Blot S, Hogrel J-V. Gait analysis using accelerometry in dystrophin-deficient dogs. Neuromuscul Disord. 2009;19:788–96.CrossRefPubMedGoogle Scholar
  88. 88.
    Marsh AP, Eggebeen JD, Kornegay JN, Markert CD, Childers MK. Kinematics of gait in golden retriever muscular dystrophy. Neuromuscul Disord. 2010;20:16–20.CrossRefPubMedGoogle Scholar
  89. 89.
    Shin JH, Greer B, Hakim CH, Zhou Z, Chung YC, Duan Y, et al. Quantitative phenotyping of Duchenne muscular dystrophy dogs by comprehensive gait analysis and overnight activity monitoring. PLoS ONE. 2013;8(3), e59875.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    McDonald CM, Henricson EK, Abresch RT, Florence JM, Eagle M, Gappmaier E, et al. The 6-minute walk test and other endpoints in Duchenne muscular dystrophy: longitudinal natural history observations over 48 weeks from a multicenter study. Muscle Nerve. 2013;48:343–56.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Kornegay JN, Spurney CF, Nghiem PP, Brinkmeyer-Langford CL, Hoffman EP, Nagaraju K. Pharmacologic management of Duchenne muscular dystrophy: target identification and preclinical trials. ILAR J. 2014;55:119–49. doi: 10.1093/ilar/ilu011.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Mead AF, Petrov M, Malik AS, Mitchell MA, Childers MK, Bogan JR, et al. Diaphragm remodeling and compensatory respiratory mechanics in a canine model of Duchenne muscular dystrophy. J Appl Physiol (1985). 2014;116:807–15. doi: 10.1152/japplphysiol.00833.2013.CrossRefGoogle Scholar
  93. 93.
    Childers MK, Joubert R, Poulard K, Moal C, Grange RW, Doering JA, et al. Gene therapy prolongs survival and restores function in murine and canine models of myotubular myopathy. Sci Transl Med. 2014;6(220), 220ra10. doi: 10.1126/scitranslmed.3007523.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Grange RW, Doering J, Mitchell E, Holder MN, Guan X, Goddard M, et al. Muscle function in a canine model of X-linked myotubular myopathy. Muscle Nerve. 2012;46:588–91. doi: 10.1002/mus.23463.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Yamaguchi N, Prosser BL, Ghassemi F, Xu L, Pasek DA, Eu JP, et al. Modulation of sarcoplasmic reticulum Ca2+ release in skeletal muscle expressing ryanodine receptor impaired in regulation by calmodulin and S100A1. Am J Physiol Cell Physiol. 2011;300:C998–1012.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Goddard MA, Mitchell EL, Smith BK, Childers MK. Establishing clinical end points of respiratory function in large animals for clinical translation. Phys Med Rehabil Clin N Am. 2012;23:75–94. doi: 10.1016/j.pmr.2011.11.017.CrossRefPubMedGoogle Scholar
  97. 97.
    Sarwal A, Cartwright MS, Walker FO, Mitchell E, Buj-Bello A, Beggs AH, et al. Ultrasound assessment of the diaphragm: preliminary study of a canine model of X-linked myotubular myopathy. Muscle Nerve. 2014;50:607–9.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Goddard MA, Burlingame E, Beggs AH, Buj-Bello A, Childers MK, Marsh AP, et al. Gait characteristics in a canine model of X-linked myotubular myopathy. J Neurol Sci. 2014; pii: S0022-510X(14)00564-4. doi: 10.1016/j.jns.2014.08.032.
  99. 99.
    Light VA, Steiss JE, Montgomery RD, Rumph PF, Wright JC. Temporal-spatial gait analysis by use of a portable walkway system in healthy Labrador Retrievers at a walk. Am J Vet Res. 2010;71:997–1002.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Veterinary Integrative Biosciences (Mail Stop 4458)College of Veterinary Medicine, Texas A&M UniversityCollege StationUSA
  2. 2.Department of Rehabilitation MedicineUniversity of WashingtonSeattleUSA
  3. 3.Institute for Stem Cell and Regenerative Medicine, School of MedicineUniversity of WashingtonSeattleUSA

Personalised recommendations