Advertisement

miRNAs in Muscle Diseases

  • Diem-Hang Nguyen-Tran
  • Hannele Ruohola-Baker
Chapter
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)

Abstract

Since their first characterization in 1990, miRNAs, the small RNAs that can inhibit gene expression, have been studied extensively. Important roles of miRNAs have been found in cancer, heart disease, obesity, nervous system, and lately muscle diseases. In this chapter, we will review the roles of miRNAs in muscle repair and special pathology aspect of myopathies and then correlate these roles into potential therapeutic approaches for muscle diseases. We will also analyze the advantages and the caution needed when using miRNAs in targeting muscle dystrophies.

Keywords

miRNAs Muscle diseases Muscle regeneration Fibrosis Fiber types Therapeutic approaches Duchenne muscular dystrophy 

References

  1. 1.
    Broderick JA, Zamore PD. MicroRNA therapeutics. Gene Ther. 2011;18:1104–10.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Wang XH. MicroRNA in myogenesis and muscle atrophy. Curr Opin Clin Nutr Metab Care. 2013;16:258–66.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Erriquez D, Perini G, Ferlini A. Non-coding RNAs in muscle dystrophies. Int J Mol Sci. 2013;14:19681–704.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    van Rooij E, Quiat D, Johnson BA, Sutherland LB, Qi X, Richardson JA, Kelm Jr RJ, Olson EN. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell. 2009;17:662–73.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Caretti G, Di Padova M, Micales B, Lyons GE, Sartorelli V. The Polycomb Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation. Genes Dev. 2004;18:2627–38.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Conboy IM, Rando TA. The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev Cell. 2002;3:397–409.CrossRefPubMedGoogle Scholar
  7. 7.
    Crist CG, Montarras D, Pallafacchina G, Rocancourt D, Cumano A, Conway SJ, Buckingham M. Muscle stem cell behavior is modified by microRNA-27 regulation of Pax3 expression. Proc Natl Acad Sci USA. 2009;106:13383–7.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Dey BK, Gagan J, Yan Z, Dutta A. miR-26a is required for skeletal muscle differentiation and regeneration in mice. Genes Dev. 2012;26:2180–91.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Flynt AS, Li N, Thatcher EJ, Solnica-Krezel L, Patton JG. Zebrafish miR-214 modulates Hedgehog signaling to specify muscle cell fate. Nat Genet. 2007;39:259–63.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kuang W, Tan J, Duan Y, Duan J, Wang W, Jin F, Jin Z, Yuan X, Liu Y. Cyclic stretch induced miR-146a upregulation delays C2C12 myogenic differentiation through inhibition of Numb. Biochem Biophys Res Commun. 2009;378:259–63.CrossRefPubMedGoogle Scholar
  11. 11.
    Li Z, Hassan MQ, Jafferji M, Aqeilan RI, Garzon R, Croce CM, van Wijnen AJ, Stein JL, Stein GS, Lian JB. Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation. J Biol Chem. 2009;284:15676–84.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Sun Q, Zhang Y, Yang G, Chen X, Zhang Y, Cao G, Wang J, Sun Y, Zhang P, Fan M, et al. Transforming growth factor-beta-regulated miR-24 promotes skeletal muscle differentiation. Nucleic Acids Res. 2008;36:2690–9.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wang H, Garzon R, Sun H, Ladner KJ, Singh R, Dahlman J, Cheng A, Hall BM, Qualman SJ, Chandler DS, et al. NF-kappaB-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell. 2008;14:369–81.CrossRefPubMedGoogle Scholar
  14. 14.
    Erbay E, Park IH, Nuzzi PD, Schoenherr CJ, Chen J. IGF-II transcription in skeletal myogenesis is controlled by mTOR and nutrients. J Cell Biol. 2003;163:931–6.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ge Y, Sun Y, Chen J. IGF-II is regulated by microRNA-125b in skeletal myogenesis. J Cell Biol. 2011;192:69–81.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ge Y, Wu AL, Warnes C, Liu J, Zhang C, Kawasome H, Terada N, Boppart MD, Schoenherr CJ, Chen J. mTOR regulates skeletal muscle regeneration in vivo through kinase-dependent and kinase-independent mechanisms. Am J Physiol Cell Physiol. 2009;297:C1434–44.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Seok HY, Tatsuguchi M, Callis TE, He A, Pu WT, Wang DZ. miR-155 inhibits expression of the MEF2A protein to repress skeletal muscle differentiation. J Biol Chem. 2011;286:35339–46.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Greco S, De Simone M, Colussi C, Zaccagnini G, Fasanaro P, Pescatori M, Cardani R, Perbellini R, Isaia E, Sale P, et al. Common micro-RNA signature in skeletal muscle damage and regeneration induced by Duchenne muscular dystrophy and acute ischemia. FASEB J. 2009;23:3335–46.CrossRefPubMedGoogle Scholar
  19. 19.
    Eisenberg I, Eran A, Nishino I, Moggio M, Lamperti C, Amato AA, Lidov HG, Kang PB, North KN, Mitrani-Rosenbaum S, et al. Distinctive patterns of microRNA expression in primary muscular disorders. Proc Natl Acad Sci USA. 2007;104:17016–21.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Crist CG, Montarras D, Buckingham M. Muscle satellite cells are primed for myogenesis but maintain quiescence with sequestration of Myf5 mRNA targeted by microRNA-31 in mRNP granules. Cell Stem Cell. 2012;11:118–26.CrossRefPubMedGoogle Scholar
  21. 21.
    Chen JF, Callis TE, Wang DZ. microRNAs and muscle disorders. J Cell Sci. 2009;122:13–20.CrossRefPubMedGoogle Scholar
  22. 22.
    Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet. 2006;38:228–33.CrossRefPubMedGoogle Scholar
  23. 23.
    McFarlane C, Vajjala A, Arigela H, Lokireddy S, Ge X, Bonala S, Manickam R, Kambadur R, Sharma M. Negative auto-regulation of myostatin expression is mediated by Smad3 and microRNA-27. PLoS ONE. 2014;9, e87687.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Alberts BA, Johnson A, Lewis J, Raff M, Robert K, Walter P. Molecular biology of the cell. New York: Garland Science; 2002.Google Scholar
  25. 25.
    Chen JF, Tao Y, Li J, Deng Z, Yan Z, Xiao X, Wang DZ. microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. J Cell Biol. 2010;190:867–79.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Dey BK, Gagan J, Dutta A. miR-206 and -486 induce myoblast differentiation by downregulating Pax7. Mol Cell Biol. 2011;31:203–14.CrossRefPubMedGoogle Scholar
  27. 27.
    Kim HK, Lee YS, Sivaprasad U, Malhotra A, Dutta A. Muscle-specific microRNA miR-206 promotes muscle differentiation. J Cell Biol. 2006;174:677–87.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Gagan J, Dey BK, Layer R, Yan Z, Dutta A. MicroRNA-378 targets the myogenic repressor MyoR during myoblast differentiation. J Biol Chem. 2011;286:19431–8.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Wei W, He HB, Zhang WY, Zhang HX, Bai JB, Liu HZ, Cao JH, Chang KC, Li XY, Zhao SH. miR-29 targets Akt3 to reduce proliferation and facilitate differentiation of myoblasts in skeletal muscle development. Cell Death Dis. 2013;4:e668.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Dey BK, Pfeifer K, Dutta A. The H19 long noncoding RNA gives rise to microRNAs miR-675-3p and miR-675-5p to promote skeletal muscle differentiation and regeneration. Genes Dev. 2014;28:491–501.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Wang L, Chen X, Zheng Y, Li F, Lu Z, Chen C, Liu J, Wang Y, Peng Y, Shen Z, et al. MiR-23a inhibits myogenic differentiation through down regulation of fast myosin heavy chain isoforms. Exp Cell Res. 2012;318:2324–34.CrossRefPubMedGoogle Scholar
  32. 32.
    Antoniou A, Mastroyiannopoulos NP, Uney JB, Phylactou LA. miR-186 inhibits muscle cell differentiation through myogenin regulation. J Biol Chem. 2014;289:3923–35.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    de la Garza-Rodea AS, Baldwin DM, Oskouian B, Place RF, Bandhuvula P, Kumar A, Saba JD. Sphingosine phosphate lyase regulates myogenic differentiation via S1P receptor-mediated effects on myogenic microRNA expression. FASEB J. 2014;28:506–19.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Nguyen-Tran DH, Hait NC, Sperber H, Qi J, Fischer K, Ieronimakis N, Pantoja M, Hays A, Allegood J, Reyes M, et al. Molecular mechanism of sphingosine-1-phosphate action in Duchenne muscular dystrophy. Dis Model Mech. 2014;7:41–54.CrossRefPubMedGoogle Scholar
  35. 35.
    Ieronimakis N, Pantoja M, Fischer KA, Dosey TL, Qi J, Hays A, Hoofnagle AN, Sadilek M, Chamberlain JS, Ruohola-Baker H, Reyes M. Increased Sphingosine-1-Phosphate ameliorates disease pathology in mdx mice after acute injury. Skelet Muscle. 2013;3(1):20. PMID:23915702.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Pantoja M, Fischer KA, Ieronimakis N, Reyes M, Ruohola-Baker H. Genetic elevation of Sphingosine 1-Phosphate suppresses dystrophic muscle phenotypes in Drosophila. Development. 2013;140:136–46. PMID: 23154413.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Mann CJ, Perdiguero E, Kharraz Y, Aguilar S, Pessina P, Serrano AL, Munoz-Canoves P. Aberrant repair and fibrosis development in skeletal muscle. Skelet Muscle. 2011;1:21.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Serrano AL, Munoz-Canoves P. Regulation and dysregulation of fibrosis in skeletal muscle. Exp Cell Res. 2010;316:3050–8.CrossRefPubMedGoogle Scholar
  39. 39.
    Cacchiarelli D, Martone J, Girardi E, Cesana M, Incitti T, Morlando M, Nicoletti C, Santini T, Sthandier O, Barberi L, et al. MicroRNAs involved in molecular circuitries relevant for the Duchenne muscular dystrophy pathogenesis are controlled by the dystrophin/nNOS pathway. Cell Metab. 2010;12:341–51.CrossRefPubMedGoogle Scholar
  40. 40.
    Meadows E, Kota J, Malik V, Clark R, Sahenk Z, Harper S, Mendell J. MicroRNA-29 overexpression delivered by adeno-associated virus suppresses fibrosis in mdx: utrn+/− mice (S61. 003). Neurology. 2014;82:S61.003–S061. 003 %@ 0028–3878.Google Scholar
  41. 41.
    Wang L, Zhou L, Jiang P, Lu L, Chen X, Lan H, Guttridge DC, Sun H, Wang H. Loss of miR-29 in myoblasts contributes to dystrophic muscle pathogenesis. Mol Ther. 2012;20:1222–33.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Pette D, Staron RS. Myosin isoforms, muscle fiber types, and transitions. Microsc Res Tech. 2000;50:500–9.CrossRefPubMedGoogle Scholar
  43. 43.
    Schiaffino S, Reggiani C. Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol Rev. 1996;76:371–423.PubMedGoogle Scholar
  44. 44.
    Simmons BJ, Cohen TJ, Bedlack R, Yao TP. HDACs in skeletal muscle remodeling and neuromuscular disease. Handb Exp Pharmacol. 2011;206:79–101.CrossRefPubMedGoogle Scholar
  45. 45.
    Soares LE, Brugnera Junior A, Zanin FA, Pacheco MT, Martin AA. Effects of treatment for manipulation of teeth and Er:YAG laser irradiation on dentin: a Raman spectroscopy analysis. Photomed Laser Surg. 2007;25:50–7.CrossRefPubMedGoogle Scholar
  46. 46.
    Campbell NA, Reece JB, Lawrence MG. Biology. Menlo Park: Addison Wesley Longman; 1999.Google Scholar
  47. 47.
    Webster C, Silberstein L, Hays AP, Blau HM. Fast muscle fibers are preferentially affected in Duchenne muscular dystrophy. Cell. 1988;52:503–13.CrossRefPubMedGoogle Scholar
  48. 48.
    Selsby JT, Morine KJ, Pendrak K, Barton ER, Sweeney HL. Rescue of dystrophic skeletal muscle by PGC-1alpha involves a fast to slow fiber type shift in the mdx mouse. PLoS ONE. 2012;7, e30063.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    von Maltzahn J, Renaud JM, Parise G, Rudnicki MA. Wnt7a treatment ameliorates muscular dystrophy. Proc Natl Acad Sci USA. 2012;109:20614–9.CrossRefGoogle Scholar
  50. 50.
    Chemello F, Bean C, Cancellara P, Laveder P, Reggiani C, Lanfranchi G. Microgenomic analysis in skeletal muscle: expression signatures of individual fast and slow myofibers. PLoS ONE. 2011;6, e16807.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Fairclough RJ, Wood MJ, Davies KE. Therapy for Duchenne muscular dystrophy: renewed optimism from genetic approaches. Nat Rev Genet. 2013;14:373–8.CrossRefPubMedGoogle Scholar
  52. 52.
    Gramolini AO, Belanger G, Thompson JM, Chakkalakal JV, Jasmin BJ. Increased expression of utrophin in a slow vs. a fast muscle involves posttranscriptional events. Am J Physiol Cell Physiol. 2001;281:C1300–9.PubMedGoogle Scholar
  53. 53.
    Tinsley J, Deconinck N, Fisher R, Kahn D, Phelps S, Gillis JM, Davies K. Expression of full-length utrophin prevents muscular dystrophy in mdx mice. Nat Med. 1998;4:1441–4.CrossRefPubMedGoogle Scholar
  54. 54.
    Guan JS, Haggarty SJ, Giacometti E, Dannenberg JH, Joseph N, Gao J, Nieland TJ, Zhou Y, Wang X, Mazitschek R, et al. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature. 2009;459:55–60.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Ryder JW, Bassel-Duby R, Olson EN, Zierath JR. Skeletal muscle reprogramming by activation of calcineurin improves insulin action on metabolic pathways. J Biol Chem. 2003;278:44298–304.CrossRefPubMedGoogle Scholar
  56. 56.
    Song XM, Ryder JW, Kawano Y, Chibalin AV, Krook A, Zierath JR. Muscle fiber type specificity in insulin signal transduction. Am J Physiol. 1999;277:R1690–6.PubMedGoogle Scholar
  57. 57.
    Bassel-Duby R, Olson EN. Signaling pathways in skeletal muscle remodeling. Annu Rev Biochem. 2006;75:19–37.CrossRefPubMedGoogle Scholar
  58. 58.
    Olson EN, Williams RS. Calcineurin signaling and muscle remodeling. Cell. 2000;101:689–92.CrossRefPubMedGoogle Scholar
  59. 59.
    Chin ER, Olson EN, Richardson JA, Yang Q, Humphries C, Shelton JM, Wu H, Zhu W, Bassel-Duby R, Williams RS. A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev. 1998;12:2499–509.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Delling U, Tureckova J, Lim HW, De Windt LJ, Rotwein P, Molkentin JD. A calcineurin-NFATc3-dependent pathway regulates skeletal muscle differentiation and slow myosin heavy-chain expression. Mol Cell Biol. 2000;20:6600–11.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN, et al. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature. 2002;418:797–801.CrossRefPubMedGoogle Scholar
  62. 62.
    Naya FJ, Mercer B, Shelton J, Richardson JA, Williams RS, Olson EN. Stimulation of slow skeletal muscle fiber gene expression by calcineurin in vivo. J Biol Chem. 2000;275:4545–8.CrossRefPubMedGoogle Scholar
  63. 63.
    Wu H, Naya FJ, McKinsey TA, Mercer B, Shelton JM, Chin ER, Simard AR, Michel RN, Bassel-Duby R, Olson EN, et al. MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type. EMBO J. 2000;19:1963–73.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Arany Z, Lebrasseur N, Morris C, Smith E, Yang W, Ma Y, Chin S, Spiegelman BM. The transcriptional coactivator PGC-1beta drives the formation of oxidative type IIX fibers in skeletal muscle. Cell Metab. 2007;5:35–46.CrossRefPubMedGoogle Scholar
  65. 65.
    Kuroda K, Kuang S, Taketo MM, Rudnicki MA. Canonical Wnt signaling induces BMP-4 to specify slow myofibrogenesis of fetal myoblasts. Skelet Muscle. 2013;3:5.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Adolph EA, Subramaniam A, Cserjesi P, Olson EN, Robbins J. Role of myocyte-specific enhancer-binding factor (MEF-2) in transcriptional regulation of the alpha-cardiac myosin heavy chain gene. J Biol Chem. 1993;268:5349–52.PubMedGoogle Scholar
  67. 67.
    Azakie A, Fineman JR, He Y. Sp3 inhibits Sp1-mediated activation of the cardiac troponin T promoter and is downregulated during pathological cardiac hypertrophy in vivo. Am J Physiol Heart Circ Physiol. 2006;291:H600–11.CrossRefPubMedGoogle Scholar
  68. 68.
    Gupta M, Sueblinvong V, Raman J, Jeevanandam V, Gupta MP. Single-stranded DNA-binding proteins PURalpha and PURbeta bind to a purine-rich negative regulatory element of the alpha-myosin heavy chain gene and control transcriptional and translational regulation of the gene expression. Implications in the repression of alpha-myosin heavy chain during heart failure. J Biol Chem. 2003;278:44935–48.CrossRefPubMedGoogle Scholar
  69. 69.
    Hagiwara N, Ma B, Ly A. Slow and fast fiber isoform gene expression is systematically altered in skeletal muscle of the Sox6 mutant, p100H. Dev Dyn. 2005;234:301–11.CrossRefPubMedGoogle Scholar
  70. 70.
    Hagiwara N, Yeh M, Liu A. Sox6 is required for normal fiber type differentiation of fetal skeletal muscle in mice. Dev Dyn. 2007;236:2062–76.CrossRefPubMedGoogle Scholar
  71. 71.
    Ji J, Tsika GL, Rindt H, Schreiber KL, McCarthy JJ, Kelm Jr RJ, Tsika R. Puralpha and Purbeta collaborate with Sp3 to negatively regulate beta-myosin heavy chain gene expression during skeletal muscle inactivity. Mol Cell Biol. 2007;27:1531–43.CrossRefPubMedGoogle Scholar
  72. 72.
    Tsika G, Ji J, Tsika R. Sp3 proteins negatively regulate beta myosin heavy chain gene expression during skeletal muscle inactivity. Mol Cell Biol. 2004;24:10777–91.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    von Hofsten J, Elworthy S, Gilchrist MJ, Smith JC, Wardle FC, Ingham PW. Prdm1- and Sox6-mediated transcriptional repression specifies muscle fibre type in the zebrafish embryo. EMBO Rep. 2008;9:683–9.CrossRefGoogle Scholar
  74. 74.
    Zhang CL, McKinsey TA, Olson EN. Association of class II histone deacetylases with heterochromatin protein 1: potential role for histone methylation in control of muscle differentiation. Mol Cell Biol. 2002;22:7302–12.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Cacchiarelli D, Incitti T, Martone J, Cesana M, Cazzella V, Santini T, Sthandier O, Bozzoni I. miR-31 modulates dystrophin expression: new implications for Duchenne muscular dystrophy therapy. EMBO Rep. 2011;12:136–41.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Li X, Li Y, Zhao L, Zhang D, Yao X, Zhang H, Wang YC, Wang XY, Xia H, Yan J, et al. Circulating muscle-specific miRNAs in Duchenne muscular dystrophy patients. Mol Ther Nucleic Acids. 2014;3, e177.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Cacchiarelli D, Legnini I, Martone J, Cazzella V, D'Amico A, Bertini E, Bozzoni I. miRNAs as serum biomarkers for Duchenne muscular dystrophy. EMBO Mol Med. 2011;3:258–65.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Guay C, Regazzi R. Circulating microRNAs as novel biomarkers for diabetes mellitus. Nat Rev Endocrinol. 2013;9:513–21.CrossRefPubMedGoogle Scholar
  79. 79.
    Ono K, Kuwabara Y, Han J. MicroRNAs and cardiovascular diseases. FEBS J. 2011;278:1619–33.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Departments of Biochemistry, Biology, Bioengineering, Genome SciencesInstitute for Stem Cell and Regenerative Medicine, University of Washington, School of MedicineSeattleUSA
  2. 2.Department of NeurosurgeryMcKnight Brain Institute, University of FloridaGainesvilleUSA

Personalised recommendations