Advertisement

Regenerative Medicine Approaches to Degenerative Muscle Diseases

  • Martin K. Childers
  • Zejing Wang
Chapter
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)

Abstract

The emerging multidisciplinary field of regenerative medicine aims to develop new technology to repair and replace cells, tissues, and organs. Regenerative medicine holds the promise of regenerating damaged tissues and organs in the body by either replacing damaged tissue or by stimulating the body’s own repair mechanisms to heal previously irreparable tissues or organs. Regenerative approaches address the root cause of disease and offer prospects of tissue repair previously unthinkable. For degenerative muscular disorders, most fall into the category of rare inherited diseases. To cure inherited muscular disorders, recent attention has focused on the transfer of normal genes to correct mutant diseased genes. This chapter discusses cell- and vector-mediated gene therapy technology under development for various inherited disorders of skeletal muscle.

Keywords

Regenerative medicine Stem cells Gene therapy Myopathy Muscular dystrophy Adeno-associated virus 

Notes

Conflict of Interest Statement

MC is an inventor on patents related to recombinant AAV technology. MC owns stock options in a biotechnology company commercializing AAV for gene therapy applications. To the extent that the work in this manuscript increases the value of these commercial holdings, MC has a conflict of interest.

References

  1. 1.
  2. 2.
    Terzic A, Nelson TJ. Regenerative medicine primer. Mayo Clin Proc. 2013;88(7):766–75.CrossRefPubMedGoogle Scholar
  3. 3.
    Organ Procurement and Transplantation Network. http://optn.transplant.hrsa.gov/. Accessed 1 May 2014.
  4. 4.
    U.S. Government Information on Organ and Tissue Donation and Transplantation. http://www.organdonor.gov/about/data.html. Accessed 1 May 2014.
  5. 5.
    Colvin-Adams M, Smithy JM, Heubner BM, et al. OPTN/SRTR 2012 annual data report: heart. Am J Transplant. 2014;14 Suppl 1:113–38.CrossRefPubMedGoogle Scholar
  6. 6.
    Smith JM, Skeans MA, Horslen SP, et al. OPTN/SRTR 2012 annual data report: intestine. Am J Transplant. 2014;14 Suppl 1:97–111.CrossRefPubMedGoogle Scholar
  7. 7.
    Kim WR, Smith JM, Skeans MA, et al. OPTN/SRTR 2012 annual data report: liver. Am J Transplant. 2014;14 Suppl 1:69–96.CrossRefPubMedGoogle Scholar
  8. 8.
    Matas AJ, Smith JM, Skeans MA, et al. OPTN/SRTR 2012 annual data report: kidney. Am J Transplant. 2014;14 Suppl 1:11–44.CrossRefPubMedGoogle Scholar
  9. 9.
    Valapour M, Skeans MA, Heubner BM, et al. OPTN/SRTR 2012 annual data report: lung. Am J Transplant. 2014;14 Suppl 1:139–65.CrossRefPubMedGoogle Scholar
  10. 10.
    Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet. 2006;367(9518):1241–6.CrossRefPubMedGoogle Scholar
  11. 11.
    Atala A. Creation of bladder tissue in vitro and in vivo. A system for organ replacement. Adv Exp Med Biol. 1999;462:31–42.CrossRefPubMedGoogle Scholar
  12. 12.
    Atala A. Tissue engineering for bladder substitution. World J Urol. 2000;18(5):364–70.CrossRefPubMedGoogle Scholar
  13. 13.
    Atala A. Bladder regeneration by tissue engineering. BJU Int. 2001;88(7):765–70.CrossRefPubMedGoogle Scholar
  14. 14.
    Atala A. Tissue engineering of human bladder. Br Med Bull. 2011;97:81–104.CrossRefPubMedGoogle Scholar
  15. 15.
    Horst M, Madduri S, Gobet R, et al. Engineering functional bladder tissues. J Tissue Eng Regen Med. 2013;7(7):515–22.CrossRefPubMedGoogle Scholar
  16. 16.
    Gunter CI, Machens HG. New strategies in clinical care of skin wound healing. Eur Surg Res. 2012;49(1):16–23.CrossRefPubMedGoogle Scholar
  17. 17.
    Berg M, Ejnell H, Kovacs A, et al. Replacement of a tracheal stenosis with a tissue-engineered human trachea using autologous stem cells: a case report. Tissue Eng Part A. 2014;20(1–2):389–97.CrossRefPubMedGoogle Scholar
  18. 18.
    Wise J. Five year results show success of first tissue engineered trachea transplant. BMJ. 2013;347:f6365.CrossRefPubMedGoogle Scholar
  19. 19.
    Pastides P, Chimutengwende-Gordon M, Maffulli N, Khan W. Stem cell therapy for human cartilage defects: a systematic review. Osteoarthritis Cartilage. 2013;21(5):646–54.CrossRefPubMedGoogle Scholar
  20. 20.
    Kruse FE, Cursiefen C. Surgery of the cornea: corneal, limbal stem cell and amniotic membrane transplantation. Dev Ophthalmol. 2008;41:159–70.CrossRefPubMedGoogle Scholar
  21. 21.
    Mase Jr VJ, Hsu JR, Wolf SE, et al. Clinical application of an acellular biologic scaffold for surgical repair of a large, traumatic quadriceps femoris muscle defect. Orthopedics. 2010;33(7):511.PubMedGoogle Scholar
  22. 22.
    Carrier P, Deschambeault A, Audet C, et al. Impact of cell source on human cornea reconstructed by tissue engineering. Invest Ophthalmol Vis Sci. 2009;50(6):2645–52.CrossRefPubMedGoogle Scholar
  23. 23.
    Proulx S, D’Arc Uwamaliya J, Carrier P, et al. Reconstruction of a human cornea by the self-assembly approach of tissue engineering using the three native cell types. Mol Vis. 2010;16:2192–201.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Cerqueira MT, Marques AP, Reis RL. Using stem cells in skin regeneration: possibilities and reality. Stem Cells Dev. 2012;21(8):1201–14.CrossRefPubMedGoogle Scholar
  25. 25.
    Lo DD, Zimmermann AS, Nauta A, Longaker MT, Lorenz HP. Scarless fetal skin wound healing update. Birth Defects Res C Embryo Today. 2012;96(3):237–47.CrossRefPubMedGoogle Scholar
  26. 26.
    Yildirimer L, Thanh NT, Seifalian AM. Skin regeneration scaffolds: a multimodal bottom-up approach. Trends Biotechnol. 2012;30(12):638–48.CrossRefPubMedGoogle Scholar
  27. 27.
    Borestrom C, Simonsson S, Enochson L, et al. Footprint-free human induced pluripotent stem cells from articular cartilage with redifferentiation capacity: a first step toward a clinical-grade cell source. Stem Cells Transl Med. 2014;3(4):433–47.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Sato Y, Wakitani S, Takagi M. Xeno-free and shrinkage-free preparation of scaffold-free cartilage-like disc-shaped cell sheet using human bone marrow mesenchymal stem cells. J Biosci Bioeng. 2013;116(6):734–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Yoon HH, Bhang SH, Shin JY, Shin J, Kim BS. Enhanced cartilage formation via three-dimensional cell engineering of human adipose-derived stem cells. Tissue Eng Part A. 2012;18(19–20):1949–56.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kobayashi S, Takebe T, Inui M, et al. Reconstruction of human elastic cartilage by a CD44+ CD90+ stem cell in the ear perichondrium. Proc Natl Acad Sci U S A. 2011;108(35):14479–84.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Sicari BM, Dearth CL, Badylak SF. Tissue engineering and regenerative medicine approaches to enhance the functional response to skeletal muscle injury. Anat Rec (Hoboken). 2014;297(1):51–64.CrossRefGoogle Scholar
  32. 32.
    Turner NJ, Badylak SF. Regeneration of skeletal muscle. Cell Tissue Res. 2012;347(3):759–74.CrossRefPubMedGoogle Scholar
  33. 33.
    Chong JJ, Yang X, Don CW, et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature. 2014;510(7504):273–7.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
  35. 35.
    Schakman O, Kalista S, Barbe C, Loumaye A, Thissen JP. Glucocorticoid-induced skeletal muscle atrophy. Int J Biochem Cell Biol. 2013;45(10):2163–72.CrossRefPubMedGoogle Scholar
  36. 36.
    Mills GH, Kyroussis D, Jenkins P, et al. Respiratory muscle strength in Cushing’s syndrome. Am J Respir Crit Care Med. 1999;160(5 Pt 1):1762–5.CrossRefPubMedGoogle Scholar
  37. 37.
    Fournier M, Huang ZS, Li H, Da X, Cercek B, Lewis MI. Insulin-like growth factor I prevents corticosteroid-induced diaphragm muscle atrophy in emphysematous hamsters. Am J Physiol Regul Integr Comp Physiol. 2003;285(1):R34–43.CrossRefPubMedGoogle Scholar
  38. 38.
    Short KR, Bigelow ML, Nair KS. Short-term prednisone use antagonizes insulin’s anabolic effect on muscle protein and glucose metabolism in young healthy people. Am J Physiol Endocrinol Metab. 2009;297(6):E1260–8.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Hillel AT, Taube JM, Cornish TC, et al. Characterization of human mesenchymal stem cell-engineered cartilage: analysis of its ultrastructure, cell density and chondrocyte phenotype compared to native adult and fetal cartilage. Cells Tissues Organs. 2010;191(1):12–20.CrossRefPubMedGoogle Scholar
  40. 40.
    Hipp J, Atala A. Sources of stem cells for regenerative medicine. Stem Cell Rev. 2008;4(1):3–11.CrossRefPubMedGoogle Scholar
  41. 41.
    Ballas CB, Zielske SP, Gerson SL. Adult bone marrow stem cells for cell and gene therapies: implications for greater use. J Cell Biochem. 2002;38:20–8.CrossRefGoogle Scholar
  42. 42.
    Thomas ED, Lochte Jr HL, Lu WC, Ferrebee JW. Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N Engl J Med. 1957;257(11):491–6.CrossRefPubMedGoogle Scholar
  43. 43.
    McCulloch EA, Till JE. Proliferation of hemopoietic colony-forming cells transplanted into irradiated mice. Radiat Res. 1964;22:383–97.CrossRefPubMedGoogle Scholar
  44. 44.
    Bradley A, Evans M, Kaufman MH, Robertson E. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature. 1984;309(5965):255–6.CrossRefPubMedGoogle Scholar
  45. 45.
    Odorico JS, Kaufman DS, Thomson JA. Multilineage differentiation from human embryonic stem cell lines. Stem Cells. 2001;19(3):193–204.CrossRefPubMedGoogle Scholar
  46. 46.
    Keller G. Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev. 2005;19(10):1129–55.CrossRefPubMedGoogle Scholar
  47. 47.
    Simerman AA, Dumesic DA, Chazenbalk GD. Pluripotent muse cells derived from human adipose tissue: a new perspective on regenerative medicine and cell therapy. Clin Transl Med. 2014;3:12.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Gokhale PJ, Andrews PW. The development of pluripotent stem cells. Curr Opin Genet Dev. 2012;22(5):403–8.CrossRefPubMedGoogle Scholar
  49. 49.
    Klimanskaya I. Embryonic stem cells from blastomeres maintaining embryo viability. Semin Reprod Med. 2013;31(1):49–55.CrossRefPubMedGoogle Scholar
  50. 50.
    Klimanskaya I, Chung Y, Becker S, Lu SJ, Lanza R. Human embryonic stem cell lines derived from single blastomeres. Nature. 2006;444(7118):481–5.CrossRefPubMedGoogle Scholar
  51. 51.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.CrossRefPubMedGoogle Scholar
  52. 52.
    Wernig M, Meissner A, Foreman R, et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state 1. Nature. 2007;448(7151):318–24.CrossRefPubMedGoogle Scholar
  53. 53.
    Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.CrossRefPubMedGoogle Scholar
  54. 54.
    Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;1151526.Google Scholar
  55. 55.
    Sadahiro T, Yamanaka S, Ieda M. Direct cardiac reprogramming: progress and challenges in basic biology and clinical applications. Circ Res. 2015;116(8):1378–91.CrossRefPubMedGoogle Scholar
  56. 56.
    Kelaini S, Cochrane A, Margariti A. Direct reprogramming of adult cells: avoiding the pluripotent state. Stem Cells Cloning. 2014;7:19–29.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Budniatzky I, Gepstein L. Concise review: reprogramming strategies for cardiovascular regenerative medicine: from induced pluripotent stem cells to direct reprogramming. Stem Cells Transl Med. 2014;3(4):448–57.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Jung DW, Kim WH, Williams DR. Reprogram or reboot: small molecule approaches for the production of induced pluripotent stem cells and direct cell reprogramming. ACS Chem Biol. 2014;9(1):80–95.CrossRefPubMedGoogle Scholar
  59. 59.
    Kastelein JJ, Ross CJ, Hayden MR. From mutation identification to therapy: discovery and origins of the first approved gene therapy in the Western world. Hum Gene Ther. 2013;24(5):472–8.CrossRefPubMedGoogle Scholar
  60. 60.
    Nayerossadat N, Maedeh T, Ali PA. Viral and nonviral delivery systems for gene delivery. Adv Biomed Res. 2012;1:27.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Ginn SL, Alexander IE, Edelstein ML, Abedi MR, Wixon J. Gene therapy clinical trials worldwide to 2012 - an update. J Gene Med. 2013;15(2):65–77.CrossRefPubMedGoogle Scholar
  62. 62.
    Byrne BJ. Pathway for approval of a gene therapy orphan product: treading new ground. Mol Ther. 2013;21(8):1465–6.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Hacein-Bey-Abina S, Hauer J, Lim A, et al. Efficacy of gene therapy for X-linked severe combined immunodeficiency. N Engl J Med. 2010;363(4):355–64.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Simonelli F, Maguire AM, Testa F, et al. Gene therapy for Leber’s congenital amaurosis is safe and effective through 1.5 years after vector administration. Mol Ther. 2010;18(3):643–50.CrossRefPubMedGoogle Scholar
  65. 65.
    Maguire AM, High KA, Auricchio A, et al. Age-dependent effects of RPE65 gene therapy for Leber’s congenital amaurosis: a phase 1 dose-escalation trial. Lancet. 2009;374(9701):1597–605.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Chung DC, Lee V, Maguire AM. Recent advances in ocular gene therapy. Curr Opin Ophthalmol. 2009;20(5):377–81.CrossRefPubMedGoogle Scholar
  67. 67.
    Wilson JM. Lessons learned from the gene therapy trial for ornithine transcarbamylase deficiency. Mol Genet Metab. 2009;96(4):151–7.CrossRefPubMedGoogle Scholar
  68. 68.
    Asokan A, Schaffer DV, Samulski RJ. The AAV vector toolkit: poised at the clinical crossroads. Mol Ther. 2012;20(4):699–708.CrossRefPubMedCentralGoogle Scholar
  69. 69.
    Choi VW, McCarty DM, Samulski RJ. AAV hybrid serotypes: improved vectors for gene delivery. Curr Gene Ther. 2005;5(3):299–310.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Wang Z, Tapscott SJ, Storb R. Local gene delivery and methods to control immune responses in muscles of normal and dystrophic dogs. Methods Mol Biol. 2011;709:265–75.CrossRefPubMedGoogle Scholar
  71. 71.
    Mendell JR, Rodino-Klapac LR, Rosales XQ, et al. Sustained alpha-sarcoglycan gene expression after gene transfer in limb-girdle muscular dystrophy, type 2D. Ann Neurol. 2010;68(5):629–38.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Mendell JR, Rodino-Klapac LR, Rosales-Quintero X, et al. Limb-girdle muscular dystrophy type 2D gene therapy restores alpha-sarcoglycan and associated proteins. Ann Neurol. 2009;66(3):290–7.CrossRefPubMedGoogle Scholar
  73. 73.
    Mendell JR, Campbell K, Rodino-Klapac L, et al. Dystrophin immunity in Duchenne’s muscular dystrophy. N Engl J Med. 2010;363(15):1429–37.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Wang Z, Kuhr CS, Allen JM, et al. Sustained AAV-mediated dystrophin expression in a canine model of Duchenne muscular dystrophy with a brief course of immunosuppression. Mol Ther. 2007;15(6):1160–6.CrossRefPubMedGoogle Scholar
  75. 75.
    Wang Z, Storb R, Halbert CL, et al. Successful regional delivery and long-term expression of a dystrophin gene in canine muscular dystrophy: a preclinical model for human therapies. Mol Ther. 2012;20(8):1501–7.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Jarmin S, Kymalainen H, Popplewell L. Dickson G. Expert Opin Biol Ther: New developments in the use of gene therapy to treat Duchenne muscular dystrophy; 2013.Google Scholar
  77. 77.
    Fairclough RJ, Wood MJ, Davies KE. Therapy for Duchenne muscular dystrophy: renewed optimism from genetic approaches. Nat Rev Genet. 2013;14(6):373–8.CrossRefPubMedGoogle Scholar
  78. 78.
    Hoffman EP, Bronson A, Levin AA, et al. Restoring dystrophin expression in duchenne muscular dystrophy muscle progress in exon skipping and stop codon read through. Am J Pathol. 2011;179(1):12–22.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Nelson SF, Crosbie RH, Miceli MC, Spencer MJ. Emerging genetic therapies to treat Duchenne muscular dystrophy. Curr Opin Neurol. 2009;22(5):532–8.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Kinali M, Arechavala-Gomeza V, Feng L, et al. Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study. Lancet Neurol. 2009;8(10):918–28.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    van Deutekom JC, Janson AA, Ginjaar IB, et al. Local dystrophin restoration with antisense oligonucleotide PRO051. N Engl J Med. 2007;357(26):2677–86.CrossRefPubMedGoogle Scholar
  82. 82.
    Goemans NM, Tulinius M, van den Akker JT, et al. Systemic administration of PRO051 in Duchenne’s muscular dystrophy. N Engl J Med. 2011;364(16):1513–22.CrossRefPubMedGoogle Scholar
  83. 83.
    Cirak S, Arechavala-Gomeza V, Guglieri M, et al. Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet. 2011;378(9791):595–605.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    McDonald CM, Henricson EK, Han JJ, et al. The 6-minute walk test as a new outcome measure in Duchenne muscular dystrophy. Muscle Nerve. 2010;41(4):500–10.CrossRefPubMedGoogle Scholar
  85. 85.
    Barton-Davis ER, Cordier L, Shoturma DI, Leland SE, Sweeney HL. Aminoglycoside antibiotics restore dystrophin function to skeletal muscles of mdx mice. J Clin Invest. 1999;104(4):375–81.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Welch EM, Barton ER, Zhuo J, et al. PTC124 targets genetic disorders caused by nonsense mutations. Nature. 2007;447(7140):87–91.CrossRefPubMedGoogle Scholar
  87. 87.
    Finkel RS, Flanigan KM, Wong B, et al. Phase 2a study of ataluren-mediated dystrophin production in patients with nonsense mutation duchenne muscular dystrophy. PLoS ONE. 2013;8(12), e81302.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Finkel RS. Read-through strategies for suppression of nonsense mutations in Duchenne/ Becker muscular dystrophy: aminoglycosides and ataluren (PTC124). J Child Neurol. 2010;25(9):1158–64.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Sonnemann KJ, Heun-Johnson H, Turner AJ, Baltgalvis KA, Lowe DA, Ervasti JM. Functional substitution by TAT-utrophin in dystrophin-deficient mice. PLoS Med. 2009;6(5), e1000083.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Tinsley JM, Fairclough RJ, Storer R, et al. Daily treatment with SMTC1100, a novel small molecule utrophin upregulator, dramatically reduces the dystrophic symptoms in the mdx mouse. PLoS ONE. 2011;6(5), e19189.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Nguyen HH, Jayasinha V, Xia B, Hoyte K, Martin PT. Overexpression of the cytotoxic T cell GalNAc transferase in skeletal muscle inhibits muscular dystrophy in mdx mice. Proc Natl Acad Sci U S A. 2002;99(8):5616–21.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Cosford KL, Taylor SM, Thompson L, Shelton GD. A possible new inherited myopathy in a young Labrador retriever. Can Vet J. 2008;49(4):393–7.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Frase AR. The miracle of Nibs. http://www.joshuafrase.org/uploads/JFF-Thestoryof Nibs.pdf. 2009.
  94. 94.
    Heckmatt JZ, Sewry CA, Hodes D, Dubowitz V. Congenital centronuclear (myotubular) myopathy. A clinical, pathological and genetic study in eight children. Brain. 1985;108(Pt 4):941–64.CrossRefPubMedGoogle Scholar
  95. 95.
    Jungbluth H, Wallgren-Pettersson C, Laporte J. Centronuclear (myotubular) myopathy. Orphanet J Rare Dis. 2008;3:26.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Laporte J, Hu LJ, Kretz C, et al. A gene mutated in X-linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast. Nat Genet. 1996;13(2):175–82.CrossRefPubMedGoogle Scholar
  97. 97.
    Laporte J, Blondeau F, Buj-Bello A, et al. Characterization of the myotubularin dual specificity phosphatase gene family from yeast to human. Hum Mol Genet. 1998;7(11):1703–12.CrossRefPubMedGoogle Scholar
  98. 98.
    Cameron JM, Maj MC, Levandovskiy V, MacKay N, Shelton GD, Robinson BH. Identification of a canine model of pyruvate dehydrogenase phosphatase 1 deficiency. Mol Genet Metab. 2007;90(1):15–23.CrossRefPubMedGoogle Scholar
  99. 99.
    Buj-Bello A, Laugel V, Messaddeq N, et al. The lipid phosphatase myotubularin is essential for skeletal muscle maintenance but not for myogenesis in mice. Proc Natl Acad Sci U S A. 2002;99(23):15060–5.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Dowling JJ, Vreede AP, Low SE, et al. Loss of myotubularin function results in T-tubule disorganization in zebrafish and human myotubular myopathy. PLoS Genet. 2009;5(2), e1000372.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Beggs AH, Bohm J, Snead E, et al. MTM1 mutation associated with X-linked myotubular myopathy in Labrador Retrievers. Proc Natl Acad Sci U S A. 2010;107(33):14697–702.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Buj-Bello A, Fougerousse F, Schwab Y, et al. AAV-mediated intramuscular delivery of myotubularin corrects the myotubular myopathy phenotype in targeted murine muscle and suggests a function in plasma membrane homeostasis. Hum Mol Genet. 2008;17(14):2132–43.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Grange RW. Muscle function in a canine model of X-Linked Myotubular Myopathy. Muscle Nerve. 2012.Google Scholar
  104. 104.
    Goddard MA, Mitchell EL, Smith BK, Childers MK. Establishing clinical end points of respiratory function in large animals for clinical translation. Phys Med Rehabil Clin N Am. 2012;23(1):75–94. xi.CrossRefPubMedGoogle Scholar
  105. 105.
    Butler D. French move past Genethon to gene-therapy research. Nature. 1993;361(6414):671.PubMedGoogle Scholar
  106. 106.
    Childers MK, Joubert R, Poulard K, et al. Gene therapy prolongs survival and restores function in murine and canine models of myotubular myopathy. Sci Transl Med. 2014;6(220), 220ra210.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Rehabilitation MedicineUniversity of WashingtonSeattleUSA
  2. 2.Institute for Stem Cell and Regenerative Medicine, School of MedicineUniversity of WashingtonSeattleUSA
  3. 3.Medicine/Clinical ResearchUniversity of Washington/Fred Hutchinson Cancer Research CenterSeattleUSA

Personalised recommendations