Effect of Bariatric Surgery on Incretin Function

Abstract

The gut hormone incretins play a preponderant physiological role in glucose-stimulated insulin release during meals. Although weight loss is a key determinant of diabetes remission after bariatric surgery, the incretin hormones may also play a role in glucose control. After gastric bypass (RYGBP), the release of incretins, and specifically of glucagon-like peptide (GLP)-1, in response to the ingestion of nutrients, is greatly enhanced. The rapid transit of food from the gastric pouch to the distal jejunum and ileum is responsible for the greater GLP-1 release after RYGBP. The exaggerated release of GLP-1 boosts insulin secretion and lowers postprandial glucose levels during meals. The incretin effect on insulin secretion, or the greater insulin response to oral glucose compared to an isoglycemic intravenous glucose challenge, is severely impaired in patients with diabetes, but is recovered rapidly after RYGBP. The improvement in insulin secretion rate and beta cell sensitivity to oral glucose after RYGBP is mediated by endogenous GLP-1, and is abolished by exendin 9-39, a specific GLP-1 receptor antagonist. While calorie restriction and weight loss have major effects on the rapid and sustained improvement of fasted glucose metabolism, the enhanced incretin effect is a key player of postprandial glucose control after RYGBP.

Keywords

Incretin effect GLP-1 GIP Type 2 diabetes Gastric bypass 

References

  1. 1.
    Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, Mullany EC, Biryukov S, Abbafati C, Abera SF, Abraham JP, Abu-Rmeileh NM, Achoki T, AlBuhairan FS, Alemu ZA, Alfonso R, Ali MK, Ali R, Guzman NA, Ammar W, Anwari P, Banerjee A, Barquera S, Basu S, Bennett DA, Bhutta Z, Blore J, Cabral N, Nonato IC, Chang JC, Chowdhury R, Courville KJ, Criqui MH, Cundiff DK, Dabhadkar KC, Dandona L, Davis A, Dayama A, Dharmaratne SD, Ding EL, Durrani AM, Esteghamati A, Farzadfar F, Fay DF, Feigin VL, Flaxman A, Forouzanfar MH, Goto A, Green MA, Gupta R, Hafezi-Nejad N, Hankey GJ, Harewood HC, Havmoeller R, Hay S, Hernandez L, Husseini A, Idrisov BT, Ikeda N, Islami F, Jahangir E, Jassal SK, Jee SH, Jeffreys M, Jonas JB, Kabagambe EK, Khalifa SE, Kengne AP, Khader YS, Khang YH, Kim D, Kimokoti RW, Kinge JM, Kokubo Y, Kosen S, Kwan G, Lai T, Leinsalu M, Li Y, Liang X, Liu S, Logroscino G, Lotufo PA, Lu Y, Ma J, Mainoo NK, Mensah GA, Merriman TR, Mokdad AH, Moschandreas J, Naghavi M, Naheed A, Nand D, Narayan KM, Nelson EL, Neuhouser ML, Nisar MI, Ohkubo T, Oti SO, Pedroza A, Prabhakaran D, Roy N, Sampson U, Seo H, Sepanlou SG, Shibuya K, Shiri R, Shiue I, Singh GM, Singh JA, Skirbekk V, Stapelberg NJ, Sturua L, Sykes BL, Tobias M, Tran BX, Trasande L, Toyoshima H, van de Vijver S, Vasankari TJ, Veerman JL, Velasquez-Melendez G, Vlassov VV, Vollset SE, Vos T, Wang C, Wang X, Weiderpass E, Werdecker A, Wright JL, Yang YC, Yatsuya H, Yoon J, Yoon SJ, Zhao Y, Zhou M, Zhu S, Lopez AD, Murray CJ, Gakidou E. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384(9945):766–81. doi:  10.1016/S0140-6736(14)60460-8.
  2. 2.
    Unick JL, Beavers D, Bond DS, Clark JM, Jakicic JM, Kitabchi AE, Knowler WC, Wadden TA, Wagenknecht LE, Wing RR, Look ARG. The long-term effectiveness of a lifestyle intervention in severely obese individuals. Am J Med. 2013;126(3):236–42. doi: 10.1016/j.amjmed.2012.10.010. 242e.1–2.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Courcoulas AP, Christian NJ, Belle SH, Berk PD, Flum DR, Garcia L, Horlick M, Kalarchian MA, King WC, Mitchell JE, Patterson EJ, Pender JR, Pomp A, Pories WJ, Thirlby RC, Yanovski SZ, Wolfe BM, Longitudinal Assessment of Bariatric Surgery Consortium. Weight change and health outcomes at 3 years after bariatric surgery among individuals with severe obesity. JAMA. 2013;310(22):2416–25. doi: 10.1001/jama.2013.280928.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Sjostrom L, Peltonen M, Jacobson P, Sjostrom CD, Karason K, Wedel H, Ahlin S, Anveden A, Bengtsson C, Bergmark G, Bouchard C, Carlsson B, Dahlgren S, Karlsson J, Lindroos AK, Lonroth H, Narbro K, Naslund I, Olbers T, Svensson PA, Carlsson LM. Bariatric surgery and long-term cardiovascular events. JAMA. 2012;307(1):56–65. doi: 10.1001/jama.2011.1914.PubMedCrossRefGoogle Scholar
  5. 5.
    Pories WJ, Swanson MS, MacDonald KG, Long SB, Morris PG, Brown BM, Barakat HA, deRamon RA, Israel G, Dolezal JM, et al. Who would have thought it? An operation proves to be the most effective therapy for adult-onset diabetes mellitus. Ann Surg. 1995;222(3):339–50. discussion 350–332.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Schauer PR, Kashyap SR, Wolski K, Brethauer SA, Kirwan JP, Pothier CE, Thomas S, Abood B, Nissen SE, Bhatt DL. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med. 2012;366(17):1567–76. doi: 10.1056/NEJMoa1200225.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Mingrone G, Panunzi S, De Gaetano A, Guidone C, Iaconelli A, Leccesi L, Nanni G, Pomp A, Castagneto M, Ghirlanda G, Rubino F. Bariatric surgery versus conventional medical therapy for type 2 diabetes. N Engl J Med. 2012;366(17):1577–85. doi: 10.1056/NEJMoa1200111.PubMedCrossRefGoogle Scholar
  8. 8.
    Lee WJ, Chong K, Ser KH, Lee YC, Chen SC, Chen JC, Tsai MH, Chuang LM. Gastric bypass vs sleeve gastrectomy for type 2 diabetes mellitus: a randomized controlled trial. Arch Surg. 2011;146(2):143–8. doi: 10.1001/archsurg.2010.326.PubMedCrossRefGoogle Scholar
  9. 9.
    Ikramuddin S, Korner J, Lee WJ, Connett JE, Inabnet WB, Billington CJ, Thomas AJ, Leslie DB, Chong K, Jeffery RW, Ahmed L, Vella A, Chuang LM, Bessler M, Sarr MG, Swain JM, Laqua P, Jensen MD, Bantle JP. Roux-en-Y gastric bypass vs intensive medical management for the control of type 2 diabetes, hypertension, and hyperlipidemia: the Diabetes Surgery Study randomized clinical trial. JAMA. 2013;309(21):2240–9. doi: 10.1001/jama.2013.5835.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Lo Menzo E, Szomstein S, Rosenthal RJ. Changing trends in bariatric surgery. Scand J Surg. 2014. doi: 10.1177/1457496914552344.PubMedGoogle Scholar
  11. 11.
    Kashyap SR, Bhatt DL, Wolski K, Watanabe RM, Abdul-Ghani M, Abood B, Pothier CE, Brethauer S, Nissen S, Gupta M, Kirwan JP, Schauer PR. Metabolic effects of bariatric surgery in patients with moderate obesity and type 2 diabetes: analysis of a randomized control trial comparing surgery with intensive medical treatment. Diabetes Care. 2013;36(8):2175–82. doi: 10.2337/dc12-1596.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Schauer PR, Burguera B, Ikramuddin S, Cottam D, Gourash W, Hamad G, Eid GM, Mattar S, Ramanathan R, Barinas-Mitchel E, Rao RH, Kuller L, Kelley D. Effect of laparoscopic Roux-en Y gastric bypass on type 2 diabetes mellitus. Ann Surg. 2003;238(4):467–84. doi: 10.1097/01.sla.0000089851.41115.1b. discussion 484–465.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Dixon JB, O’Brien PE, Playfair J, Chapman L, Schachter LM, Skinner S, Proietto J, Bailey M, Anderson M. Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial. JAMA. 2008;299(3):316–23. doi: 10.1001/jama.299.3.316.PubMedCrossRefGoogle Scholar
  14. 14.
    Buchwald H, Avidor Y, Braunwald E, Jensen MD, Pories W, Fahrbach K, Schoelles K. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292(14):1724–37. doi: 10.1001/jama.292.14.1724.PubMedCrossRefGoogle Scholar
  15. 15.
    Arterburn DE, Bogart A, Sherwood NE, Sidney S, Coleman KJ, Haneuse S, O’Connor PJ, Theis MK, Campos GM, McCulloch D, Selby J. A multisite study of long-term remission and relapse of type 2 diabetes mellitus following gastric bypass. Obes Surg. 2013;23(1):93–102. doi: 10.1007/s11695-012-0802-1.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Guldstrand M, Ahren B, Adamson U. Improved beta-cell function after standardized weight reduction in severely obese subjects. Am J Physiol Endocrinol Metab. 2003;284(3):E557–65. doi: 10.1152/ajpendo.00325.2002.PubMedCrossRefGoogle Scholar
  17. 17.
    Villareal DT, Banks MR, Patterson BW, Polonsky KS, Klein S. Weight loss therapy improves pancreatic endocrine function in obese older adults. Obesity. 2008;16(6):1349–54. doi: 10.1038/oby.2008.226.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Campos GM, Rabl C, Peeva S, Ciovica R, Rao M, Schwarz JM, Havel P, Schambelan M, Mulligan K. Improvement in peripheral glucose uptake after gastric bypass surgery is observed only after substantial weight loss has occurred and correlates with the magnitude of weight lost. J Gastrointest Surg. 2010;14(1):15–23. doi: 10.1007/s11605-009-1060-y.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Bradley D, Conte C, Mittendorfer B, Eagon JC, Varela JE, Fabbrini E, Gastaldelli A, Chambers KT, Su X, Okunade A, Patterson BW, Klein S. Gastric bypass and banding equally improve insulin sensitivity and beta cell function. J Clin Invest. 2012;122(12):4667–74. doi: 10.1172/JCI64895.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Laferrère B, Teixeira J, McGinty J, Tran H, Egger JR, Colarusso A, Kovack B, Bawa B, Koshy N, Lee H, Yapp K, Olivan B. Effect of weight loss by gastric bypass surgery versus hypocaloric diet on glucose and incretin levels in patients with type 2 diabetes. J Clin Endocrinol Metab. 2008;93(7):2479–85. doi: 10.1210/jc.2007-2851.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Henry RR, Wiest-Kent TA, Scheaffer L, Kolterman OG, Olefsky JM. Metabolic consequences of very-low-calorie diet therapy in obese non-insulin-dependent diabetic and nondiabetic subjects. Diabetes. 1986;35(2):155–64.PubMedCrossRefGoogle Scholar
  22. 22.
    Warde-Kamar J, Rogers M, Flancbaum L, Laferrère B. Calorie intake and meal patterns up to 4 years after Roux-en-Y gastric bypass surgery. Obes Surg. 2004;14(8):1070–9. doi: 10.1381/0960892041975668.PubMedCrossRefGoogle Scholar
  23. 23.
    Cohen RV, Pinheiro JC, Schiavon CA, Salles JE, Wajchenberg BL, Cummings DE. Effects of gastric bypass surgery in patients with type 2 diabetes and only mild obesity. Diabetes Care. 2012;35(7):1420–8. doi: 10.2337/dc11-2289.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Shah SS, Todkar JS, Shah PS, Cummings DE. Diabetes remission and reduced cardiovascular risk after gastric bypass in Asian Indians with body mass index <35 kg/m(2). Surg Obes Relat Dis. 2010;6(4):332–8. doi: 10.1016/j.soard.2009.08.009.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Buchwald H, Estok R, Fahrbach K, Banel D, Jensen MD, Pories WJ, Bantle JP, Sledge I. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am J Med. 2009;122(3):248–56. doi: 10.1016/j.amjmed.2008.09.041. e245.PubMedCrossRefGoogle Scholar
  26. 26.
    Campbell JE, Drucker DJ. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab. 2013;17(6):819–37. doi: 10.1016/j.cmet.2013.04.008.PubMedCrossRefGoogle Scholar
  27. 27.
    Perley MJ, Kipnis DM. Plasma insulin responses to oral and intravenous glucose: studies in normal and diabetic subjects. J Clin Invest. 1967;46(12):1954–62. doi: 10.1172/JCI105685.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Creutzfeldt W, Nauck M. Gut hormones and diabetes mellitus. Diabetes Metab Rev. 1992;8(2):149–77.PubMedCrossRefGoogle Scholar
  29. 29.
    Zunz E, La Barre J. Contributions à l’étude des variations physiologiques de la sécrétion interne du pancréas: relations entre les sécretions externe et interne du pancréas. Arch Int Physiol Biochim. 1929;31:20–44.Google Scholar
  30. 30.
    Heller H. The state in the blood and the excretion by the kidney of the antidiuretic principle of posterior pituitary extracts. J Physiol. 1937;89(1):81–95.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    McIntyre N, Holdsworth CD, Turner DS. Intestinal factors in the control of insulin secretion. J Clin Endocrinol Metab. 1965;25(10):1317–24. doi: 10.1210/jcem-25-10-1317.PubMedCrossRefGoogle Scholar
  32. 32.
    Dupre J, Ross SA, Watson D, Brown JC. Stimulation of insulin secretion by gastric inhibitory polypeptide in man. J Clin Endocrinol Metab. 1973;37(5):826–8. doi: 10.1210/jcem-37-5-826.PubMedCrossRefGoogle Scholar
  33. 33.
    Bell GI, Santerre RF, Mullenbach GT. Hamster preproglucagon contains the sequence of glucagon and two related peptides. Nature. 1983;302(5910):716–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Nauck MA, Homberger E, Siegel EG, Allen RC, Eaton RP, Ebert R, Creutzfeldt W. Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. J Clin Endocrinol Metab. 1986;63(2):492–8. doi: 10.1210/jcem-63-2-492.PubMedCrossRefGoogle Scholar
  35. 35.
    Lindgren O, Carr RD, Holst JJ, Deacon CF, Ahren B. Dissociated incretin hormone response to protein versus fat ingestion in obese subjects. Diabetes Obes Metab. 2011;13(9):863–5. doi: 10.1111/j.1463-1326.2011.01420.x.PubMedCrossRefGoogle Scholar
  36. 36.
    Bagger JI, Knop FK, Lund A, Vestergaard H, Holst JJ, Vilsboll T. Impaired regulation of the incretin effect in patients with type 2 diabetes. J Clin Endocrinol Metab. 2011;96(3):737–45. doi: 10.1210/jc.2010-2435.PubMedCrossRefGoogle Scholar
  37. 37.
    Mari A, Bagger JI, Ferrannini E, Holst JJ, Knop FK, Vilsboll T. Mechanisms of the incretin effect in subjects with normal glucose tolerance and patients with type 2 diabetes. PLoS One. 2013;8(9):e73154. doi: 10.1371/journal.pone.0073154.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Nauck MA, Vardarli I, Deacon CF, Holst JJ, Meier JJ. Secretion of glucagon-like peptide-1 (GLP-1) in type 2 diabetes: what is up, what is down? Diabetologia. 2011;54(1):10–8. doi: 10.1007/s00125-010-1896-4.PubMedCrossRefGoogle Scholar
  39. 39.
    Calanna S, Christensen M, Holst JJ, Laferrère B, Gluud LL, Vilsboll T, Knop FK. Secretion of glucose-dependent insulinotropic polypeptide in patients with type 2 diabetes: systematic review and meta-analysis of clinical studies. Diabetes Care. 2013;36(10):3346–52. doi: 10.2337/dc13-0465.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Calanna S, Christensen M, Holst JJ, Laferrère B, Gluud LL, Vilsboll T, Knop FK. Secretion of glucagon-like peptide-1 in patients with type 2 diabetes mellitus: systematic review and meta-analyses of clinical studies. Diabetologia. 2013;56(5):965–72. doi: 10.1007/s00125-013-2841-0.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Nauck M, Stockmann F, Ebert R, Creutzfeldt W. Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia. 1986;29(1):46–52.PubMedCrossRefGoogle Scholar
  42. 42.
    Hojberg PV, Vilsboll T, Rabol R, Knop FK, Bache M, Krarup T, Holst JJ, Madsbad S. Four weeks of near-normalisation of blood glucose improves the insulin response to glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide in patients with type 2 diabetes. Diabetologia. 2009;52(2):199–207. doi: 10.1007/s00125-008-1195-5.PubMedCrossRefGoogle Scholar
  43. 43.
    Ma X, Hui H, Liu Z, He G, Hu J, Meng J, Guan L, Luo X. Poly-GLP-1, a novel long-lasting glucagon-like peptide-1 polymer, ameliorates hyperglycaemia by improving insulin sensitivity and increasing pancreatic beta-cell proliferation. Diabetes Obes Metab. 2009;11(10):953–65. doi: 10.1111/j.1463-1326.2009.01070.x.PubMedCrossRefGoogle Scholar
  44. 44.
    Farilla L, Bulotta A, Hirshberg B, Li Calzi S, Khoury N, Noushmehr H, Bertolotto C, Di Mario U, Harlan DM, Perfetti R. Glucagon-like peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets. Endocrinology. 2003;144(12):5149–58. doi: 10.1210/en.2003-0323.PubMedCrossRefGoogle Scholar
  45. 45.
    Wang Q, Brubaker PL. Glucagon-like peptide-1 treatment delays the onset of diabetes in 8 week-old db/db mice. Diabetologia. 2002;45(9):1263–73. doi: 10.1007/s00125-002-0828-3.PubMedCrossRefGoogle Scholar
  46. 46.
    De Leon DD, Deng S, Madani R, Ahima RS, Drucker DJ, Stoffers DA. Role of endogenous glucagon-like peptide-1 in islet regeneration after partial pancreatectomy. Diabetes. 2003;52(2):365–71.PubMedCrossRefGoogle Scholar
  47. 47.
    Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev. 2007;87(4):1409–39. doi: 10.1152/physrev.00034.2006.PubMedCrossRefGoogle Scholar
  48. 48.
    Wang G, Agenor K, Pizot J, Kotler DP, Harel Y, Van Der Schueren BJ, Quercia I, McGinty J, Laferrère B. Accelerated gastric emptying but no carbohydrate malabsorption 1 year after gastric bypass surgery (GBP). Obes Surg. 2012;22(8):1263–7. doi: 10.1007/s11695-012-0656-6.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Morinigo R, Moize V, Musri M, Lacy AM, Navarro S, Marin JL, Delgado S, Casamitjana R, Vidal J. Glucagon-like peptide-1, peptide YY, hunger, and satiety after gastric bypass surgery in morbidly obese subjects. J Clin Endocrinol Metab. 2006;91(5):1735–40. doi: 10.1210/jc.2005-0904.PubMedCrossRefGoogle Scholar
  50. 50.
    Olivan B, Teixeira J, Bose M, Bawa B, Chang T, Summe H, Lee H, Laferrère B. Effect of weight loss by diet or gastric bypass surgery on peptide YY3-36 levels. Ann Surg. 2009;249(6):948–53. doi: 10.1097/SLA.0b013e3181a6cdb0.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Laferrère B, Swerdlow N, Bawa B, Arias S, Bose M, Olivan B, Teixeira J, McGinty J, Rother KI. Rise of oxyntomodulin in response to oral glucose after gastric bypass surgery in patients with type 2 diabetes. J Clin Endocrinol Metab. 2010;95(8):4072–6. doi: 10.1210/jc.2009-2767.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Saeidi N, Meoli L, Nestoridi E, Gupta NK, Kvas S, Kucharczyk J, Bonab AA, Fischman AJ, Yarmush ML, Stylopoulos N. Reprogramming of intestinal glucose metabolism and glycemic control in rats after gastric bypass. Science. 2013;341(6144):406–10. doi: 10.1126/science.1235103.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Nguyen NQ, Debreceni TL, Bambrick JE, Chia B, Deane AM, Wittert G, Rayner CK, Horowitz M, Young RL. Upregulation of intestinal glucose transporters after Roux-en-Y gastric bypass to prevent carbohydrate malabsorption. Obesity. 2014;22(10):2164–71. doi: 10.1002/oby.20829.PubMedCrossRefGoogle Scholar
  54. 54.
    Mumphrey MB, Patterson LM, Zheng H, Berthoud HR. Roux-en-Y gastric bypass surgery increases number but not density of CCK-, GLP-1-, 5-HT-, and neurotensin-expressing enteroendocrine cells in rats. Neurogastroenterol Motil. 2013;25(1):e70–9. doi: 10.1111/nmo.12034.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Le Roux CW, Borg C, Wallis K, Vincent RP, Bueter M, Goodlad R, Ghatei MA, Patel A, Bloom SR, Aylwin SJ. Gut hypertrophy after gastric bypass is associated with increased glucagon-like peptide 2 and intestinal crypt cell proliferation. Ann Surg. 2010;252(1):50–6. doi: 10.1097/SLA.0b013e3181d3d21f.PubMedCrossRefGoogle Scholar
  56. 56.
    Hansen CF, Bueter M, Theis N, Lutz T, Paulsen S, Dalboge LS, Vrang N, Jelsing J. Hypertrophy dependent doubling of L-cells in Roux-en-Y gastric bypass operated rats. PLoS One. 2013;8(6):e65696. doi: 10.1371/journal.pone.0065696.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Thomas C, Gioiello A, Noriega L, Strehle A, Oury J, Rizzo G, Macchiarulo A, Yamamoto H, Mataki C, Pruzanski M, Pellicciari R, Auwerx J, Schoonjans K. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 2009;10(3):167–77. doi: 10.1016/j.cmet.2009.08.001.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Dutia R, Embrey M, O’Brien C, Haeusler RA, Agénor KK, Homel P, McGinty J, Vincent R, Alaghband-Zadeh J, Staels B, le Roux C, Yu J, Laferrère B. Temporal changes in bile acid levels and 12α-hydroxylation after Roux-en-Y gastric bypass surgery in type 2 diabetes. Int J Obes (Lond). 2015 May;39(5):806–13. doi:  10.1038/ijo.2015.1. Epub 2015 Jan 20.
  59. 59.
    Laferrère B. Effect of gastric bypass surgery on the incretins. Diabetes Metab. 2009;35(6 Pt 2):513–7. doi: 10.1016/S1262-3636(09)73458-5.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Van der Schueren BJ, Homel P, Alam M, Agenor K, Wang G, Reilly D, Laferrère B. Magnitude and variability of the glucagon-like peptide-1 response in patients with type 2 diabetes up to 2 years following gastric bypass surgery. Diabetes Care. 2012;35(1):42–6. doi: 10.2337/dc11-1472.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Laferrère B, Heshka S, Wang K, Khan Y, McGinty J, Teixeira J, Hart AB, Olivan B. Incretin levels and effect are markedly enhanced 1 month after Roux-en-Y gastric bypass surgery in obese patients with type 2 diabetes. Diabetes Care. 2007;30(7):1709–16. doi: 10.2337/dc06-1549.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Korner J, Bessler M, Inabnet W, Taveras C, Holst JJ. Exaggerated glucagon-like peptide-1 and blunted glucose-dependent insulinotropic peptide secretion are associated with Roux-en-Y gastric bypass but not adjustable gastric banding. Surg Obes Relat Dis. 2007;3(6):597–601. doi: 10.1016/j.soard.2007.08.004.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Wu Q, Xiao Z, Cheng Z, Tian H. Changes of blood glucose and gastrointestinal hormones 4 months after Roux-en-Y gastric bypass surgery in Chinese obese type 2 diabetes patients with lower body mass index. J Diabetes Investig. 2013;4(2):214–21. doi: 10.1111/jdi.12005.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Kim MJ, Park HK, Byun DW, Suh KI, Hur KY. Incretin levels 1 month after laparoscopic single anastomosis gastric bypass surgery in non-morbid obese type 2 diabetes patients. Asian J Surg. 2014;37(3):130–7. doi: 10.1016/j.asjsur.2013.09.008.PubMedCrossRefGoogle Scholar
  65. 65.
    Jacobsen SH, Olesen SC, Dirksen C, Jorgensen NB, Bojsen-Moller KN, Kielgast U, Worm D, Almdal T, Naver LS, Hvolris LE, Rehfeld JF, Wulff BS, Clausen TR, Hansen DL, Holst JJ, Madsbad S. Changes in gastrointestinal hormone responses, insulin sensitivity, and beta-cell function within 2 weeks after gastric bypass in non-diabetic subjects. Obes Surg. 2012;22(7):1084–96. doi: 10.1007/s11695-012-0621-4.PubMedCrossRefGoogle Scholar
  66. 66.
    Bak MJ, Wewer Albrechtsen NJ, Pedersen J, Knop FK, Vilsboll T, Jorgensen NB, Hartmann B, Deacon CF, Dragsted LO, Holst JJ. Specificity and sensitivity of commercially available assays for glucagon-like peptide-1 (GLP-1): implications for GLP-1 measurements in clinical studies. Diabetes Obes Metab. 2014;16(11):1155–64. doi: 10.1111/dom.12352.PubMedCrossRefGoogle Scholar
  67. 67.
    Alam ML, Van der Schueren BJ, Ahren B, Wang GC, Swerdlow NJ, Arias S, Bose M, Gorroochurn P, Teixeira J, McGinty J, Laferrère B. Gastric bypass surgery, but not caloric restriction, decreases dipeptidyl peptidase-4 activity in obese patients with type 2 diabetes. Diabetes Obes Metab. 2011;13(4):378–81. doi: 10.1111/j.1463-1326.2011.01358.x.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Dirksen C, Bojsen-Moller KN, Jorgensen NB, Jacobsen SH, Kristiansen VB, Naver LS, Hansen DL, Worm D, Holst JJ, Madsbad S. Exaggerated release and preserved insulinotropic action of glucagon-like peptide-1 underlie insulin hypersecretion in glucose-tolerant individuals after Roux-en-Y gastric bypass. Diabetologia. 2013;56(12):2679–87. doi: 10.1007/s00125-013-3055-1.PubMedCrossRefGoogle Scholar
  69. 69.
    Horowitz M, Cook DJ, Collins PJ, Harding PE, Hooper MJ, Walsh JF, Shearman DJ. Measurement of gastric emptying after gastric bypass surgery using radionuclides. Br J Surg. 1982;69(11):655–7.PubMedCrossRefGoogle Scholar
  70. 70.
    Naslund I, Beckman KW. Gastric emptying rate after gastric bypass and gastroplasty. Scand J Gastroenterol. 1987;22(2):193–201.PubMedCrossRefGoogle Scholar
  71. 71.
    Morinigo R, Lacy AM, Casamitjana R, Delgado S, Gomis R, Vidal J. GLP-1 and changes in glucose tolerance following gastric bypass surgery in morbidly obese subjects. Obes Surg. 2006;16(12):1594–601. doi: 10.1381/096089206779319338.PubMedCrossRefGoogle Scholar
  72. 72.
    Pournaras DJ, Aasheim ET, Bueter M, Ahmed AR, Welbourn R, Olbers T, le Roux CW. Effect of bypassing the proximal gut on gut hormones involved with glycemic control and weight loss. Surg Obes Relat Dis. 2012;8(4):371–4. doi: 10.1016/j.soard.2012.01.021.PubMedCrossRefGoogle Scholar
  73. 73.
    McLaughlin T, Peck M, Holst J, Deacon C. Reversible hyperinsulinemic hypoglycemia after gastric bypass: a consequence of altered nutrient delivery. J Clin Endocrinol Metab. 2010;95(4):1851–5. doi: 10.1210/jc.2009-1628.PubMedCrossRefGoogle Scholar
  74. 74.
    Service GJ, Thompson GB, Service FJ, Andrews JC, Collazo-Clavell ML, Lloyd RV. Hyperinsulinemic hypoglycemia with nesidioblastosis after gastric-bypass surgery. N Engl J Med. 2005;353(3):249–54. doi: 10.1056/NEJMoa043690.PubMedCrossRefGoogle Scholar
  75. 75.
    Lindqvist A, Spegel P, Ekelund M, Garcia Vaz E, Pierzynowski S, Gomez MF, Mulder H, Hedenbro J, Groop L, Wierup N. Gastric bypass improves beta-cell function and increases beta-cell mass in a porcine model. Diabetes. 2014;63(5):1665–71. doi: 10.2337/db13-0969.PubMedCrossRefGoogle Scholar
  76. 76.
    Sarson DL, Besterman HS, Bloom SR. Radioimmunoassay of gastric inhibitory polypeptide and its release in morbid obesity and after jejuno-ileal bypass [proceedings]. J Endocrinol. 1979;81(2):155P–6.PubMedGoogle Scholar
  77. 77.
    Sarson DL, Scopinaro N, Bloom SR. Gut hormone changes after jejunoileal (JIB) or biliopancreatic (BPB) bypass surgery for morbid obesity. Int J Obes. 1981;5(5):471–80.PubMedGoogle Scholar
  78. 78.
    Halverson JD, Kramer J, Cave A, Permutt A, Santiago J. Altered glucose tolerance, insulin response, and insulin sensitivity after massive weight reduction subsequent to gastric bypass. Surgery. 1982;92(2):235–40.PubMedGoogle Scholar
  79. 79.
    Sirinek KR, O'Dorisio TM, Hill D, McFee AS. Hyperinsulinism, glucose-dependent insulinotropic polypeptide, and the enteroinsular axis in morbidly obese patients before and after gastric bypass. Surgery. 1986;100(4):781–7.PubMedGoogle Scholar
  80. 80.
    Naslund E, Backman L, Holst JJ, Theodorsson E, Hellstrom PM. Importance of small bowel peptides for the improved glucose metabolism 20 years after jejunoileal bypass for obesity. Obes Surg. 1998;8(3):253–60.PubMedCrossRefGoogle Scholar
  81. 81.
    Verdich C, Flint A, Gutzwiller JP, Naslund E, Beglinger C, Hellstrom PM, Long SJ, Morgan LM, Holst JJ, Astrup A. A meta-analysis of the effect of glucagon-like peptide-1 (7-36) amide on ad libitum energy intake in humans. J Clin Endocrinol Metab. 2001;86(9):4382–9. doi: 10.1210/jcem.86.9.7877.PubMedGoogle Scholar
  82. 82.
    Valverde I, Puente J, Martin-Duce A, Molina L, Lozano O, Sancho V, Malaisse WJ, Villanueva-Penacarrillo ML. Changes in glucagon-like peptide-1 (GLP-1) secretion after biliopancreatic diversion or vertical banded gastroplasty in obese subjects. Obes Surg. 2005;15(3):387–97. doi: 10.1381/0960892053576613.PubMedCrossRefGoogle Scholar
  83. 83.
    Korner J, Bessler M, Cirilo LJ, Conwell IM, Daud A, Restuccia NL, Wardlaw SL. Effects of Roux-en-Y gastric bypass surgery on fasting and postprandial concentrations of plasma ghrelin, peptide YY, and insulin. J Clin Endocrinol Metab. 2005;90(1):359–65. doi: 10.1210/jc.2004-1076.PubMedCrossRefGoogle Scholar
  84. 84.
    Borg CM, le Roux CW, Ghatei MA, Bloom SR, Patel AG, Aylwin SJ. Progressive rise in gut hormone levels after Roux-en-Y gastric bypass suggests gut adaptation and explains altered satiety. Br J Surg. 2006;93(2):210–5. doi: 10.1002/bjs.5227.PubMedCrossRefGoogle Scholar
  85. 85.
    Jorgensen NB, Jacobsen SH, Dirksen C, Bojsen-Moller KN, Naver L, Hvolris L, Clausen TR, Wulff BS, Worm D, Lindqvist Hansen D, Madsbad S, Holst JJ. Acute and long-term effects of Roux-en-Y gastric bypass on glucose metabolism in subjects with Type 2 diabetes and normal glucose tolerance. Am J Physiol Endocrinol Metab. 2012;303(1):E122–31. doi: 10.1152/ajpendo.00073.2012.PubMedCrossRefGoogle Scholar
  86. 86.
    Romero F, Nicolau J, Flores L, Casamitjana R, Ibarzabal A, Lacy A, Vidal J. Comparable early changes in gastrointestinal hormones after sleeve gastrectomy and Roux-En-Y gastric bypass surgery for morbidly obese type 2 diabetic subjects. Surg Endosc. 2012;26(8):2231–9. doi: 10.1007/s00464-012-2166-y.PubMedCrossRefGoogle Scholar
  87. 87.
    Mallipedhi A, Prior SL, Barry JD, Caplin S, Baxter JN, Stephens JW. Temporal changes in glucose homeostasis and incretin hormone response at 1 and 6 months after laparoscopic sleeve gastrectomy. Surg Obes Relat Dis. 2014;10(5):860–9. doi: 10.1016/j.soard.2014.02.038.PubMedCrossRefGoogle Scholar
  88. 88.
    Plourde CE, Grenier-Larouche T, Caron-Dorval D, Biron S, Marceau S, Lebel S, Biertho L, Tchernof A, Richard D, Carpentier AC. Biliopancreatic diversion with duodenal switch improves insulin sensitivity and secretion through caloric restriction. Obesity. 2014;22(8):1838–46. doi: 10.1002/oby.20771.PubMedCrossRefGoogle Scholar
  89. 89.
    Ye J, Hao Z, Mumphrey MB, Townsend RL, Patterson LM, Stylopoulos N, Munzberg H, Morrison CD, Drucker DJ, Berthoud HR. GLP-1 receptor signaling is not required for reduced body weight after RYGB in rodents. Am J Physiol Regul Integr Comp Physiol. 2014;306(5):R352–62. doi: 10.1152/ajpregu.00491.2013.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Jimenez A, Mari A, Casamitjana R, Lacy A, Ferrannini E, Vidal J. GLP-1 and glucose tolerance after sleeve gastrectomy in morbidly obese subjects with type 2 diabetes. Diabetes. 2014;63(10):3372–7. doi: 10.2337/db14-0357.PubMedCrossRefGoogle Scholar
  91. 91.
    Chambers AP, Smith EP, Begg DP, Grayson BE, Sisley S, Greer T, Sorrell J, Lemmen L, LaSance K, Woods SC, Seeley RJ, D’Alessio DA, Sandoval DA. Regulation of gastric emptying rate and its role in nutrient-induced GLP-1 secretion in rats after vertical sleeve gastrectomy. Am J Physiol Endocrinol Metab. 2014;306(4):E424–32. doi: 10.1152/ajpendo.00469.2013.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Madsbad S, Holst JJ. GLP-1 as a mediator in the remission of type 2 diabetes after gastric bypass and sleeve gastrectomy surgery. Diabetes. 2014;63(10):3172–4. doi: 10.2337/db14-0935.PubMedCrossRefGoogle Scholar
  93. 93.
    Wilson-Perez HE, Chambers AP, Ryan KK, Li B, Sandoval DA, Stoffers D, Drucker DJ, Perez-Tilve D, Seeley RJ. Vertical sleeve gastrectomy is effective in two genetic mouse models of glucagon-like Peptide 1 receptor deficiency. Diabetes. 2013;62(7):2380–5. doi: 10.2337/db12-1498.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Salehi M, Gastaldelli A, D’Alessio DA. Blockade of glucagon-like peptide 1 receptor corrects postprandial hypoglycemia after gastric bypass. Gastroenterology. 2014;146(3):669–80. doi: 10.1053/j.gastro.2013.11.044. e662.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Sathananthan M, Farrugia LP, Miles JM, Piccinini F, Dalla Man C, Zinsmeister AR, Cobelli C, Rizza RA, Vella A. Direct effects of exendin-(9,39) and GLP-1-(9,36)amide on insulin action, beta-cell function, and glucose metabolism in nondiabetic subjects. Diabetes. 2013;62(8):2752–6. doi: 10.2337/Db13-0140.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Vetter ML, Wadden TA, Teff KL, Khan Z, Carvajal R, Ritter S, Moore RH, Chittams JL, Iagnocco A, Murayama K, Korus G, Williams NN, Rickels MR. GLP-1 plays a limited role in improved glycemia shortly after Roux-en-Y gastric bypass: a comparison to intensive lifestyle modification. Diabetes. 2014. doi: 10.2337/db14-0558.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Jimenez A, Casamitjana R, Viaplana-Masclans J, Lacy A, Vidal J. GLP-1 action and glucose tolerance in subjects with remission of type 2 diabetes after gastric bypass surgery. Diabetes Care. 2013;36(7):2062–9. doi: dc12-1535 [pii]  10.2337/dc12-1535.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Jorgensen NB, Dirksen C, Bojsen-Moller KN, Jacobsen SH, Worm D, Hansen DL, Kristiansen VB, Naver L, Madsbad S, Holst JJ. Exaggerated glucagon-like peptide 1 response is important for improved beta-cell function and glucose tolerance after Roux-en-Y gastric bypass in patients with type 2 diabetes. Diabetes. 2013;62(9):3044–52. doi: 10.2337/db13-0022.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Dutia R, Brakoniecki K, Bunker P, Paultre F, Homel P, Carpentier AC, McGinty J, Laferrère B. Limited recovery of beta-cell function after gastric bypass despite clinical diabetes remission. Diabetes. 2014;63(4):1214–23. doi: 10.2337/db13-1176.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Dutia R, Brakoniecki K, Wang G, Mogul S, Agenor K, McGinty J, Belsley SJ, Rosen DJ, Laferrère B. Greater improvement in β-cell function after gastric bypass is independent of weight loss. Diabetes. 2013;1825.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Division of Endocrinology, Department of Medicine, New York Obesity Nutrition Research CenterColumbia University College of Physicians and SurgeonsNew YorkUSA

Personalised recommendations