Aritmetische und Geometrische Progreß Tabulen: Edition, Translation, and Commentary

  • Kathleen Clark
Part of the Science Networks. Historical Studies book series (SNHS, volume 53)


In the tercentenary memorial volume commemorating the invention of logarithms, or more precisely, John Napier’s invention of logarithms, Florian Cajori (1915) observed: “In the history of science it is the rule, rather than the exception, for two or more men independently to develop the same idea” (p. 93). In the same publication, Cajori also stated that “[f]ew inventors have a clearer title to priority than has Napier to the invention of logarithms” (p. 93), and he continued to highlight men who contributed preliminary ideas for and simultaneous (though independent) conceptions of the logarithmic relation. Subsequent to the tercentenary memorial volume, modern scholarship has highlighted Bürgi’s contributions to the development of logarithms. Boyer (1991), for example, noted that:


Root Extraction Geometric Progression Cube Root Fourth Root Proportional Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bramer B (1648) Bericht zu M. Jobsten Burgi seligen Geometrischen Triangular Instruments mit schönen Kupfferstücken hierzu geschnitten. Schütz, CasselGoogle Scholar
  2. Cajori F (1915) Algebra in Napier’s day and alleged prior inventions of logarithms. In: Kontt CG (ed) Napier tercentenary memorial volume. Longmans, Green and Company, London, pp 93–109Google Scholar
  3. Clark KM (2011) ‘In these numbers we use no fractions’: a classroom module on Stevin’s decimal fractions Loci. doi: 10.4169/loci003333
  4. Gieswald HR (1856) Justus Byrg als Mathematiker und dessen Einleitung in seine Logarithmen. In: Bericht über die St. Johannis-Schule, vol 35, pp 1–36. DanzigGoogle Scholar
  5. Gronau D (1996) The logarithms—from calculation to functional equations. Not South Afr Math Soc 28:60–66Google Scholar
  6. Lutstorf HT (2005) Die Logarithmentafeln Jost Bürgis. Bemerkungen zur Stellenwert- und Basisfrage. Mit Kommentar zu Bürgis “Gründlichem Unterricht”. ETH-Bibliothek, ZürichGoogle Scholar
  7. Roegel D (2010a) Bürgi’s “Progress Tabulen” (1620): logarithmic tables without logarithms. Accessed 15 Mar 2013
  8. Sampson RA (1915) The discovery of logarithms by Jost Bürgi. In: Kontt CG (ed) Napier tercentenary memorial volume. Longmans, Green and Company, London, pp 208–212Google Scholar
  9. Smith DE (1958) History of mathematics. Dover, New YorkzbMATHGoogle Scholar
  10. Wolf R (1872) Johannes Keppler und Jost Bürgi. Vortrag gehalten den 4. Januar 1872 auf dem Rathaus in Zürich. Friedrich Schulthess, ZürichGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Kathleen Clark
    • 1
  1. 1.School of Teacher Education The Florida State UniversityTallahasseeUSA

Personalised recommendations