Skip to main content

DTI in Neurosurgical Planning

  • Chapter
Book cover Diffusion Tensor Imaging

Abstract

While noninvasive and invasive cortical and subcortical electrophysiologic measurements for clinical mapping of brain function have been available for decades, multiple noninvasive techniques are now increasingly available for routine neurosurgical planning. These include cortical mapping using magnetoencephalography (MEG) and BOLD functional magnetic resonance imaging (fMRI) and subcortical mapping using diffusion-based methods such as diffusion tensor imaging (DTI). Intraoperative electrophysiologic mapping remains the gold standard for most applications, but limitations do exist including intraindividual and interindividual variability and inaccuracy from penetration of current; and thus, noninvasive mapping provides at least complementary information. This chapter reviews potential neurosurgical applications of DTI, important limitations of the technique in this context, and the practical aspects of using DTI in neurosurgical planning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Engel AK, Moll CK, Fried I, Ojemann GA. Invasive recordings from the human brain: clinical insights and beyond. Nat Rev Neurosci. 2005;6:35–47.

    Article  CAS  PubMed  Google Scholar 

  2. Pouratian N, Cannestra AF, Bookheimer SY, Martin NA, Toga AW. Variability of intraoperative electrocortical stimulation mapping parameters across and within individuals. J Neurosurg. 2004;101:458–66.

    Article  PubMed  Google Scholar 

  3. Berman JI, Berger MS, Chung SW, Nagarajan SS, Henry RG. Accuracy of diffusion tensor magnetic resonance imaging tractography assessed using intraoperative subcortical stimulation mapping and magnetic source imaging. J Neurosurg. 2007;107:488–94.

    Article  PubMed  Google Scholar 

  4. Berman J. Diffusion MR, tractography as a tool for surgical planning. Magn Reson Imaging Clin N Am. 2009;17:205–14.

    Article  PubMed  Google Scholar 

  5. Hagmann P, Jonasson L, Maeder P, Thiran JP, Wedeen VJ, Meuli R. Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiographics. 2006;26 Suppl 1:S205–23.

    Article  PubMed  Google Scholar 

  6. Melhem ER, Mori S, Mukundan G, Kraut MA, Pomper MG, van Zijl PC. Diffusion tensor MR imaging of the brain and white matter tractography. AJR Am J Roentgenol. 2002;178:3–16.

    Article  PubMed  Google Scholar 

  7. Mori S, van Zijl PC. Fiber tracking: principles and strategies - a technical review. NMR Biomed. 2002;15:468–80.

    Article  PubMed  Google Scholar 

  8. Mukherjee P, Berman JI, Chung SW, Hess CP, Henry RG. Diffusion tensor MR imaging and fiber tractography: theoretic underpinnings. AJNR Am J Neuroradiol. 2008;29:632–41.

    Article  CAS  PubMed  Google Scholar 

  9. Mukherjee P, Chung SW, Berman JI, Hess CP, Henry RG. Diffusion tensor MR imaging and fiber tractography: technical considerations. AJNR Am J Neuroradiol. 2008;29:843–52.

    Article  CAS  PubMed  Google Scholar 

  10. Yang E, Nucifora PG, Melhem ER. Diffusion MR imaging: basic principles. Neuroimaging Clin N Am. 2011;21:1–25. vii.

    Article  CAS  PubMed  Google Scholar 

  11. Duffau H. Introduction. Surgery of gliomas in eloquent areas: from brain hodotopy and plasticity to functional neurooncology. Neurosurg Focus 2010; 28: Intro

    Google Scholar 

  12. Pouratian N, Bookheimer SY. The reliability of neuroanatomy as a predictor of eloquence: a review. Neurosurg Focus. 2010;28:E3.

    Article  PubMed  Google Scholar 

  13. Holodny AI, Ollenschleger MD, Liu WC, Schulder M, Kalnin AJ. Identification of the corticospinal tracts achieved using blood-oxygen-level-dependent and diffusion functional MR imaging in patients with brain tumors. AJNR Am J Neuroradiol. 2001;22:83–8.

    CAS  PubMed  Google Scholar 

  14. Smits M, Vernooij MW, Wielopolski PA, Vincent AJ, Houston GC, van der Lugt A. Incorporating functional MR imaging into diffusion tensor tractography in the preoperative assessment of the corticospinal tract in patients with brain tumors. AJNR Am J Neuroradiol. 2007;28:1354–61.

    Article  CAS  PubMed  Google Scholar 

  15. Kamada K, Sawamura Y, Takeuchi F, et al. Functional identification of the primary motor area by corticospinal tractography. Neurosurgery. 2005;56:98–109. discussion 198-109.

    PubMed  Google Scholar 

  16. Chen X, Weigel D, Ganslandt O, Buchfelder M, Nimsky C. Diffusion tensor imaging and white matter tractography in patients with brainstem lesions. Acta Neurochir (Wien). 2007;149:1117–31. discussion 1131.

    Article  CAS  Google Scholar 

  17. Laundre BJ, Jellison BJ, Badie B, Alexander AL, Field AS. Diffusion tensor imaging of the corticospinal tract before and after mass resection as correlated with clinical motor findings: preliminary data. AJNR Am J Neuroradiol. 2005;26:791–6.

    PubMed  Google Scholar 

  18. Mikuni N, Okada T, Enatsu R, et al. Clinical significance of preoperative fibre-tracking to preserve the affected pyramidal tracts during resection of brain tumours in patients with preoperative motor weakness. J Neurol Neurosurg Psychiatry. 2007;78:716–21.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Nimsky C, Ganslandt O, Hastreiter P, et al. Preoperative and intraoperative diffusion tensor imaging-based fiber tracking in glioma surgery. Neurosurgery. 2005;56:130–7. discussion 138.

    PubMed  Google Scholar 

  20. Nimsky C, Grummich P, Sorensen AG, Fahlbusch R, Ganslandt O. Visualization of the pyramidal tract in glioma surgery by integrating diffusion tensor imaging in functional neuronavigation. Zentralbl Neurochir. 2005;66:133–41.

    Article  CAS  PubMed  Google Scholar 

  21. Yamada K, Sakai K, Hoogenraad FG, et al. Multitensor tractography enables better depiction of motor pathways: initial clinical experience using diffusion-weighted MR imaging with standard b-value. AJNR Am J Neuroradiol. 2007;28:1668–73.

    Article  CAS  PubMed  Google Scholar 

  22. Berman JI, Berger MS, Mukherjee P, Henry RG. Diffusion-tensor imaging-guided tracking of fibers of the pyramidal tract combined with intraoperative cortical stimulation mapping in patients with gliomas. J Neurosurg. 2004;101:66–72.

    Article  PubMed  Google Scholar 

  23. Kamada K, Todo T, Masutani Y, et al. Combined use of tractography-integrated functional neuronavigation and direct fiber stimulation. J Neurosurg. 2005;102:664–72.

    Article  PubMed  Google Scholar 

  24. Mikuni N, Okada T, Nishida N, et al. Comparison between motor evoked potential recording and fiber tracking for estimating pyramidal tracts near brain tumors. J Neurosurg. 2007;106:128–33.

    Article  PubMed  Google Scholar 

  25. Gonzalez-Darder JM, Gonzalez-Lopez P, Talamantes F, et al. Multimodal navigation in the functional microsurgical resection of intrinsic brain tumors located in eloquent motor areas: role of tractography. Neurosurg Focus. 2010;28:E5.

    Article  PubMed  Google Scholar 

  26. Mikuni N, Okada T, Enatsu R, et al. Clinical impact of integrated functional neuronavigation and subcortical electrical stimulation to preserve motor function during resection of brain tumors. J Neurosurg. 2007;106:593–8.

    Article  PubMed  Google Scholar 

  27. Bello L, Gambini A, Castellano A, et al. Motor and language DTI Fiber Tracking combined with intraoperative subcortical mapping for surgical removal of gliomas. Neuroimage. 2008;39:369–82.

    Article  PubMed  Google Scholar 

  28. Ulmer JL, Salvan CV, Mueller WM, et al. The role of diffusion tensor imaging in establishing the proximity of tumor borders to functional brain systems: implications for preoperative risk assessments and postoperative outcomes. Technol Cancer Res Treat. 2004;3:567–76.

    Article  PubMed  Google Scholar 

  29. Romano A, Ferrante M, Cipriani V, et al. Role of magnetic resonance tractography in the preoperative planning and intraoperative assessment of patients with intra-axial brain tumours. Radiol Med. 2007;112:906–20.

    Article  CAS  PubMed  Google Scholar 

  30. Wu JS, Zhou LF, Tang WJ, et al. Clinical evaluation and follow-up outcome of diffusion tensor imaging-based functional neuronavigation: a prospective, controlled study in patients with gliomas involving pyramidal tracts. Neurosurgery. 2007;61:935–48. discussion 948-939.

    Article  PubMed  Google Scholar 

  31. Keles GE, Lundin DA, Lamborn KR, Chang EF, Ojemann G, Berger MS. Intraoperative subcortical stimulation mapping for hemispherical perirolandic gliomas located within or adjacent to the descending motor pathways: evaluation of morbidity and assessment of functional outcome in 294 patients. J Neurosurg. 2004;100:369–75.

    Article  PubMed  Google Scholar 

  32. Gil-Robles S, Duffau H. Surgical management of World Health Organization Grade II gliomas in eloquent areas: the necessity of preserving a margin around functional structures. Neurosurg Focus. 2010;28:E8.

    Article  PubMed  Google Scholar 

  33. Kamada K, Houkin K, Takeuchi F, et al. Visualization of the eloquent motor system by integration of MEG, functional, and anisotropic diffusion-weighted MRI in functional neuronavigation. Surg Neurol. 2003;59:352–61. discussion 361-352.

    Article  PubMed  Google Scholar 

  34. Hofer S, Karaus A, Frahm J. Reconstruction and dissection of the entire human visual pathway using diffusion tensor MRI. Front Neuroanat. 2010;4:15.

    PubMed Central  PubMed  Google Scholar 

  35. Mandelstam SA. Challenges of the anatomy and diffusion tensor tractography of the Meyer loop. AJNR Am J Neuroradiol. 2012;33:1204–10.

    Article  CAS  PubMed  Google Scholar 

  36. Kamada K, Todo T, Morita A, et al. Functional monitoring for visual pathway using real-time visual evoked potentials and optic-radiation tractography. Neurosurgery. 2005;57:121–7. discussion 121-127.

    PubMed  Google Scholar 

  37. Kikuta K, Takagi Y, Nozaki K, et al. Early experience with 3-T magnetic resonance tractography in the surgery of cerebral arteriovenous malformations in and around the visual pathway. Neurosurgery. 2006;58:331–7. discussion 331-337.

    Article  PubMed  Google Scholar 

  38. Powell HW, Parker GJ, Alexander DC, et al. MR tractography predicts visual field defects following temporal lobe resection. Neurology. 2005;65:596–9.

    Article  CAS  PubMed  Google Scholar 

  39. Kamada K, Todo T, Masutani Y, et al. Visualization of the frontotemporal language fibers by tractography combined with functional magnetic resonance imaging and magnetoencephalography. J Neurosurg. 2007;106:90–8.

    Article  PubMed  Google Scholar 

  40. Leclercq D, Duffau H, Delmaire C, et al. Comparison of diffusion tensor imaging tractography of language tracts and intraoperative subcortical stimulations. J Neurosurg. 2010;112:503–11.

    Article  PubMed  Google Scholar 

  41. Henry RG, Berman JI, Nagarajan SS, Mukherjee P, Berger MS. Subcortical pathways serving cortical language sites: initial experience with diffusion tensor imaging fiber tracking combined with intraoperative language mapping. Neuroimage. 2004;21:616–22.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Zhao Y, Chen X, Wang F, et al. Integration of diffusion tensor-based arcuate fasciculus fibre navigation and intraoperative MRI into glioma surgery. J Clin Neurosci. 2012;19:255–61.

    Article  CAS  PubMed  Google Scholar 

  43. Powell HW, Parker GJ, Alexander DC, et al. Imaging language pathways predicts postoperative naming deficits. J Neurol Neurosurg Psychiatry. 2008;79:327–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Koga T, Maruyama K, Kamada K, et al. Outcomes of diffusion tensor tractography-integrated stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 2012;82:799–802.

    Article  PubMed  Google Scholar 

  45. Maruyama K, Kamada K, Shin M, et al. Optic radiation tractography integrated into simulated treatment planning for Gamma Knife surgery. J Neurosurg. 2007;107:721–6.

    Article  PubMed  Google Scholar 

  46. Maruyama K, Kamada K, Ota T, et al. Tolerance of pyramidal tract to gamma knife radiosurgery based on diffusion-tensor tractography. Int J Radiat Oncol Biol Phys. 2008;70:1330–5.

    Article  PubMed  Google Scholar 

  47. Gupta A, Shah A, Young RJ, Holodny AI. Imaging of brain tumors: functional magnetic resonance imaging and diffusion tensor imaging. Neuroimaging Clin N Am. 2010;20:379–400.

    Article  PubMed  Google Scholar 

  48. Jena R, Price SJ, Baker C, et al. Diffusion tensor imaging: possible implications for radiotherapy treatment planning of patients with high-grade glioma. Clin Oncol (R Coll Radiol). 2005;17:581–90.

    Article  CAS  Google Scholar 

  49. Krishnan AP, Asher IM, Davis D, Okunieff P, O’Dell WG. Evidence that MR diffusion tensor imaging (tractography) predicts the natural history of regional progression in patients irradiated conformally for primary brain tumors. Int J Radiat Oncol Biol Phys. 2008;71:1553–62.

    Article  PubMed  Google Scholar 

  50. Stadlbauer A, Nimsky C, Buslei R, et al. Diffusion tensor imaging and optimized fiber tracking in glioma patients: histopathologic evaluation of tumor-invaded white matter structures. Neuroimage. 2007;34:949–56.

    Article  PubMed  Google Scholar 

  51. Brunenberg EJ, Platel B, Hofman PA, Ter Haar Romeny BM, Visser-Vandewalle V. Magnetic resonance imaging techniques for visualization of the subthalamic nucleus. J Neurosurg. 2011;115:971–84.

    Article  PubMed  Google Scholar 

  52. Sedrak M, Gorgulho A, Bari A, et al. Diffusion tensor imaging (DTI) and colored fractional anisotropy (FA) mapping of the subthalamic nucleus (STN) and the globus pallidus interna (GPi). Acta Neurochir (Wien). 2010;152:2079–84.

    Article  Google Scholar 

  53. Pouratian N, Zheng Z, Bari AA, Behnke E, Elias WJ, Desalles AA. Multi-institutional evaluation of deep brain stimulation targeting using probabilistic connectivity-based thalamic segmentation. J Neurosurg. 2011;115:995–1004.

    Article  PubMed  Google Scholar 

  54. Barkhoudarian G, Klochkov T, Sedrak M, et al. A role of diffusion tensor imaging in movement disorder surgery. Acta Neurochir (Wien). 2010;152:2089–95.

    Article  Google Scholar 

  55. Coenen VA, Madler B, Schiffbauer H, Urbach H, Allert N. Individual fiber anatomy of the subthalamic region revealed with diffusion tensor imaging: a concept to identify the deep brain stimulation target for tremor suppression. Neurosurgery. 2011;68:1069–75. discussion 1075-1066.

    PubMed  Google Scholar 

  56. Coenen VA, Allert N, Madler B. A role of diffusion tensor imaging fiber tracking in deep brain stimulation surgery: DBS of the dentato-rubro-thalamic tract (drt) for the treatment of therapy-refractory tremor. Acta Neurochir (Wien). 2011;153:1579–85. discussion 1585.

    Article  Google Scholar 

  57. Henderson JM. “Connectomic surgery”: diffusion tensor imaging (DTI) tractography as a targeting modality for surgical modulation of neural networks. Front Integr Neurosci. 2012;6:15.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Sedrak M, Gorgulho A, De Salles AF, et al. The role of modern imaging modalities on deep brain stimulation targeting for mental illness. Acta Neurochir Suppl. 2008;101:3–7.

    Article  CAS  PubMed  Google Scholar 

  59. Lakhan SE, Callaway E. Deep brain stimulation for obsessive-compulsive disorder and treatment-resistant depression: systematic review. BMC Res Notes. 2010;3:60.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Lujan JL, Chaturvedi A, Malone DA, Rezai AR, Machado AG, McIntyre CC. Axonal pathways linked to therapeutic and nontherapeutic outcomes during psychiatric deep brain stimulation. Hum Brain Mapp. 2012;33:958–68.

    Article  PubMed  Google Scholar 

  61. Grover PJ, Pereira EA, Green AL, et al. Deep brain stimulation for cluster headache. J Clin Neurosci. 2009;16:861–6.

    Article  PubMed  Google Scholar 

  62. Owen SL, Heath J, Kringelbach M, et al. Pre-operative DTI and probabilisitic tractography in four patients with deep brain stimulation for chronic pain. J Clin Neurosci. 2008;15:801–5.

    Article  CAS  PubMed  Google Scholar 

  63. Jones DK. The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a Monte Carlo study. Magn Reson Med. 2004;51:807–15.

    Article  PubMed  Google Scholar 

  64. Skare S, Andersson JL. On the effects of gating in diffusion imaging of the brain using single shot EPI. Magn Reson Imaging. 2001;19:1125–8.

    Article  CAS  PubMed  Google Scholar 

  65. Nucifora PG, Wu X, Melhem ER, Gur RE, Gur RC, Verma R. Automated diffusion tensor tractography: implementation and comparison to user-driven tractography. Acad Radiol. 2012;19:622–9.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Burgel U, Madler B, Honey CR, Thron A, Gilsbach J, Coenen VA. Fiber tracking with distinct software tools results in a clear diversity in anatomical fiber tract portrayal. Cent Eur Neurosurg. 2009;70:27–35.

    Article  CAS  PubMed  Google Scholar 

  67. Hattingen E, Rathert J, Jurcoane A, et al. A standardised evaluation of pre-surgical imaging of the corticospinal tract: where to place the seed ROI. Neurosurg Rev. 2009;32:445–56.

    Article  PubMed  Google Scholar 

  68. Young RJ, Brennan N, Fraser JF, Brennan C. Advanced imaging in brain tumor surgery. Neuroimaging Clin N Am. 2010;20:311–35.

    Article  PubMed  Google Scholar 

  69. Bello L, Castellano A, Fava E, et al. Intraoperative use of diffusion tensor imaging fiber tractography and subcortical mapping for resection of gliomas: technical considerations. Neurosurg Focus. 2010;28:E6.

    Article  PubMed  Google Scholar 

  70. Rasmussen Jr IA, Lindseth F, Rygh OM, et al. Functional neuronavigation combined with intra-operative 3D ultrasound: initial experiences during surgical resections close to eloquent brain areas and future directions in automatic brain shift compensation of preoperative data. Acta Neurochir (Wien). 2007;149:365–78.

    Article  Google Scholar 

  71. Nimsky C, Ganslandt O, Fahlbusch R. Implementation of fiber tract navigation. Neurosurgery. 2006;58:ONS-292–303. discussion ONS-303–294.

    Google Scholar 

  72. Aralasmak A, Ulmer JL, Kocak M, Salvan CV, Hillis AE, Yousem DM. Association, commissural, and projection pathways and their functional deficit reported in literature. J Comput Assist Tomogr. 2006;30:695–715.

    Article  PubMed  Google Scholar 

  73. Mori S, Kaufmann WE, Davatzikos C, et al. Imaging cortical association tracts in the human brain using diffusion-tensor-based axonal tracking. Magn Reson Med. 2002;47:215–23.

    Article  PubMed  Google Scholar 

  74. Wakana S, Jiang H, Nagae-Poetscher LM, van Zijl PC, Mori S. Fiber tract-based atlas of human white matter anatomy. Radiology. 2004;230:77–87.

    Article  PubMed  Google Scholar 

  75. Catani M, Howard RJ, Pajevic S, Jones DK. Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage. 2002;17:77–94.

    Article  PubMed  Google Scholar 

  76. Mamata Y, Mamata H, Nabavi A, et al. Intraoperative diffusion imaging on a 0.5 Tesla interventional scanner. J Magn Reson Imaging. 2001;13:115–9.

    Article  CAS  PubMed  Google Scholar 

  77. Nimsky C, Ganslandt O, Hastreiter P, et al. Intraoperative diffusion-tensor MR imaging: shifting of white matter tracts during neurosurgical procedures--initial experience. Radiology. 2005;234:218–25.

    Article  PubMed  Google Scholar 

  78. Holodny AI, Schwartz TH, Ollenschleger M, Liu WC, Schulder M. Tumor involvement of the corticospinal tract: diffusion magnetic resonance tractography with intraoperative correlation. J Neurosurg. 2001;95:1082.

    Article  CAS  PubMed  Google Scholar 

  79. Talos IF, Zou KH, Kikinis R, Jolesz FA. Volumetric assessment of tumor infiltration of adjacent white matter based on anatomic MRI and diffusion tensor tractography. Acad Radiol. 2007;14:431–6.

    Article  PubMed Central  PubMed  Google Scholar 

  80. Jellison BJ, Field AS, Medow J, Lazar M, Salamat MS, Alexander AL. Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy, and tumor imaging patterns. AJNR Am J Neuroradiol. 2004;25:356–69.

    PubMed  Google Scholar 

  81. Hygino da Cruz LC, Jr VIG, Domingues RC. Diffusion MR imaging: an important tool in the assessment of brain tumors. Neuroimaging Clin N Am. 2011;21:27–49. vii.

    Article  PubMed  Google Scholar 

  82. Lazar M, Alexander AL, Thottakara PJ, Badie B, Field AS. White matter reorganization after surgical resection of brain tumors and vascular malformations. AJNR Am J Neuroradiol. 2006;27:1258–71.

    CAS  PubMed  Google Scholar 

  83. Johansen-Berg H, Behrens TE. Just pretty pictures? What diffusion tractography can add in clinical neuroscience. Curr Opin Neurol. 2006;19:379–85.

    Article  PubMed Central  PubMed  Google Scholar 

  84. Kinoshita M, Yamada K, Hashimoto N, et al. Fiber-tracking does not accurately estimate size of fiber bundle in pathological condition: initial neurosurgical experience using neuronavigation and subcortical white matter stimulation. Neuroimage. 2005;25:424–9.

    Article  PubMed  Google Scholar 

  85. Schonberg T, Pianka P, Hendler T, Pasternak O, Assaf Y. Characterization of displaced white matter by brain tumors using combined DTI and fMRI. Neuroimage. 2006;30:1100–11.

    Article  PubMed  Google Scholar 

  86. Lu S, Ahn D, Johnson G, Law M, Zagzag D, Grossman RI. Diffusion-tensor MR imaging of intracranial neoplasia and associated peritumoral edema: introduction of the tumor infiltration index. Radiology. 2004;232:221–8.

    Article  PubMed  Google Scholar 

  87. Wang S, Kim S, Chawla S, et al. Differentiation between glioblastomas, solitary brain metastases, and primary cerebral lymphomas using diffusion tensor and dynamic susceptibility contrast-enhanced MR imaging. AJNR Am J Neuroradiol. 2011;32:507–14.

    Article  CAS  PubMed  Google Scholar 

  88. Tsuchiya K, Fujikawa A, Nakajima M, Honya K. Differentiation between solitary brain metastasis and high-grade glioma by diffusion tensor imaging. Br J Radiol. 2005;78:533–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald L. Wolf MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wolf, R.L., Nucifora, P.G., Melhem, E.R. (2016). DTI in Neurosurgical Planning. In: Van Hecke, W., Emsell, L., Sunaert, S. (eds) Diffusion Tensor Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3118-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3118-7_14

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3117-0

  • Online ISBN: 978-1-4939-3118-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics