Skip to main content
  • 593 Accesses

Abstract

Some applications of the analytical approximations to the MFPT are listed below. The formulas quantify the structures and predict their functions. They are also used to verify the validity of large Brownian simulations, such as the ones used for predicting the synaptic current.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See, e.g., http://en.wikipedia.org/wiki/Biochemical_receptor.

Bibliography

  • Berezhkovskii, A. M. and Makhnovskii, Y. A. and Monine, M. I. and Zitserman, V. Yu. and Shvartsman, S. Y., Boundary homogenization for trapping by patchy surfaces, J. Chem. Phys. 2004, 121,22, 11390–94

    Google Scholar 

  • Berg, H.C. and E.M. Purcell (1977), “Physics of chemoreception”, Biophys. J. 20, pp.193–219.

    Google Scholar 

  • Bloodgood, B.L., B.L. Sabatini (2005), “Neuronal activity regulates diffusion across the neck of dendritic spines.” Science 310 (5749), pp.866–869.

    Google Scholar 

  • Biess, A., E. Korkotian, D. Holcman (2007), “Diffusion in a dendritic spine: the role of geometry,” Phys. Rev. E, Stat. Nonlin. Soft Matter Phys., 76 (1), 021922.

    Google Scholar 

  • Biess, A., E. Korkotian, D. Holcman (2011), “Barriers to diffusion in dendrites and estimation of calcium spread following synaptic inputs,” PloS Computational Biology 7 (10), e1002182.

    Google Scholar 

  • Dalva, M.B., A.C. McClelland, M.S. Kayser (2007), “Cell adhesion molecules: signalling functions at the synapse.” Nat. Rev. Neurosci. 8 (3), pp.206–220.

    Google Scholar 

  • Dao Duc, K. and D. Holcman (2010), “Threshold activation for stochastic chemical reactions in microdomains,” Phys Rev E Stat Nonlin Soft Matter Phys. 81 (4 Pt 1): 041107.

    Google Scholar 

  • Dao Duc, K. and D. Holcman (2012), “Using default constraints of the spindle assembly checkpoints to estimate the associate chemical rates,” BMC Biophysics 5 (1), p.1.

    Google Scholar 

  • Durand, C.M., J. Perroy, F. Loll, D. Perrais, L. Fagni, T. Bourgeron, M. Montcouquiol, N. Sans (2011), “SHANK3 mutations identified in autism lead to modification of dendritic spine morphology via an actin-dependent mechanism.” Mol. Psychiatry 17 (1), pp.71–84.

    Google Scholar 

  • Dudko. O. K., A. M. Berezhkovskii, and G. H. Weiss. 2004 Rate constant for diffusion-influenced ligand binding to receptors of arbitrary shape on a cell surface. J. Chem. Phys. 121: 1562–1565.

    Article  ADS  Google Scholar 

  • Edidin, M., S.C. Kuo and M.P. Sheetz (1991), “Lateral movements of membrane glycoproteins restricted by dynamic cytoplasmic barriers,” Science 254, pp.1379–1382.

    Google Scholar 

  • Freche, D., U. Pannasch, N. Rouach, and D. Holcman (2011), “Synapse geometry and receptor dynamics modulate synaptic strength.” PLoS One 6 (10): e25122.

    Google Scholar 

  • D. Fresche, C.Y. Lee N. Rouach, D. Holcman, Synaptic transmission in neurological disorders dissected by a quantitative approach, 5:5, 1–5; Communicative and Integrative Biology (2012).

    Google Scholar 

  • Futai, K., M.J. Kim, T. Hashikawa, P. Scheiffele, M. Sheng, and Y. Hayashi, (2007), “Retrograde modulation of presynaptic release probability through signaling mediated by PSD- 95-neuroligin.” Nat. Neurosci. 10, pp.186–195.

    Google Scholar 

  • Gebhardt, C. and Cull-Candy, S.G. (2006) Influence of agonist concentration on AMPA and kainate channels in CA1 pyramidal cells in rat hippocampal slices.J. Physiol. 573, pp.371–394.

    Google Scholar 

  • Holcman, D. and Z. Schuss (2005a), “Stochastic Chemical Reactions in Micro-domains.” Journal of Chemical Physics 122, 1.

    Google Scholar 

  • Holcman, D., A. Triller (2006), “Modeling synaptic dynamics and receptor trafficking,” Biophys. J., 91 (7), pp.2405–2415.

    Google Scholar 

  • Holcman, D., N. Hoze, Z. Schuss (2011), “Narrow escape through a funnel and effective diffusion on a crowded membrane,” Phys. Rev. E, 84, 021906.

    Google Scholar 

  • Hoze, N., D. Nair, E. Hosy, C. Sieben, S. Manley, A. Herrmann, J.B. Sibarita, D. Choquet, D. Holcman, (2012) Proc Natl Acad Sci USA 109, pp.17052–17057 (2012)

    Google Scholar 

  • Kandel, E.R., J.H. Schwartz, T.M. Jessell (2000), Principles of Neural Science, McGraw-Hill, New York, 4th edition.

    Google Scholar 

  • Kerchner, G.A. and R.A. Nicoll (2008), “Silent synapses and the emergence of a postsynaptic mechanism for LTP.” Nat. Rev. Neurosci. 9 (11), pp.813–825.

    Google Scholar 

  • Korkotian, E., M. Segal (1999), “Release of calcium from stores alters the morphology of dendritic spines in cultured hippocampal neurons.” Proc. Natl. Acad. Sci. USA. 96 (21), pp.12068–12072.

    Google Scholar 

  • Kusumi, A., C. Nakada, K. Ritchie, K. Murase, K. Suzuki, H. Murakoshi, R.S. Kasai, J. Kondo, T. Fujiwara (2005), “Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules,” Annu Rev Biophys Biomol Struct. 34, pp.351–378.

    Google Scholar 

  • Kusumi, A., Y. Sako and M. Yamamoto (1993), “Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells,” Biophys J. 65, pp.2021–2040.

    Google Scholar 

  • Milstein AD, Zhou W, Karimzadegan S, Bredt DS, Nicoll RA., TARP subtypes differentially and dose-dependently control synaptic AMPA receptor gating. Neuron. 2007 Sep 20;55(6):905–18.

    Article  Google Scholar 

  • Nadler, B., T. Naeh, and Z. Schuss (2002), “The stationary arrival process of diffusing particles from a continuum to an absorbing boundary is Poissonian,” SIAM J. Appl. Math., 62 (2), pp.433–447.

    Google Scholar 

  • Reingruber, J., E. Abad, and D. Holcman (2009), “Narrow escape time to a structured target located at the boundary of a microdomain,” J. Chem. Phys. 130, 094909.

    Google Scholar 

  • Reingruber, J. and D. Holcman (2011b), “The narrow escape problem in a flat cylindrical microdomain with application to diffusion in the synaptic cleft.” Multiscale Model. Simul. 9 (2), pp.793–816.

    Google Scholar 

  • Renner, M., D. Choquet and A. Triller (2009), “Control of the postsynaptic membrane viscosity,” J. Neurosci. 29 (9), pp.2926–2637.

    Google Scholar 

  • Saffman, P.G. and M. Delbrück (1975), “Brownian motion in biological membranes.” Proc. Natl Acad. Sci. 72, pp.3111–3113.

    Google Scholar 

  • Saxton, M.J. (1993), “Lateral diffusion in an archipelago. Single-particle diffusion,” Biophys. J. 64, p.1766–1780.

    Google Scholar 

  • Saxton, M.J. (1995), “Single-particle tracking: effects of corrals,” Biophys. J. 69, pp.389–398.

    Google Scholar 

  • Saxton, M.J. and K. Jacobson (1997), “Single-particle tracking: applications to membrane dynamics,” Annu. Rev. Biophys. Biomol. Struct. 26, pp.373–399.

    Google Scholar 

  • Schuss, Z. (1980), Theory and Applications of Stochastic Differential Equations. John Wiley & Sons, NY.

    MATH  Google Scholar 

  • Schuss, Z., A. Singer, and D. Holcman (2007), “The narrow escape problem for diffusion in cellular microdomains,” Proc. Natl. Acad. Sci. USA, 104, 16098–16103.

    Google Scholar 

  • Schuss, Z.(2013) Brownian Dynamics at Boundaries and Interfaces in Physics, Chemistry, and Biology, Springer series on Applied Mathematical Sciences, NY.

    Book  MATH  Google Scholar 

  • Sheetz, M.P. (1993), “Glycoprotein motility and dynamic domains in fluid plasma membranes,” Ann. Rev. Biophys. Biomol. Struct. 22, pp.417–431.

    Google Scholar 

  • Smith, T.C. and J.R. Howe (2000), “Concentration-dependent substate behavior of native AMPA receptors,” Nat. Neurosci. 3, pp.922–927.

    Google Scholar 

  • Südhof, T.C. (2008), “Neuroligins and neurexins link synaptic function to cognitive disease.” Nature 455 (7215), pp.903–911.

    Google Scholar 

  • Svoboda, K., D.W. Tank, W. Denk (1996), “Direct measurement of coupling between dendritic spines and shafts,” Science, 272 (5262), pp.716–719.

    Article  ADS  Google Scholar 

  • Suzuki, K. and M.P. Sheetz (2001), “Binding of cross-linked glycosylphosphatidyl-inositol-anchored proteins to discrete actin-associated sites and cholesterol-dependent domains,” Biophys. J. 81, pp.2181–2189.

    Google Scholar 

  • Taflia, A. and D. Holcman (2011), “Estimating the synaptic current in a multiconductance AMPA receptor model.” Biophys. J. 101 (4), pp.781–792.

    Google Scholar 

  • Triller, A. and D. Choquet (2003), “The role of receptor diffusion in the organization of the postsynaptic membrane,” Nat. Rev. Neurosci., 4, pp.1251–1265.

    Google Scholar 

  • Zwanzig, R. (1990), “Diffusion-controlled ligand binding to spheres covered by receptors: An effective medium treatment,” Proc. Natl. Acad. Sci. USA. 87, pp.5856–5857.

    Google Scholar 

  • Zwanzig, R., and A. Szabo (1991), “Time dependent rate of diffusion-influenced ligand binding to receptors on cell surfaces,” Biophys. J. 60, pp.671–678.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Holcman, D., Schuss, Z. (2015). Applications to Cellular Biology and Simulations. In: Stochastic Narrow Escape in Molecular and Cellular Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3103-3_4

Download citation

Publish with us

Policies and ethics