Skip to main content

W-Narayana numbers

  • Chapter
Eulerian Numbers

Part of the book series: Birkhäuser Advanced Texts Basler Lehrbücher ((BAT))

  • 2071 Accesses

Abstract

Just as Eulerian numbers generalize to Coxeter groups, so too do the Narayana numbers. There is a great deal of interest in these generalizations. Entire books could be (and have been) dedicated to the subject. We give a brief survey of this circle of ideas in this chapter, with an emphasis on parallels with our discussion of the classical case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 39.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Armstrong D. Generalized noncrossing partitions and combinatorics of Coxeter groups. Mem Am Math Soc. 2009;202(949):x+159. Available from: http://dx.doi.org/10.1090/S0065-9266-09-00565-1.

  2. Brady T, Watt C. K(π, 1)’s for Artin groups of finite type. In: Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part I (Haifa, 2000). vol. 94; 2002. p. 225–50. Available from: http://dx.doi.org/10.1023/A:1020902610809.

  3. Brändén P. On linear transformations preserving the Pólya frequency property. Trans Am Math Soc. 2006;358(8):3697–716 (electronic). Available from: http://dx.doi.org/10.1090/S0002-9947-06-03856-6.

  4. Carter RW. Conjugacy classes in the Weyl group. Compositio Math. 1972;25:1–59.

    MATH  MathSciNet  Google Scholar 

  5. Fomin S, Reading N. Root systems and generalized associahedra. In: Geometric combinatorics. vol. 13 of IAS/Park City Math. Ser. Amer. Math. Soc., Providence, RI; 2007. p. 63–131.

    Google Scholar 

  6. Fomin S, Zelevinsky A. Y -systems and generalized associahedra. Ann Math (2). 2003;158(3):977–1018. Available from: http://dx.doi.org/10.4007/annals.2003.158.977.

  7. Hersh P. Deformation of chains via a local symmetric group action. Electron J Combin. 1999;6:Research paper 27, 18 pp. (electronic). Available from: http://www.combinatorics.org/Volume_6/Abstracts/v6i1r27.html.

  8. Reading N. Clusters, Coxeter-sortable elements and noncrossing partitions. Trans Am Math Soc. 2007;359(12):5931–58. Available from: http://dx.doi.org/10.1090/S0002-9947-07-04319-X.

    Article  MATH  MathSciNet  Google Scholar 

  9. Reiner V. Non-crossing partitions for classical reflection groups. Discrete Math. 1997;177(1-3):195–222. Available from: http://dx.doi.org/10.1016/S0012-365X(96)00365-2.

    Article  MATH  MathSciNet  Google Scholar 

  10. Shephard GC, Todd JA. Finite unitary reflection groups. Can J Math. 1954;6:274–304.

    Article  MATH  MathSciNet  Google Scholar 

  11. Simion R, Ullman D. On the structure of the lattice of noncrossing partitions. Discrete Math. 1991;98(3):193–206. Available from: http://dx.doi.org/10.1016/0012-365X(91)90376-D.

    Article  MATH  MathSciNet  Google Scholar 

  12. Solomon L. Invariants of finite reflection groups. Nagoya Math J. 1963;22:57–64.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Petersen, T.K. (2015). W-Narayana numbers. In: Eulerian Numbers. Birkhäuser Advanced Texts Basler Lehrbücher. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4939-3091-3_12

Download citation

Publish with us

Policies and ethics