Advertisement

On the Area of the Largest Square Covered by a Comb-Random-Walk

  • Pal RévészEmail author
Chapter
Part of the Fields Institute Communications book series (FIC, volume 76)

Abstract

We study the path behaviour of a simple random walk C on the 2-dimensional comb lattice that is obtained from \(\mathbb{Z}^{2}\) by removing all horisontal edges off the X-axis. We say that a lattice point is covered by C at time n if there is a k ≤ n for which C(k) = (x, y). A set A is covered if each (x, y) ∈ A is covered. Let R n be the largest integer for which [−R n , R n ]2 is covered at time n. Our main result gives an upper and a lower bound for R n . A similar question is investigated for a random walk on the half-plane half-comb lattice.

Notes

Acknowledgements

Research supported by Hungarian Research Grant OTKA K108615.

References

  1. 1.
    Auer, P.: The circle homogeneously covered by random walk on \(\mathbb{Z}^{2}\). Stat. Probab. Lett. 9, 403–407 (1990)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Bertacchi, D.: Asymptotic behaviour of the simple random walk on the 2-dimensional comb. Electron. J. Probab. 11, 1184–1203 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Bertacchi, D., Zucca, F.: Uniform asymptotic estimates of transition probabilities on comb. J. Aust. Math. Soc. 75, 325–353 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Csáki, E., Csörgő, M., Földes, A., Révész, P.: Strong limit theorems for a simple random walk on the 2-dimensional comb. Electron. J. Probab. 14, 2371–2390 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Csáki, E., Csörgő, M., Földes, A., Révész, P.: On the local time of random walk on the 2-dimensional comb. Stoch. Process. Appl. 121, 1290–1314 (2011)zbMATHCrossRefGoogle Scholar
  6. 6.
    Csáki, E., Csörgő, M., Földes, A., Révész, P.: Random walk on half-plane-half-comb structure. Annales Mathematicae et Informaticae 39, 29–44 (2012)zbMATHGoogle Scholar
  7. 7.
    Csáki, E., Földes, A.: A note on the stability of the local time of Wiener process. Stoch. Process. Appl. 25, 203–213 (1987)zbMATHCrossRefGoogle Scholar
  8. 8.
    Dembo, A., Peres, Y., Rosen, J.: How large a disc is covered by a random walk in n steps? Ann. Probab. 35, 577–601 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Erdős, P., Chen, R.W.: Random walk on \(\mathbb{Z}_{2}^{n}\). J. Multivar. Anal. 25, 111–118 (1988)CrossRefGoogle Scholar
  10. 10.
    Erdős, P., Révész, P.: On the area of the circles covered by a random walk. J. Multivar. Anal. 27, 169–180 (1988)CrossRefGoogle Scholar
  11. 11.
    Révész, P.: Estimates of the largest disc covered by a random walk. Ann. Probab. 18, 1784–1789 (1990)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Révész, P.: Random Walk in Random and Non-Random Environments, 2nd edn. World Scientific, Singapore (2005)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Technische Universitët WienInstitut für StatistikWienAustria

Personalised recommendations