Diagnostic Tests for Innovations of ARMA Models Using Empirical Processes of Residuals

  • Kilani GhoudiEmail author
  • Bruno Rémillard
Part of the Fields Institute Communications book series (FIC, volume 76)


In view of applications to diagnostic tests of ARMA models, the asymptotic behavior of multivariate empirical and copula processes based on residuals of ARMA models is investigated. Multivariate empirical processes based on squared residuals and other functions of the residuals are also investigated. It is shown how these processes can be used to develop distribution free tests of change-point analysis and serial independence. It is also demonstrated that these empirical processes provide an easy mechanism for developing goodness-of-fit tests for the distribution of the innovations, and that the well-known Lilliefors test can be applied to the residuals of ARMA models without any change.



Funding in partial support of this work was provided by the National Research Foundation of the United Arab Emirates, the Natural Sciences and Engineering Research Council of Canada, the Fonds québécois de la recherche sur la nature et les technologies, and Desjardins Global Asset Management.


  1. 1.
    Bai, J.: On the partial sums of residuals in autoregressive and moving average models. J. Time Ser. Anal. 14(3), 247–260 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bai, J.: Weak convergence of the sequential empirical processes of residuals in ARMA models. Ann. Stat. 22, 2051–2061 (1994)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bartlett, M.S.: On the theoretical specification and sampling properties of autocorrelated time-series. Suppl. J. R. Stat. Soc. 8, 27–41 (1946)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bickel, P.J., Wichura, M.J.: Convergence criteria for multiparameter stochastic processes and some applications. Ann. Math. Stat. 42, 1656–1670 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Blum, J.R., Kiefer, J., Rosenblatt, M.: Distribution free test of independence based on the sample distribution function. Ann. Math. Stat. 32, 485–498 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Box, G.E.P., Jenkins, G.M.: Times Series Analysis. Forecasting and Control. Holden-Day, San Francisco (1970)Google Scholar
  7. 7.
    Box, G.E.P., Pierce, D.A.: Distribution of residual autocorrelations in autoregressive-integrated moving average time series models. J. Am. Stat. Assoc. 65, 1509–1526 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Brockwell, P.J., Davis, R.A.: Time Series: Theory and Methods, 2nd edn. Springer Series in Statistics. Springer, New York (1991)CrossRefGoogle Scholar
  9. 9.
    Carlstein, E.: Nonparametric change-point estimation. Ann. Stat. 16, 188–197 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Davies, N., Triggs, C.M., Newbold, P.: Significance levels of the Box-Pierce portmanteau statistic in finite samples. Biometrika 64(3), 517–522 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Delgado, M.A.: Testing serial independence using the sample distribution function. J. Time Ser. Anal. 17, 271–285 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Durbin, J.: Weak convergence of the sample distribution function when parameters are estimated. Ann. Stat. 1(2), 279–290 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Durrett, R.: Probability: Theory and Examples, 2nd edn. Duxbury Press, Belmont (1996)Google Scholar
  14. 14.
    Genest, C., Rémillard, B.: Tests of independence or randomness based on the empirical copula process. Test 13, 335–369 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Genest, C., Ghoudi, K., Rémillard, B.: Rank-based extensions of the Brock Dechert Scheinkman test for serial dependence. J. Am. Stat. Assoc. 102, 1363–1376 (2007a)CrossRefzbMATHGoogle Scholar
  16. 16.
    Genest, C., Quessy, J.-F., Rémillard, B.: Asymptotic local efficiency of Cramér-von Mises tests for multivariate independence. Ann. Stat. 35, 166–191 (2007b)CrossRefzbMATHGoogle Scholar
  17. 17.
    Ghoudi, K., Rémillard, B.: Empirical processes based on pseudo-observations. II. The multivariate case. In: Asymptotic Methods in Stochastics. Volume 44 of Fields Institute Communications, pp. 381–406. American Mathematical Society, Providence (2004)Google Scholar
  18. 18.
    Ghoudi, K., Kulperger, R.J., Rémillard, B.: A nonparametric test of serial independence for time series and residuals. J. Multivar. Anal. 79, 191–218 (2001)CrossRefzbMATHGoogle Scholar
  19. 19.
    Hong, Y., White, H.: Asymptotic distribution theory for nonparametric entropy measures of serial dependence. Econometrica 73, 837–901 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Isaacson, E., Keller, H.B.: Analysis of Numerical Methods. Wiley, New York (1966)zbMATHGoogle Scholar
  21. 21.
    Kendall, M.G.: Oscillatory movements in English agriculture. J. R. Stat. Soc. (N. S.) 106, 91–124 (1943)Google Scholar
  22. 22.
    Kendall, M.G.: On the analysis of oscillatory time-series. J. R. Stat. Soc. (N. S.) 108, 93–141 (1945)Google Scholar
  23. 23.
    Koul, H.L.: A weak convergence result useful in robust autoregression. J. Stat. Plann. Inference 29(3), 291–308 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kulperger, R., Yu, H.: High moment partial sum processes of residuals in GARCH models and their applications. Ann. Stat. 33(5), 2395–2422 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Lee, S.: A note on the residual empirical process in autoregressive models. Stat. Probab. Lett. 32(4), 405–411 (1997)CrossRefzbMATHGoogle Scholar
  26. 26.
    Li, W.K., McLeod, A.I.: ARMA modelling with non-Gaussian innovations. J. Time Ser. Anal. 9(2), 155–168 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Lilliefors, H.W.: On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J. Am. Stat. Assoc. 62, 399–402 (1967)CrossRefGoogle Scholar
  28. 28.
    Ljung, G.M., Box, G.E.P.: On a measure of lack of fit in time series models. Biometrika 65, 297–303 (1978)CrossRefzbMATHGoogle Scholar
  29. 29.
    Mandal, B.N.: Forecasting sugarcane production in India with ARIMA model. (2005)
  30. 30.
    McLeod, A.I., Li, W.K.: Diagnostic checking ARMA time series models using squared-residual autocorrelations. J. Time Ser. Anal. 4(4), 269–273 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Picard, D.: Testing and estimating change-points in time series. Adv. Appl. Probab. 17(4), 841–867 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Quenouille, M.H.: A large-sample test for the goodness of fit of autoregressive schemes. J. R. Stat. Soc. (N.S.) 110, 123–129 (1947)Google Scholar
  33. 33.
    Suresh, K., Krishna Priya, S.: Forecasting sugarcane yield of Tamilnadu using ARIMA models. Sugar Tech 13, 23–26 (2011). doi:10.1007/s12355-011-0071-7CrossRefGoogle Scholar
  34. 34.
    Wold, H.: A large-sample test for moving averages. J. R. Stat. Soc. Ser. B. 11, 297–305 (1949)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Wold, H.: A Study in the Analysis of Stationary Time Series, 2nd edn. Almqvist and Wiksell, Stockholm (1954). With an appendix by Peter WhittleGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of StatisticsUnited Arab Emirates UniversityAl AinUnited Arab Emirates
  2. 2.CRM, GERAD and Department of Decision SciencesHEC Montréal, 3000 chemin de la Côte Sainte-CatherineMontréalCanada

Personalised recommendations