Advertisement

Binary Time Series Models in Change Point Detection Tests

  • Edit GombayEmail author
Part of the Fields Institute Communications book series (FIC, volume 76)

Abstract

The purpose of this note is to extend the result of [5] to the model of Binary Time Series with link functions other than the logit link function considered there. We will show that the results carry over if instead of the logit link function we use the probit, the log-log, and complementary log-log link functions in the binary regression model. Furthermore, this note will fill out some of the technical details omitted in the above-mentioned paper.

Keywords

Link Function Bounded Function Probit Model Normal Distribution Function Logit Link Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Berkes, I., Gombay, E., Horváth, L.: Testing for changes in the covariance stucture of linear processes. J. Stat. Plann. Inference 139(6), 2044–2063 (2009)zbMATHCrossRefGoogle Scholar
  2. 2.
    Cramér, H.: Mathematical Methods of Statistics. Princeton University Press, Princeton (1946)zbMATHGoogle Scholar
  3. 3.
    Doob, J.L.: Stochastic Processes. Wiley, New York (1953)zbMATHGoogle Scholar
  4. 4.
    Eberlein, E.: On strong invariance principles under dependence assumptions. Ann. Probab. 14(1), 260–270 (1986)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Fokianos, K., Gombay, E., Hussein, A.: Retrospective change detection for binary time series models. J. Stat. Plann. Infernce 145, 102–112 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Kedem, B., Fokianos, K.: Regression Models for Time Series Analysis. Wiley, Hoboken (2002)zbMATHCrossRefGoogle Scholar
  7. 7.
    Lehmann, E.L.: Theory of Point Estimation. Wiley, New York (1983)zbMATHCrossRefGoogle Scholar
  8. 8.
    Serfling, R.J.: Contributions to central limit theory for dependent variables. Ann. Math. Stat. 39, 1158–1175 (1968)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Mathematical and Statistical SciencesUniversity of AlbertaABCanada

Personalised recommendations