Skip to main content

Unveiling Transposable Elements Function to Enrich Knowledge for Human Physiology and Disease Pathogenesis

  • Chapter
Genomic Elements in Health, Disease and Evolution

Abstract

On September, 2012, data released by the ENCODE (The Encyclopedia of DNA Elements) project strongly support the notion that about 80 % of the human genome, including non-coding DNA sequences and repetitive DNA elements, serve some function. The latter, sheds light to one of the most provocative questions in biology by providing new knowledge to the functional roles of transposable elements (TEs) in the potential modulation of the genome transcriptional units organized throughout the genome either as coding (genes) or as non-coding DNA regions. Interestingly, some of these data propose that specific inter-individual genetic variability patterns are also located within the “junk DNA” structure. This direction may obviously lead toward the exploitation of genomic knowledge implicating the bulk of human genome structure and function in therapeutics and drug development. This chapter focuses on the function of TEs in physiology and human pathophysiology. In parallel, some recently data of our laboratory on the potential involvement of mouse B1 short repetitive elements in the execution of murine erythroleukemia (MEL) cell erythroid maturation program and the regulation of globin gene expression will be also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Biémont C, Vieira C (2006) Genetics: junk DNA as an evolutionary force. Nature 443(7111):521–524

    Article  PubMed  CAS  Google Scholar 

  2. Jurka J, Kapitonov VV, Kohany O, Jurka MV (2007) Repetitive sequences in complex genomes: structure and evolution. Annu Rev Genomics Hum Genet 8:241–259

    Article  CAS  PubMed  Google Scholar 

  3. Gu W, Castoe TA, Hedges DJ, Batzer MA, Pollock DD (2008) Identification of repeat structure in large genomes using repeat probability clouds. Anal Biochem 380(1):77–83

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Kazazian HH Jr (2004) Mobile elements: drivers of genome evolution. Science 303(5664):1626–1632

    Article  CAS  PubMed  Google Scholar 

  5. Böhne A, Brunet F, Galiana-Arnoux D, Schultheis C, Volff JN (2008) Transposable elements as drivers of genomic and biological diversity in vertebrates. Chromosome Res 16(1):203–215

    Article  PubMed  CAS  Google Scholar 

  6. Pace JK, Feschotte C (2007) The evolutionary history of human DNA transposons: evidence for intense activity in the primate lineage. Genome Res 17(4):422–432

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Maksakova IA, Romanish MT, Gagnier L, Dunn CA, van de Lagemaat LN, Mager DL (2006) Retroviral elements and their hosts: insertional mutagenesis in the mouse germ line. PLoS Genet 2(1):e2

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Hancks DC, Kazazian HH Jr (2012) Active human retrotransposons: variation and disease. Curr Opin Genet Dev 22(3):191–203

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Brouha B, Schustak J, Badge RM, Lutz-Prigge S, Farley AH, Moran JV et al (2003) Hot L1s account for the bulk of retrotransposition in the human population. Proc Natl Acad Sci U S A 100(9):5280–5285

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Ostertag EM, Kazazian HH Jr (2001) Biology of mammalian L1 retrotransposons. Annu Rev Genet 35:501–538

    Article  CAS  PubMed  Google Scholar 

  11. Boeke JD (1997) LINEs and Alus – the polyA connection. Nat Genet 16(1):6–7

    Article  CAS  PubMed  Google Scholar 

  12. Dewannieux M, Esnault C, Heidmann T (2003) LINE-mediated retrotransposition of marked Alu sequences. Nat Genet 35(1):41–48

    Article  CAS  PubMed  Google Scholar 

  13. Hancks DC, Goodier JL, Mandal PK, Cheung LE, Kazazian HH Jr (2011) Retrotransposition of marked SVA elements by human L1s in cultured cells. Hum Mol Genet 20(17):3386–3400

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Raiz J, Damert A, Chira S, Held U, Klawitter S, Hamdorf M et al (2012) The nonautonomous retrotransposon SVA is trans-mobilized by the human LINE-1 protein machinery. Nucleic Acids Res 40(4):1666–1683

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Dewannieux M, Heidmann T (2005) Role of poly(A) tail length in Alu retrotransposition. Genomics 86(3):378–381

    Article  CAS  PubMed  Google Scholar 

  16. Xing J, Zhang Y, Han K, Salem AH, Sen SK, Huff CD et al (2009) Mobile elements create structural variation: analysis of a complete human genome. Genome Res 19(9):1516–1526

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Wang H, Xing J, Grover D, Hedges DJ, Han K, Walker JA et al (2005) SVA elements: a hominid-specific retroposon family. J Mol Biol 354(4):994–1007

    Article  CAS  PubMed  Google Scholar 

  18. Ostertag EM, Goodier JL, Zhang Y, Kazazian HH Jr (2003) SVA elements are nonautonomous retrotransposons that cause disease in humans. Am J Hum Genet 73(6):1444–1451

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. McClintock B (1956) Controlling elements and the gene. Cold Spring Harb Symp Quant Biol 21:197–216

    Article  CAS  PubMed  Google Scholar 

  20. Takahashi H, Okazaki S, Fujiwara H (1997) A new family of site specific retrotransposons, SART1, is inserted into telomeric repeats of the silkworm, Bombyx mori. Nucleic Acids Res 25(8):1578–1584

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Levis RW, Ganesan R, Houtchens K, Tolar LA, Sheen FM (1993) Transposons in place of telomeric repeats at a Drosophila telomere. Cell 75(6):1083–1093

    Article  CAS  PubMed  Google Scholar 

  22. Holmes SE, Dombroski BA, Krebs CM, Boehm CD, Kazazian HH Jr (1994) A new retrotransposable human L1 element from the LRE2 locus on chromosome 1q produces a chimaeric insertion. Nat Genet 7(2):143–148

    Article  CAS  PubMed  Google Scholar 

  23. Goodier JL, Ostertag EM, Kazazian HH Jr (2000) Transduction of 3’-flanking sequences is common in L1 retrotransposition. Hum Mol Genet 9(4):653–657

    Article  CAS  PubMed  Google Scholar 

  24. Belancio VP, Hedges DJ, Deininger P (2008) Mammalian non-LTR retrotransposons: for better or worse, in sickness and in health. Genome Res 18(3):343–358

    Article  CAS  PubMed  Google Scholar 

  25. Han JS, Szak ST, Boeke JD (2004) Transcriptional disruption by the L1 retrotransposon and implications for mammalian transcriptomes. Nature 429(6989):268–274

    Article  CAS  PubMed  Google Scholar 

  26. Konkel MK, Batzer MA (2010) A mobile threat to genome stability: the impact of non-LTR retrotransposons upon the human genome. Semin Cancer Biol 20(4):211–221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. van de Lagemaat LN, Landry JR, Mager DL, Medstrand P (2003) Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends Genet 19(10):530–536

    Article  PubMed  CAS  Google Scholar 

  28. Belancio VP, Hedges DJ, Deininger P (2006) LINE-1 RNA splicing and influences on mammalian gene expression. Nucleic Acids Res 34(5):1512–1521

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Perepelitsa-Belancio V, Deininger P (2003) RNA truncation by premature polyadenylation attenuates human mobile element activity. Nat Genet 35(4):363–366

    Article  CAS  PubMed  Google Scholar 

  30. Mätlik K, Redik K, Speek M (2006) L1 antisense promoter drives tissue-specific transcription of human genes. J Biomed Biotechnol 2006(1):71753

    PubMed Central  PubMed  Google Scholar 

  31. Speek M (2001) Antisense promoter of human L1 retrotransposon drives transcription of adjacent cellular genes. Mol Cell Biol 21(6):1973–1985

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Polavarapu N, Mariño-Ramírez L, Landsman D, McDonald JF, Jordan IK (2008) Evolutionary rates and patterns for human transcription factor binding sites derived from repetitive DNA. BMC Genomics 9:226

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Yang Z, Boffelli D, Boonmark N, Schwartz K, Lawn R (1998) Apolipoprotein(a) gene enhancer resides within a LINE element. J Biol Chem 273(2):891–897

    Article  CAS  PubMed  Google Scholar 

  34. Sharan C, Hamilton NM, Parl AK, Singh PK, Chaudhuri G (1999) Identification and characterization of a transcriptional silencer upstream of the human BRCA2 gene. Biochem Biophys Res Commun 265(2):285–290

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Gasior SL, Wakeman TP, Xu B, Deininger PL (2006) The human LINE-1 retrotransposon creates DNA double-strand breaks. J Mol Biol 357(5):1383–1393

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Pierce AJ, Stark JM, Araujo FD, Moynahan ME, Berwick M, Jasin M (2001) Double-strand breaks and tumorigenesis. Trends Cell Biol 11(11):S52–S59

    Article  CAS  PubMed  Google Scholar 

  37. Vilenchik MM, Knudson AG (2003) Endogenous DNA double-strand breaks: production, fidelity of repair, and induction of cancer. Proc Natl Acad Sci U S A 100(22):12871–12876

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Hedges DJ, Deininger PL (2007) Inviting instability: transposable elements, double-strand breaks, and the maintenance of genome integrity. Mutat Res 616(1–2):46–59

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Kang MI, Rhyu MG, Kim YH, Jung YC, Hong SJ, Cho CS et al (2006) The length of CpG islands is associated with the distribution of Alu and L1 retroelements. Genomics 87(5):580–590

    Article  CAS  PubMed  Google Scholar 

  40. Lyon MF (1998) X-chromosome inactivation: a repeat hypothesis. Cytogenet Cell Genet 80(1–4):133–137

    Article  CAS  PubMed  Google Scholar 

  41. Boissinot S, Chevret P, Furano AV (2000) L1 (LINE-1) retrotransposon evolution and amplification in recent human history. Mol Biol Evol 17(6):915–928

    Article  CAS  PubMed  Google Scholar 

  42. Phokaew C, Kowudtitham S, Subbalekha K, Shuangshoti S, Mutirangura A (2008) LINE-1 methylation patterns of different loci in normal and cancerous cells. Nucleic Acids Res 36(17):5704–5712

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Kochanek S, Renz D, Doerfler W (1993) DNA methylation in the Alu sequences of diploid and haploid primary human cells. EMBO J 12(3):1141–1151

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Rubin CM, Vande Voort CA, Teplitz RL, Schmid CW (1994) Alu repeated DNAs are differentially methylated in primate germ cells. Nucleic Acids Res 22(23):5121–5127

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Strichman-Almashanu LZ, Lee RS, Onyango PO, Perlman E, Flam F, Frieman MB et al (2002) A genome-wide screen for normally methylated human CpG islands that can identify novel imprinted genes. Genome Res 12(4):543–554

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Chimpanzee Sequencing and Analysis Consortium (2005) Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437(7055):69–87

    Article  CAS  Google Scholar 

  47. Yoder JA, Walsh CP, Bestor TH (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13(8):335–340

    Article  CAS  PubMed  Google Scholar 

  48. Zamudio N, Bourc'his D (2010) Transposable elements in the mammalian germline: a comfortable niche or a deadly trap? Heredity (Edinb) 105(1):92–104

    Article  CAS  Google Scholar 

  49. Walsh CP, Chaillet JR, Bestor TH (1998) Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat Genet 20(2):116–117

    Article  CAS  PubMed  Google Scholar 

  50. Maksakova IA, Mager DL, Reiss D (2008) Keeping active endogenous retroviral-like elements in check: the epigenetic perspective. Cell Mol Life Sci 65(21):3329–3347

    Article  CAS  PubMed  Google Scholar 

  51. Bourc’his D, Bestor TH (2004) Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431(7004):96–99

    Article  PubMed  CAS  Google Scholar 

  52. Huang J, Fan T, Yan Q, Zhu H, Fox S, Issaq HJ et al (2004) Lsh, an epigenetic guardian of repetitive elements. Nucleic Acids Res 32(17):5019–5028

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Daskalos A, Nikolaidis G, Xinarianos G, Savvari P, Cassidy A, Zakopoulou R et al (2009) Hypomethylation of retrotransposable elements correlates with genomic instability in non-small cell lung cancer. Int J Cancer 124(1):81–87

    Article  CAS  PubMed  Google Scholar 

  54. Florl AR, Lower R, Schmitz-Drager BJ, Schulz WA (1999) DNA methylation and expression of LINE-1 and HERV-K provirus sequences in urothelial and renal cell carcinomas. Br J Cancer 80(9):1312–1321

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Roman-Gomez J, Jimenez-Velasco A, Agirre X, Cervantes F, Sanchez J, Garate L et al (2005) Promoter hypomethylation of the LINE-1 retrotransposable elements activates sense/antisense transcription and marks the progression of chronic myeloid leukemia. Oncogene 24(48):7213–7223

    Article  CAS  PubMed  Google Scholar 

  56. Wilson AS, Power BE, Molloy PL (2007) DNA hypomethylation and human diseases. Biochim Biophys Acta 1775(1):138–162

    CAS  PubMed  Google Scholar 

  57. Weber B, Kimhi S, Howard G, Eden A, Lyko F (2010) Demethylation of a LINE-1 antisense promoter in the cMet locus impairs met signalling through induction of illegitimate transcription. Oncogene 29(43):5775–5784

    Article  CAS  PubMed  Google Scholar 

  58. Garcia-Perez JL, Morell M, Scheys JO, Kulpa DA, Morell S, Carter CC et al (2010) Epigenetic silencing of engineered L1 retrotransposition events in human embryonic carcinoma cells. Nature 466(7307):769–773

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Ronemus M, Martienssen R (2005) RNA interference: methylation mystery. Nature 433(7025):472–473

    Article  CAS  PubMed  Google Scholar 

  60. Aravin AA, Sachidanandam R, Girard A, Fejes-Toth K, Hannon GJ (2007) Developmentally regulated piRNA clusters implicate MILI in transposon control. Science 316(5825):744–747

    Article  CAS  PubMed  Google Scholar 

  61. Kuramochi-Miyagawa S, Watanabe T, Gotoh K, Totoki Y, Toyoda A, Ikawa M et al (2008) DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev 22(7):908–917

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Aravin AA, Bourc’his D (2008) Small RNA guides for de novo DNA methylation in mammalian germ cells. Genes Dev 22(8):970–975

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Watanabe T, Takeda A, Tsukiyama T, Mise K, Okuno T, Sasaki H et al (2006) Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Genes Dev 20(13):1732–1743

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Murchison EP, Stein P, Xuan Z, Pan H, Zhang MQ, Schultz RM et al (2007) Critical roles for Dicer in the female germline. Genes Dev 21(6):682–693

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Golden DE, Gerbasi VR, Sontheimer EJ (2008) An inside job for siRNAs. Mol Cell 31(3):309–312

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Schumann GG, Gogvadze EV, Osanai-Futahashi M, Kuroki A, Münk C, Fujiwara H et al (2010) Unique functions of repetitive transcriptomes. Int Rev Cell Mol Biol 285:115–188

    Article  CAS  PubMed  Google Scholar 

  67. Belancio VP, Deininger PL, Roy-Engel AM (2009) LINE dancing in the human genome: transposable elements and disease. Genome Med 1(10):97

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  68. Callinan PA, Batzer MA (2006) Retrotransposable elements and human disease. Genome Dyn 1:104–115

    Article  CAS  PubMed  Google Scholar 

  69. Solyom S, Kazazian HH Jr (2012) Mobile elements in the human genome: implications for disease. Genome Med 4(2):12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Sayah DM, Sokolskaja E, Berthoux L, Luban J (2004) Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1. Nature 430(6999):569–573

    Article  CAS  PubMed  Google Scholar 

  71. Hamdi HK, Reznik J, Castellon R, Atilano SR, Ong JM, Udar N et al (2002) Alu DNA polymorphism in ACE gene is protective for age-related macular degeneration. Biochem Biophys Res Commun 295(3):668–672

    Article  CAS  PubMed  Google Scholar 

  72. Agrawal A, Eastman QM, Schatz DG (1998) Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394(6695):744–751

    Article  CAS  PubMed  Google Scholar 

  73. Kazazian HH Jr, Wong C, Youssoufian H, Scott AF, Phillips DG, Antonarakis SE (1988) Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 332(6160):164–166

    Article  CAS  PubMed  Google Scholar 

  74. Wimmer K, Callens T, Wernstedt A, Messiaen L (2011) The NF1 gene contains hotspots for L1 endonuclease-dependent de novo insertion. PLoS Genet 7(11):e1002371

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. VandenDriessche T, Ivics Z, Izsvák Z, Chuah MK (2009) Emerging potential of transposons for gene therapy and generation of induced pluripotent stem cells. Blood 114(8):1461–1468

    Article  CAS  PubMed  Google Scholar 

  76. Ivics Z, Li MA, Mátés L, Boeke JD, Nagy A, Bradley A et al (2009) Transposon-mediated genome manipulation in vertebrates. Nat Methods 6(6):415–422

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Mátés L, Chuah MK, Belay E, Jerchow B, Manoj N, Acosta-Sanchez A et al (2009) Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nat Genet 41(6):753–761

    Article  PubMed  CAS  Google Scholar 

  78. Ortiz-Urda S, Thyagarajan B, Keene DR, Lin Q, Fang M, Calos MP et al (2002) Stable nonviral genetic correction of inherited human skin disease. Nat Med 8(10):1166–1170

    Article  CAS  PubMed  Google Scholar 

  79. Montini E, Held PK, Noll M, Morcinek N, Al-Dhalimy M, Finegold M et al (2002) In vivo correction of murine tyrosinemia type I by DNA-mediated transposition. Mol Ther 6(6):759–769

    Article  CAS  PubMed  Google Scholar 

  80. Liu L, Mah C, Fletcher BS (2006) Sustained FVIII expression and phenotypic correction of hemophilia A in neonatal mice using an endothelial-targeted sleeping beauty transposon. Mol Ther 13(5):1006–1015

    Article  CAS  PubMed  Google Scholar 

  81. Ohlfest JR, Frandsen JL, Fritz S, Lobitz PD, Perkinson SG, Clark KJ et al (2005) Phenotypic correction and long-term expression of factor VIII in hemophilic mice by immunotolerization and nonviral gene transfer using the Sleeping Beauty transposon system. Blood 105(7):2691–2698

    Article  CAS  PubMed  Google Scholar 

  82. Singh H, Manuri PR, Olivares S, Dara N, Dawson MJ, Huls H et al (2008) Redirecting specificity of T-cell populations for CD19 using the Sleeping Beauty system. Cancer Res 68(8):2961–2971

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Tsiftsoglou AS, Pappas IS, Vizirianakis IS (2003) Mechanisms involved in the induced differentiation of leukemia cells. Pharmacol Ther 100(3):257–290

    Article  CAS  PubMed  Google Scholar 

  84. Tsiftsoglou AS, Pappas IS, Vizirianakis IS (2003) The developmental program of murine erythroleukemia cells. Oncol Res 13(6–10):339–346

    PubMed  Google Scholar 

  85. Vizirianakis IS, Tsiftsoglou AS (1996) Induction of murine erythroleukemia cell differentiation is associated with methylation and differential stability of polyA+ RNA transcripts. Biochim Biophys Acta 1312(1):8–20

    Article  PubMed  Google Scholar 

  86. Vizirianakis IS, Tsiftsoglou AS (1995) N6-methyladenosine inhibits murine erythroleukemia cell maturation by blocking methylation of RNA and memory via conversion to S-(N6-methyl)-adenosylhomocysteine. Biochem Pharmacol 50(11):1807–1814

    Article  CAS  PubMed  Google Scholar 

  87. Vizirianakis IS, Tsiftsoglou AS (2005) Blockade of murine erythroleukemia cell differentiation by hypomethylating agents causes accumulation of discrete small poly(A)- RNAs hybridized to 3′-end flanking sequences of beta(major) globin gene. Biochim Biophys Acta 1743(1–2):101–114

    Article  CAS  PubMed  Google Scholar 

  88. Vizirianakis IS, Wong W, Tsiftsoglou AS (1992) Analysis of inhibition of commitment of murine erythroleukemia (MEL) cells to terminal maturation by N6-methyladenosine. Biochem Pharmacol 44(5):927–936

    Article  CAS  PubMed  Google Scholar 

  89. Vizirianakis IS, Tezias SS, Amanatiadou EP, Tsiftsoglou AS (2012) Possible interaction between B1 retrotransposon-containing sequences and β(major) globin gene transcriptional activation during MEL cell erythroid differentiation. Cell Biol Int 36(1):47–55

    Article  CAS  PubMed  Google Scholar 

  90. Tezias SS, Tsiftsoglou AS, Amanatiadou EP, Vizirianakis IS (2012) Cloning and characterization of polyA- RNA transcripts encoded by activated B1-like retrotransposons in mouse erythroleukemia MEL cells exposed to methylation inhibitors. BMB Rep 45(2):126–131

    Article  CAS  PubMed  Google Scholar 

  91. Vidal F, Mougneau E, Glaichenhaus N, Vaigot P, Darmon M, Cuzin F (1993) Coordinated posttranscriptional control of gene expression by modular elements including Alu-like repetitive sequences. Proc Natl Acad Sci U S A 90(1):208–212

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Duncan C, Biro PA, Choudary PV, Elder JT, Wang RRC, Forget BG et al (1979) RNA polymerase III transcriptional units are interspersed among human non-α-globin genes. Proc Natl Acad Sci U S A 76(10):5095–5099

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Tsiftsoglou AS, Vizirianakis IS, Strouboulis J (2009) Erythropoiesis: model systems, molecular regulators, and developmental programs. IUBMB Life 61(8):800–830

    Article  CAS  PubMed  Google Scholar 

  94. Sawado T, Igarashi K, Groudine M (2001) Activation of beta-major globin gene transcription is associated with recruitment of NF-E2 to the beta-globin LCR and gene promoter. Proc Natl Acad Sci U S A 98(18):10226–10231

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Cantor AB, Orkin SH (2002) Transcriptional regulation of erythropoiesis: an affair involving multiple partners. Oncogene 21(21):3368–3376

    Article  CAS  PubMed  Google Scholar 

  96. Zhou Y, Zheng JB, Gu X, Li W, Saunders GF (2000) A novel Pax-6 binding site in rodent B1 repetitive elements: coevolution between developmental regulation and repeated elements? Gene 245(2):319–328

    Article  CAS  PubMed  Google Scholar 

  97. Antonaki A, Demetriades C, Polyzos A, Banos A, Vatsellas G, Lavigne MD et al (2011) Genomic analysis reveals a novel nuclear factor-κB (NF-κB)-binding site in Alu-repetitive elements. J Biol Chem 286(44):38768–38782

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Harris CR, Dewan A, Zupnick A, Normart R, Gabriel A, Prives C et al (2009) p53 responsive elements in human retrotransposons. Oncogene 28(44):3857–3865

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Weiner AM (2002) SINEs and LINEs: the art of biting the hand that feeds you. Curr Opin Cell Biol 14(3):343–350

    Article  CAS  PubMed  Google Scholar 

  100. Chen LL, DeCerbo JN, Carmichael GG (2008) Alu element-mediated gene silencing. EMBO J 27(12):1694–1705

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Lai CB, Zhang Y, Rogers SL, Mager DL (2009) Creation of the two isoforms of rodent NKG2D was driven by a B1 retrotransposon insertion. Nucleic Acids Res 37(9):3032–3043

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Romanish MT, Nakamura H, Lai CB, Wang Y, Mager DL (2009) A novel protein isoform of the multicopy human NAIP gene derives from intragenic Alu SINE promoters. PLoS One 4(6):e5761

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  103. Apostolou E, Thanos D (2008) Virus infection induces NF-kappaB-dependent interchromosomal associations mediating monoallelic IFN-beta gene expression. Cell 134(1):85–96

    Article  CAS  PubMed  Google Scholar 

  104. Ford E, Thanos D (2010) The transcriptional code of human IFN-beta gene expression. Biochim Biophys Acta 1799(3–4):328–336

    Article  CAS  PubMed  Google Scholar 

  105. Stamatoyannopoulos JA (2012) What does our genome encode? Genome Res 22(9):1602–1611

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Chanock S (2012) Toward mapping the biology of the genome. Genome Res 22(9):1612–1615

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Ecker JR, Bickmore WA, Barroso I, Pritchard JK, Gilad Y, Segal E (2012) Genomics: ENCODE explained. Nature 489(7414):52–55

    Article  CAS  PubMed  Google Scholar 

  108. Shehee WR, Loeb DD, Adey NB, Burton FH, Casavant NC, Cole P et al (1989) Nucleotide sequence of the BALB/c mouse beta-globin complex. J Mol Biol 205(1):41–62

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. Asterios S. Tsiftsoglou (Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Greece) for his thoughtful criticism and continuous support throughout the entire period of our efforts to carry out the experiments, analyze the results and delineate the mechanisms discussed in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis S. Vizirianakis Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vizirianakis, I.S., Amanatiadou, E.P., Tezias, S.S. (2015). Unveiling Transposable Elements Function to Enrich Knowledge for Human Physiology and Disease Pathogenesis. In: Felekkis, K., Voskarides, K. (eds) Genomic Elements in Health, Disease and Evolution. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3070-8_5

Download citation

Publish with us

Policies and ethics