Skip to main content

Genomic Analysis Through High-Throughput Sequencing

  • Chapter
Genomic Elements in Health, Disease and Evolution

Abstract

In the last decade there has been an explosion in the development of new technologies for high-throughput DNA sequencing, which has led to the sharp decline of associated costs. This has allowed scientists to develop a multitude of methodologies to study, on a global scale, the genomes and transcriptomes of human cells. In this chapter the major technologies are reviewed along with the applications of high-throughput sequencing in the study of human disease in terms of non-genic DNA and RNA elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wetterstand K, DNA Sequencing costs: data from the NHGRI Genome Sequencing Program (GSP). http://www.genome.gov/sequencingcosts/

  2. Ma Z, Lee RW, Li B et al (2013) Isothermal amplification method for next-generation sequencing. Proc Natl Acad Sci 110:14320–14323. doi:10.1073/pnas.1311334110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Levene MJ, Korlach J, Turner SW et al (2003) Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299:682–686. doi:10.1126/science.1079700

    Article  CAS  PubMed  Google Scholar 

  4. Schadt EE, Banerjee O, Fang G et al (2013) Modeling kinetic rate variation in third generation DNA sequencing data to detect putative modifications to DNA bases. Genome Res 23:129–141. doi:10.1101/gr.136739.111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Callinan PA, Feinberg AP (2006) The emerging science of epigenomics. Hum Mol Genet 15:R95–R101. doi:10.1093/hmg/ddl095

    Article  CAS  PubMed  Google Scholar 

  6. Barski A, Cuddapah S, Cui K et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837. doi:10.1016/j.cell.2007.05.009

    Article  CAS  PubMed  Google Scholar 

  7. Fang G, Munera D, Friedman DI et al (2012) Genome-wide mapping of methylated adenine residues in pathogenic Escherichia coli using single-molecule real-time sequencing. Nat Biotechnol 30:1232–1239. doi:10.1038/nbt.2432

    Article  CAS  PubMed  Google Scholar 

  8. Flusberg BA, Webster DR, Lee JH et al (2010) Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods 7:461–465. doi:10.1038/nmeth.1459

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Frommer M, McDonald LE, Millar DS et al (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 89:1827–1831

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Colella S, Shen L, Baggerly KA et al (2003) Sensitive and quantitative universal Pyrosequencing methylation analysis of CpG sites. Biotechniques 35:146–150

    CAS  PubMed  Google Scholar 

  11. Chatterjee A, Stockwell PA, Rodger EJ, Morison IM (2012) Comparison of alignment software for genome-wide bisulphite sequence data. Nucleic Acids Res 40(10):e79. doi:10.1093/nar/gks150

  12. Zhao Z, Tavoosidana G, Sjölinder M et al (2006) Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat Genet 38:1341–1347. doi:10.1038/ng1891

    Article  CAS  PubMed  Google Scholar 

  13. Dostie J, Dekker J (2007) Mapping networks of physical interactions between genomic elements using 5C technology. Nat Protoc 2:988–1002. doi:10.1038/nprot.2007.116

    Article  CAS  PubMed  Google Scholar 

  14. Belton J-M, McCord RP, Gibcus JH et al (2012) Hi-C: a comprehensive technique to capture the conformation of genomes. Methods 58:268–276. doi:10.1016/j.ymeth.2012.05.001

    Article  CAS  PubMed  Google Scholar 

  15. Fullwood MJ, Liu MH, Pan YF et al (2009) An oestrogen-receptor-alpha-bound human chromatin interactome. Nature 462:58–64. doi:10.1038/nature08497

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Fudenberg G, Getz G, Meyerson M, Mirny LA (2011) High order chromatin architecture shapes the landscape of chromosomal alterations in cancer. Nat Biotechnol 29:1109–1113. doi:10.1038/nbt.2049

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Greenblum S, Turnbaugh PJ, Borenstein E (2012) Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. Proc Natl Acad Sci U S A 109:594–599. doi:10.1073/pnas.1116053109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Qin J, Li Y, Cai Z et al (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490:55–60. doi:10.1038/nature11450

    Article  CAS  PubMed  Google Scholar 

  19. Dominguez-Bello MG, Costello EK, Contreras M et al (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci 107:11971–11975. doi:10.1073/pnas.1002601107

    Article  PubMed Central  PubMed  Google Scholar 

  20. Mitra S, Förster-Fromme K, Damms-Machado A et al (2013) Analysis of the intestinal microbiota using SOLiD 16S rRNA gene sequencing and SOLiD shotgun sequencing. BMC Genomics 14:S16. doi:10.1186/1471-2164-14-S5-S16

    Article  PubMed Central  PubMed  Google Scholar 

  21. Wylie KM, Truty RM, Sharpton TJ et al (2012) Novel bacterial taxa in the human microbiome. PLoS One 7:e35294. doi:10.1371/journal.pone.0035294

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Donia MS, Cimermancic P, Schulze CJ et al (2014) A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics. Cell 158:1402–1414. doi:10.1016/j.cell.2014.08.032

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Nielsen HB, Almeida M, Juncker AS et al (2014) Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat Biotechnol 32:822–828. doi:10.1038/nbt.2939

    Article  CAS  PubMed  Google Scholar 

  24. Yozwiak NL, Skewes-Cox P, Stenglein MD et al (2012) Virus identification in unknown tropical febrile illness cases using deep sequencing. PLoS Negl Trop Dis 6:e1485. doi:10.1371/journal.pntd.0001485

    Article  PubMed Central  PubMed  Google Scholar 

  25. Blume CJ, Hotz-Wagenblatt A, Hüllein J et al (2015) p53-dependent non-coding RNA networks in Chronic Lymphocytic Leukemia. Leukemia. doi:10.1038/leu.2015.119

    PubMed  Google Scholar 

  26. Ardekani AM, Naeini MM (2010) The role of microRNAs in human diseases. Avicenna J Med Biotechnol 2:161–179

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Wapinski O, Chang HY (2011) Long noncoding RNAs and human disease. Trends Cell Biol 21:354–361. doi:10.1016/j.tcb.2011.04.001

    Article  CAS  PubMed  Google Scholar 

  28. Pritchard CC, Cheng HH, Tewari M (2012) MicroRNA profiling: approaches and considerations. Nat Rev Genet 13:358–369. doi:10.1038/nrg3198

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Williams Z, Ben-Dov IZ, Elias R et al (2013) Comprehensive profiling of circulating microRNA via small RNA sequencing of cDNA libraries reveals biomarker potential and limitations. Proc Natl Acad Sci 110:4255–4260. doi:10.1073/pnas.1214046110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Jeffrey SS (2008) Cancer biomarker profiling with microRNAs. Nat Biotechnol 26:400–401. doi:10.1038/nbt0408-400

    Article  CAS  PubMed  Google Scholar 

  31. Murigneux V, Saulière J, Roest Crollius H, Le Hir H (2013) Transcriptome-wide identification of RNA binding sites by CLIP-seq. Methods 63:32–40. doi:10.1016/j.ymeth.2013.03.022

    Article  CAS  PubMed  Google Scholar 

  32. König J, Zarnack K, Rot G et al (2010) iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat Struct Mol Biol 17:909–915. doi:10.1038/nsmb.1838

    Article  PubMed Central  PubMed  Google Scholar 

  33. Hafner M, Landthaler M, Burger L et al (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141:129–141. doi:10.1016/j.cell.2010.03.009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Clark PM, Loher P, Quann K et al (2014) Argonaute CLIP-Seq reveals miRNA targetome diversity across tissue types. Sci Rep. doi:10.1038/srep05947

    Google Scholar 

  35. Saulière J, Murigneux V, Wang Z et al (2012) CLIP-seq of eIF4AIII reveals transcriptome-wide mapping of the human exon junction complex. Nat Struct Mol Biol 19:1124–1131. doi:10.1038/nsmb.2420

    Article  PubMed  Google Scholar 

  36. Ingolia NT, Ghaemmaghami S, Newman JRS, Weissman JS (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324:218–223. doi:10.1126/science.1168978

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Chang H, Lim J, Ha M, Kim VN (2014) TAIL-seq: genome-wide determination of poly(A) tail length and 3’ end modifications. Mol Cell 53:1044–1052. doi:10.1016/j.molcel.2014.02.007

    Article  CAS  PubMed  Google Scholar 

  38. Spits C, Le Caignec C, De Rycke M et al (2006) Whole-genome multiple displacement amplification from single cells. Nat Protoc 1:1965–1970. doi:10.1038/nprot.2006.326

    Article  CAS  PubMed  Google Scholar 

  39. Macaulay IC, Voet T (2014) Single cell genomics: advances and future perspectives. PLoS Genet 10:e1004126. doi:10.1371/journal.pgen.1004126

    Article  PubMed Central  PubMed  Google Scholar 

  40. Van der Aa N, Zamani Esteki M, Vermeesch JR, Voet T (2013) Preimplantation genetic diagnosis guided by single-cell genomics. Genome Med 5:71. doi:10.1186/gm475

    Article  PubMed Central  PubMed  Google Scholar 

  41. Simpson JL (2013) Cell-free fetal DNA and maternal serum analytes for monitoring embryonic and fetal status. Fertil Steril 99:1124–1134. doi:10.1016/j.fertnstert.2013.02.012

    Article  CAS  PubMed  Google Scholar 

  42. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17:10–12. doi:http://dx.doi.org/10.14806/ej.17.1.200

  43. Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27:863–864. doi:10.1093/bioinformatics/btr026

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Jiang H, Lei R, Ding S-W, Zhu S (2014) Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinformatics 15:182. doi:10.1186/1471-2105-15-182

    Article  PubMed Central  PubMed  Google Scholar 

  45. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinforma Oxf Engl 30:2114–2120. doi:10.1093/bioinformatics/btu170

    Article  CAS  Google Scholar 

  46. Miller JR, Delcher AL, Koren S et al (2008) Aggressive assembly of pyrosequencing reads with mates. Bioinformatics 24:2818–2824. doi:10.1093/bioinformatics/btn548

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Miller JR, Koren S, Sutton G (2010) Assembly algorithms for next-generation sequencing data. Genomics 95:315–327. doi:10.1016/j.ygeno.2010.03.001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Luo R, Liu B, Xie Y et al (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 1:18. doi:10.1186/2047-217X-1-18

    Article  PubMed Central  PubMed  Google Scholar 

  49. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829. doi:10.1101/gr.074492.107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Maccallum I, Przybylski D, Gnerre S et al (2009) ALLPATHS 2: small genomes assembled accurately and with high continuity from short paired reads. Genome Biol 10:R103. doi:10.1186/gb-2009-10-10-r103

    Article  PubMed Central  PubMed  Google Scholar 

  51. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111. doi:10.1093/bioinformatics/btp120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Pollier J, Rombauts S, Goossens A (2013) Analysis of RNA-Seq data with TopHat and Cufflinks for genome-wide expression analysis of jasmonate-treated plants and plant cultures. Methods Mol Biol 1011:305–315. doi:10.1007/978-1-62703-414-2_24

    Article  CAS  PubMed  Google Scholar 

  53. Haas BJ, Salzberg SL, Zhu W et al (2008) Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol 9:R7. doi:10.1186/gb-2008-9-1-r7

    Article  PubMed Central  PubMed  Google Scholar 

  54. Martin J, Bruno VM, Fang Z et al (2010) Rnnotator: an automated de novo transcriptome assembly pipeline from stranded RNA-Seq reads. BMC Genomics 11:663. doi:10.1186/1471-2164-11-663

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Haas BJ, Papanicolaou A, Yassour M et al (2013) De novo transcript sequence reconstruction from RNA-Seq: reference generation and analysis with Trinity. Nat Protoc. doi:10.1038/nprot.2013.084

    PubMed Central  PubMed  Google Scholar 

  56. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. doi:10.1038/nmeth.1923

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760. doi:10.1093/bioinformatics/btp324

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Li R, Yu C, Li Y et al (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinforma Oxf Engl 25:1966–1967. doi:10.1093/bioinformatics/btp336

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michalis Hadjithomas B.Sc., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hadjithomas, M. (2015). Genomic Analysis Through High-Throughput Sequencing. In: Felekkis, K., Voskarides, K. (eds) Genomic Elements in Health, Disease and Evolution. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3070-8_12

Download citation

Publish with us

Policies and ethics