Loss, Degeneration, and Preservation of the Spiral Ganglion Neurons and Their Processes

Part of the Springer Handbook of Auditory Research book series (SHAR, volume 52)


To maintain normal function, spiral ganglion neurons (SGNs) and their associated components require a healthy cochlear microenvironment including numerous molecular and cellular elements. This chapter reviews our current understanding of SGN loss and dysfunction with an emphasis on recent studies of primary degeneration of ganglion neurons and age-related auditory nerve loss and dysfunction. Results from animal models of the SGN degeneration and a discussion of possible approaches that could lead to the preservation of these neurons in vivo are given in this chapter. The complex interactions between SGNs and the cochlear microenvironment are important areas for future exploration to better understand the mechanisms of SGN degeneration and dysfunction.


Age-related hearing loss Animal models Auditory physiology Glia Cell Death Excitotoxicity Neural degeneration Noise-induced hearing loss Preservation Primary auditory nerve Repair Spiral ganglion Spontaneous activities 



I thank Richard Schmiedt for his encouragement and invaluable suggestions on the scope of the chapter. Many others, Judy Dubno, Jayne Ahlstrom, Emily Franko-Tobin, Kenyaria Noble, Edward Krug, Rhett Chaplin, and the editors of the SHAR series, shared their expertise and provided constructive criticism during the preparation of the text. This work supported by grants NIH grants R01 DC012058 and P50 DC00422.


  1. Altschuler, R., Cho, Y., Ylikoski, J., Pirvola, U., Magal, E., & Miller, J. (1999). Rescue and regrowth of sensory nerves following deafferentation by neurotrophic factors. Annals of the New York Academy of Sciences, 884, 305–311.Google Scholar
  2. Angeli, S., Lin, X., & Liu, X. (2012). Genetics of hearing and deafness. Anatomical Record (Hoboken), 295(11), 1812–1829.Google Scholar
  3. Bao, J., & Ohlemiller, K. (2010). Age-related loss of spiral ganglion neurons. Hearing Research, 264(1–2), 93–97.Google Scholar
  4. Barkett, M., & Gilmore, T. (1999). Control of apoptosis by Rel/NF-kappaB transcription factors. Oncogene, 18(49), 6910–6924.Google Scholar
  5. Barres, B. (2008). The mystery and magic of glia: A perspective on their roles in health and disease. Neuron, 60(3), 430–440.Google Scholar
  6. Berglund, A., & Ryugo, D. (1991). Neurofilament antibodies and spiral ganglion neurons of the mammalian cochlea. Journal of Comparative Neurology, 306(3), 393–408.Google Scholar
  7. Bichler, E., Spoendlin, H., & Rauchegger, H. (1983). Degeneration of cochlear neurons after amikacin intoxication in the rat. International Archives of Otorhinolaryngology, 237(3), 201–208.Google Scholar
  8. Bird, S., Gulley, R., Wenthold, R., & Fex, J. (1978). Kainic acid injections result in degeneration of cochlear nucleus cells innervated by the auditory nerve. Science, 202(4372), 1087–1089.Google Scholar
  9. Bohne, B., & Harding, G. (2000). Degeneration in the cochlea after noise damage: Primary versus secondary events. American Journal of Otolaryngology, 21(4), 505–509.Google Scholar
  10. Brunet, A., Bonni, A., Zigmond, M., Lin, M., Juo, P., Hu, L., Anderson, M., Arden, K.,Blenis, J., & Greenberg M. (1999). Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell, 96(6), 857–868.Google Scholar
  11. Budenz, C., Pfingst, B., & Raphael, Y. (2012). The use of neurotrophin therapy in the inner ear to augment cochlear implantation outcomes. Anatomical Record (Hoboken), 295(11), 1896–1908.Google Scholar
  12. Chiarugi, A., & Moskowitz, M. (2002). Cell biology, PARP-1—a perpetrator of apoptotic cell death? Science, 297(5579), 200–201.Google Scholar
  13. Costalupes, J., Young, E., & Gibson, D. (1984). Effects of continuous noise backgrounds on rate response of auditory nerve fibers in cat. Journal of Neurophysiology, 51(6), 1326–1344.Google Scholar
  14. Dabdoub, A., Puligilla, C., Jones, J., Fritzsch, B., Cheah, K., Pevny, L., & Kelley, M. (2008). Sox2 signaling in prosensory domain specification and subsequent hair cell differentiation in the developing cochlea. Proceedings of the National Academy of Sciences of the USA, 105(47), 18396–13401.Google Scholar
  15. Davila, D., Connolly, N., Bonner, H., Weisová, P., Dussmann, H., Concannon, C., Huber, H., & Prehn, J. (2012). Two-step activation of FOXO3 by AMPK generates a coherent feed-forward loop determining excitotoxic cell fate. Cell Death & Differentiation, 19(10), 1677–1688.Google Scholar
  16. Delmaghani, S., del Castillo, F., Michel, V., Leibovici, M., Aghaie, A., Ron, U., Van Laer, L., Ben-Tal, N., Van Camp, G., Weil, D., Langa, F., Lathrop, M., Avan, P., & Petit, C. (2006). Mutations in the gene encoding pejvakin, a newly identified protein of the afferent auditory pathway, cause DFNB59 auditory neuropathy. Nature Genetics, 38(7), 770–778.Google Scholar
  17. Dodson, H. (1997). Loss and survival of spiral ganglion neurons in the guinea pig after intracochlear perfusion with aminoglycosides. Journal of Neurocytology, 26(8), 541–556.Google Scholar
  18. Dror. A., & Avraham, K. (2010). Hearing impairment: A panoply of genes and functions. Neuron, 68(2), 293–308.Google Scholar
  19. Dubno, J., Dirks, D., & Morgan, D. (1984). Effects of age and mild hearing loss on speech recognition in noise. Journal of the Acoustical Society of America, 76(1), 87–96.Google Scholar
  20. Dupont, J., Guilhaume, A., & Aran, J. (1993). Neuronal degeneration of primary cochlear and vestibular innervations after local injection of sisomicin in the guinea pig. Hearing Research, 68(2), 217–228.Google Scholar
  21. Ernfors, P., Duan, M., EIShamy, W., & Canlon, B. (1996). Protection of auditory neurons from aminoglycoside toxicity by neurotrophin-3. Nature Medicine, 2(4), 463–467.Google Scholar
  22. Eybalin, M. (1993). Neurotransmitters and neuromodulators of the mammalian cochlea. Physiological Reviews, 73(2), 309–373.Google Scholar
  23. Fekete, D., Rouiller, E., Liberman, M., & Ryugo, D. (1984). The central projections of intracellularly labeled auditory nerve fibers in cats. Journal of Comparative Neurology, 229(3), 432–450.Google Scholar
  24. Ferri, A., Cavallaro, M., Braida, D., Di Cristofano, A., Canta, A., Vezzani, A., Ottolenghi, S., Pandolfi, P., Sala, M., DeBiasi, S., & Nicolis, S. (2004). Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development, 131(15), 3805–3819.Google Scholar
  25. Fiskum, G. (2000). Mitochondrial participation in ischemic and traumatic neural cell death. Journal of Neurotrauma, 17(10), 843–855.Google Scholar
  26. Frisina, R., Karcich, K., Tracy, T., Sullivan, D., Walton, J., & Colombo, J. (1996). Preservation of amplitude modulation coding in the presence of background noise by chinchilla auditory-nerve fibers. Journal of the Acoustical Society of America, 99(1), 475–490.Google Scholar
  27. Fritzsch, B., Farinas, I., & Reichard, L. (1997). Lack of neurotrophin 3 causes losses of both classes of spiral ganglion neurons in the cochlea in a region-specific fashion. Journal of Neuroscience, 17(16), 6213–6225.Google Scholar
  28. Fritzsch, B., Tessarollo, L., Coppola, E., & Reichardt, L. (2004). Neurotrophins in the ear: Their roles in sensory neuron survival and fiber guidance. Progress in Brain Research, 146, 265–278.Google Scholar
  29. Fuchs, P., Glowatzki, E., & Moser, T. (2003). The afferent synapse of cochlear hair cells. Current Opinion in Neurobiology, 13(4), 452–458.Google Scholar
  30. Furman, A., Kujawa, S., & Liberman, M. (2013). Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates. Journal of Neurophysiology, 110(3), 577–586.Google Scholar
  31. Gates, G. (2006). The effect of noise on cochlear aging. Ear and Hearing, 27(1), 91.Google Scholar
  32. Gates, G., & Mills, J. (2005). Presbycusis. Lancet, 366, 1111–1120.Google Scholar
  33. Gates, G., Schmid, P., Kujawa, S., Nam, B., & D’Agostino, R. (2000). Longitudinal threshold changes in older men with audiometric notches. Hearing Research, 141, 220–228.Google Scholar
  34. Gilels, F., Paquette, S., Zhang, J., Rahman, I., & White, P. (2013). Mutation of foxo3 causes adult onset auditory neuropathy and alters cochlear synapse architecture in mice. Journal of Neuroscience, 33(47), 18409–18424.Google Scholar
  35. Gillespie, L., & Shepherd, R. (2005). Clinical application of neurotrophic factors: The potential for primary auditory neuron protection. European Journal of Neuroscience, 22(9), 2123–2133.Google Scholar
  36. Gordon-Salant, S., & Frisina, D. (2010). Introduction and overview. In S. Gordon-Salant, R. D. Frisina, A. N. Popper, & R. R. Fay (Eds.), The aging auditory system: Perceptual characterization and neural bases of presbyacusis. New York: Springer Science+Business Media.Google Scholar
  37. Green, R. & Douglass, C. (1951). Intracranial division of the eighth nerve for Ménière’s disease; A follow-up study of patients operated on by Dr. Walter E. Dandy. Annals of Otology, Rhinology, and Laryngology, 60(3), 610–621.Google Scholar
  38. Green, S. (2000). Neurotrophic signaling by membrane electrical activity in spiral ganglion neurons. In D. J. Lim (Ed.), Cell and molecular biology of the ear (pp. 165–82). New York: Kluwer Academic/Plenum Press.Google Scholar
  39. Green, S., Altschuler, R., & Miller, J. (2008). Cell Death and Cochlear Protection. In J. Schacht, A. N. Popper, & R. R. Fay, (Eds.), Auditory trauma, protection, and repair (pp. 275–319). New York: Springer Science+Business Media.Google Scholar
  40. Green, S., Bailey, E., Wang, Q., & Davis R. (2012). The Trk A, B, C’s of neurotrophins in the cochlea. Anatomical Record (Hoboken), 295(11), 1877–1895.Google Scholar
  41. Ha, H., & Snyder, S. (2000). Poly(ADP-ribose) polymerase-1 in the nervous system. Neurobiology of Disease, 7(4), 225–239.Google Scholar
  42. Hakuba, N., Koga, K., Gyo, K., Usami, S., & Tanaka, K. (2000). Exacerbation of noise-induced hearing loss in mice lacking the glutamate transporter GLAST. Journal of Neuroscience, 20(23), 8750–8753.Google Scholar
  43. Halling, D., & Humes, L. (2000). Factors affecting the recognition of reverberant speech by elderly listeners. Journal of Speech Language and Hearing Research, 43(2), 414–431.Google Scholar
  44. Hansen, M., Zha, X-M., Bok, J., & Green, S. (2001). Multiple distinct signal pathways, including an autocrine neurotrophic mechanism, contribute to the survival-promoting effect of depolarization on spiral ganglion neurons. Journal of Neuroscience, 21(7), 2256–2267.Google Scholar
  45. Hansen, M., Bok, J., Devaish, A., Zha, X-M., & Green, S. (2003). Ca2+/calmodulin-dependent protein kinases II and IV both promote survival but differ in their effects on axon growth in spiral ganglion neurons. Journal of Neuroscience Research, 72(2), 169–184.Google Scholar
  46. Hellstrom, L., & Schmiedt, R. (1990). Compound action potential input/output functions in young and quiet-aged gerbils. Hearing Research, 50(1–2), 163–174.Google Scholar
  47. Hequembourg, S., & Liberman, M. (2001). Spiral ligament pathology: A major aspect of age-related cochlear degeneration in C57BL/6 mice. Journal of the Association for Research in Otolaryngology, 2(2), 118–129.Google Scholar
  48. Hernández, R. (1992). Na+/K(+)-ATPase regulation by neurotransmitters. Neurochemistry International, 20(1), 1–10.Google Scholar
  49. Hossain, W., Antic, S., Yang, Y., Rasband, M., & Morest, D. (2005). Where is the spike generator of the cochlear nerve? Voltage-gated sodium channels in the mouse cochlea. Journal of Neuroscience, 25(29), 6857–6868.Google Scholar
  50. Hume, C., Bratt, D., & Oesterle, E. (2007). Expression of LHX3 and SOX2 during mouse inner ear development. Gene Expression Patterns, 7(7), 798–807.Google Scholar
  51. Hutchins, J., & Barger, S. (1998). Why neurons die: Cell death in the nervous system. Anatomical Record, 253(3), 79–90.Google Scholar
  52. Ishii, T., & Toriyama, M. (1977). Sudden deafness with severe loss of cochlear neurons. Annals of Otology, Rhinology, and Laryngology, 86(4 Pt 1), 541–547.Google Scholar
  53. Jagger, D., & Housley, G. (2003). Membrane properties of type II spiral ganglion neurons identified in a neonatal rat cochlear slice. Journal of Physiology, 552(Pt2), 525–533.Google Scholar
  54. Jyothi, V., Li, M., Kilpatrick, L., Smythe, N., LaRue, A., Zhou, D., Schulte, B., Schmiedt, R., & Lang, H. (2010). Unmyelinated auditory type I spiral ganglion neurons in congenic Ly5.1 mice. Journal of Comparative Neurology, 518(16), 3254–3271.Google Scholar
  55. Kaltschmidt, C., Kaltschmidt, B., Neumann, H., Wekerle, H., & Baeuerle, P. (1994). Constitutive NF-kappa B activity in neurons. Molecular and Cellular Biology, 14(6), 3981–3992.Google Scholar
  56. Kantardzhieva, A., Liberman, M., & Sewell, W. (2013). Quantitative analysis of ribbons, vesicles, and cisterns at the cat inner hair cell synapse: Correlations with spontaneous rate. Journal of Comparative Neurobiology, 521(14), 3260–3271.Google Scholar
  57. Keithley, E., & Feldman, M. (1982). Hair cell counts in an age-graded series of rat cochleas. Hearing Research, 8, 249–262.Google Scholar
  58. Keithley, E., Ryan, A., & Woolf, N. (1989) Spiral ganglion cell density in young and old gerbils. Hearing Research. 38, 125-33.Google Scholar
  59. Khimich, D., Nouvian, R., Pujol, R., Dieck, S., Egner, A., Gundelfinger, E., & Moser, T. (2005). Hair cell synaptic ribbons are essential for synchronous auditory signalling. Nature, 434(7035), 889–894.Google Scholar
  60. Kiang, N., Watanabe, T., Thomas, E., & Clark, L. (1965). Discharge patterns of single fibers in the cat’s auditory nerve. Cambridge, MA: MIT Press.Google Scholar
  61. Kiang, N., Liberman, M., & Levine, R. (1976). Auditory-nerve activity in cats exposed to ototoxic drugs and high-intensity sound. Annals of Otology, Rhinology, and Laryngology, 85, 752–768.Google Scholar
  62. Kiang, N., Rho, J., Northrop, C., Liberman, M., & Ryugo, D. (1982). Hair-cell innervation by spiral ganglion cells in adult cats. Science, 217(4555), 175–177.Google Scholar
  63. Kiang, N., Liberman, M., Sewell, W., & Guinan, J. (1986). Single unit clues to cochlear mechanisms. Hearing Research, 22, 171–182.Google Scholar
  64. Kiernan, A., Pelling, A., Leung, K., Tang, A., Bell, D., Tease, C., Lovell-Badge, R., Steel, K., & Cheah, K. (2005). Sox2 is required for sensory organ development in the mammalian inner ear. Nature, 434(7036), 1031–1035.Google Scholar
  65. Kujawa, S., & Liberman, M. (2006). Acceleration of age-related hearing loss by early noise exposure: Evidence of a misspent youth. Journal of Neuroscience, 26(7), 2115–2123.Google Scholar
  66. Kujawa, S., & Liberman, M. (2009). Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. Journal of Neuroscience, 29(45), 14077–14085.Google Scholar
  67. Lang, H., Schulte, B., & Schmiedt, R. (2005). Ouabain induces apoptotic cell death in type I spiral ganglion neurons, but not type II neurons. Journal of the Association for Research in Otolaryngology, 6(1), 63–74.Google Scholar
  68. Lang, H., Schulte, B., Zhou, D., Smythe, N., Spicer, S., & Schmiedt, R. (2006). Nuclear factor kappaB deficiency is associated with auditory nerve degeneration and increased noise-induced hearing loss. Journal of Neuroscience, 26(13), 3541–3550.Google Scholar
  69. Lang, H., Jyothi, V., Smythe, N., Dubno, J., Schulte, B., & Schmiedt, R. (2010). Chronic reduction of endocochlear potential reduces auditory nerve activity: Further confirmation of an animal model of metabolic presbyacusis. Journal of the Association for Research in Otolaryngology, 11, 419–434.Google Scholar
  70. Lang, H., Li, M., Kilpatrick, L., Zhu, J., Samuvel, D., Krug, E., & Goddard, J. (2011). Sox2 up-regulation and glial cell proliferation following degeneration of spiral ganglion neurons in the adult mouse inner ear. Journal of the Association for Research in Otolaryngology, 12, 151–171.Google Scholar
  71. Leake, P., & Hradek, G. (1988). Cochlear pathology of long term neomycin induced deafness in cats. Hearing Research, 33(1), 11–33.Google Scholar
  72. Leake, P., Hradek, G., & Snyder, R. (1999). Chronic electrical stimulation by a cochlear implant promotes survival of spiral ganglion neurons after neonatal deafness. Journal of Comparative Neurology, 412, 543–562.Google Scholar
  73. Leake, P., Stakhovskaya, O., Hetherington, A., Rebscher, S., & Bonham, B. (2013). Effects of brain-derived neurotrophic factor (BDNF) and electrical stimulation on survival and function of cochlear spiral ganglion neurons in deafened, developing cats. Journal of the Association for Research in Otolaryngology, 14(2), 187–211.Google Scholar
  74. Lee, F., Matthews, L., Dubno, J., & Mills, J. (2005). Longitudinal study of pure-tone thresholds in older persons. Ear and Hearing, 26, 1–11.Google Scholar
  75. Liberman, L., Wang, H., & Liberman, M. (2011). Opposing gradients of ribbon size and AMPA receptor expression underlie sensitivity differences among cochlear-nerve/hair-cell synapses. Journal of Neuroscience, 31(3), 801–808.Google Scholar
  76. Liberman, M. (1978). Auditory-nerve response from cats raised in a low-noise chamber. Journal of the Acoustical Society of America, 63(2), 442–455.Google Scholar
  77. Liberman, M. (1982). Single-neuron labeling in the cat auditory nerve. Science, 216, 1239–1241.Google Scholar
  78. Liberman, M. (1993). Central projections of auditory nerve fibers of differing spontaneous rate, II: Posteroventral and dorsal cochlear nuclei. Journal of Comparative Neurology, 327(1), 17–36.Google Scholar
  79. Liberman, M., & Kiang, N. (1978). Acoustic trauma in cats. Cochlear pathology and auditory-nerve activity. Acta Oto-Laryngologica, Supplementum, 358, 1–63.Google Scholar
  80. Liberman, M., & Mulroy, M. (1982). Acute and chronic effects of acoustic trauma: Cochlear pathology and auditory nerve pathophysiology. In R. P. Hamernik, D. Henderson, & R. Salvi (Eds.), New perspectives on noise-induced hearing loss (pp. 105–151). New York: Raven Press.Google Scholar
  81. Liberman, M., & Kiang, N. (1984). Single-neuron labeling and chronic cochlear pathology. IV. Stereocilia damage and alterations in rate- and phase-level functions. Hearing Research, 16(1), 75–90.Google Scholar
  82. Liberman, M., & Oliver, M. (1984). Morphometry of intracellularly labeled neurons of the auditory nerve: Correlations with functional properties. Journal of Comparative Neurology, 223(2), 163–176.Google Scholar
  83. Liberman, M., & Simmons, D. (1985). Applications of neuronal labeling techniques to the study of the peripheral auditory system. Journal of the Acoustical Society of America, 78(1 Pt 2), 312–319.Google Scholar
  84. Lilienbaum, A., & Israël, A. (2003). From calcium to NF-kappa B signaling pathways in neurons. Molecular and Cellular Biology, 23(8), 2680–2698.Google Scholar
  85. Lim, D. (1976). Ultrastructural cochlear changes following acoustic hyperstimulation and ototoxicity. Annals of Otology, Rhinology & Laryngology, 85(6 PT. 1), 740–751.Google Scholar
  86. Lin, H., Furman, A., Kujawa, S., & Liberman, M. (2011). Primary neural degeneration in the guinea pig cochlea after reversible noise-induced threshold shift. Journal of the Association for Research in Otolaryngology, 12(5), 605–616.Google Scholar
  87. Makary, C., Shin, J., Kujawa, S., Liberman, M., & Merchant, S. (2011). Age-related primary cochlear neuronal degeneration in human temporal bones. Journal of the Association for Research in Otolaryngology,12(6), 711–717.Google Scholar
  88. Martin, L., Al-Abdulla, N., Brambrink, A., Kirsch, J., Sieber, F., & Portera-Cailliau, C. (1998). Neurodegeneration in excitotoxicity, global cerebral ischemia, and target deprivation: A perspective on the contributions of apoptosis and necrosis. Brain Research Bulletin, 46(4), 281–309.Google Scholar
  89. Masuda, Y., Futamura, M., Kamino, H., Nakamura, Y., Kitamura, N., Ohnishi, S., Miyamoto, Y., Ichikawa, H., Ohta, T., Ohki, M., Kiyono, T., Egami, H., Baba, H., & Arakawa, H. . (2006). The potential role of DFNA5, a hearing impairment gene, in p53-mediated cellular response to DNA damage. Journal of Human Genetics, 51(8), 652–664.Google Scholar
  90. Matsubara, A., Laake, J., Davanger, S., Usami, S., & Ottersen, O. (1996). Organization of AMPA receptor subunits at a glutamate synapse: A quantitative immunogold analysis of hair cell synapses in the rat organ of Corti. Journal of Neuroscience, 16(14), 4457–4467.Google Scholar
  91. McFadden, S., Ding, D., Jiang, H., & Salvi, R. (2004). Time course of efferent fiber and spiral ganglion cell degeneration following complete hair cell loss in the chinchilla. Brain Research, 997(1), 40–51.Google Scholar
  92. Mills, J., Dubno, J., & Boettcher, F. (1998). Interaction of noise-induced hearing loss and presbyacusis. Scandinavian Audiology, Supplementum, 48, 117–122.Google Scholar
  93. Mills, J., Schmiedt, R., Schulte, B., & Dubno, J. (2006). Age-related hearing loss: A loss of voltage, not hair cells. Seminars in Hearing, 27, 228–236.Google Scholar
  94. Morioka, M., Nagahiro, S., Fukunaga, K., Miyamoto, E., & Ushio, Y. (1997). Calcineurin in the adult rat hippocampus: different distribution in CA1 and CA3 subfields. Neuroscience, 78(3), 673–684.Google Scholar
  95. Morris, J., Maklad, A., Hansen, L., Feng, F., Sorensen, C., Lee, K., Macklin, W., & Fritzsch, B. (2006). A disorganized innervation of the inner ear persists in the absence of ErbB2. Brain Research, 1091(1), 186–199.Google Scholar
  96. Nadol, J., Jr. (1979). Electron microscopic findings in presbycusic degeneration of the basal turn of the human cochlea. Otolaryngology – Head and Neck Surgery, 87(6), 818–836.Google Scholar
  97. Nadol, J., Jr. (1988). Innervation densities of inner and outer hair cells of the human organ of Corti. Evidence for auditory neural degeneration in a case of Usher’s syndrome. ORL; Journal of Oto-Rhino-Laryngology and Its Related Specialties, 50(6), 363–370.Google Scholar
  98. Nadol, J., Jr. (1997). Patterns of neural degeneration in the human cochlea and auditory nerve: Implications for cochlear implantation. Otolaryngology-Head and Neck Surgery, 117(3), 220–228.Google Scholar
  99. Nadol, J., Jr., & Thornton, A. (1987). Ultrastructural findings in a case of Menière’s disease. Annals of Otology, Rhinology & Laryngology, 96(4), 449–454.Google Scholar
  100. Nayagam, B., Muniak, M., & Ryugo, D. (2011). The spiral ganglion: Connecting the peripheral and central auditory systems. Hearing Research, 278(1–2), 2–20.Google Scholar
  101. Ohlemiller, K., Echteler, S., & Siegel, J. (1991). Factors that influence rate-versus-intensity relations in single cochlear nerve fibers of the gerbil. Journal of the Acoustical Society of America, 90, 274–287.Google Scholar
  102. Otte, J., Schuknecht, H., & Kerr, A. (1978). Ganglion cell populations in normal and pathological human cochleae. Implications for cochlear implantation. The Laryngoscope, 88(8 Pt 1), 1231–1246.Google Scholar
  103. Pevny, L., & Nicolis, S. (2010). Sox2 roles in neural stem cells. The International Journal of Biochemistry & Cell Biology, 42(3), 421–424.Google Scholar
  104. Puel, J., D’Aldin, C., Safieddine, S., Eybalin, M., & Pujol, R. (1996). Excitotoxicity and plasticity of IHC-auditory nerve contributes to both temporay and permanebt threshold shift. In A. Axelsson, H. Borchgrevink, R. P. Hamernik, P. A. Hellstrom, D. Henderson, & R. J. Salvi (Eds.), Scientific basis of noise-induced hearing loss (pp. 36–42). New York: Thieme.Google Scholar
  105. Puel, J., Ruel, J., D’Aldin, C., & Pujol, R. (1998). Excitotoxicity and repair of cochlear synapses after noise-trauma induced hearing loss. NeuroReport, 9, 2109–2114.Google Scholar
  106. Pujol, R., & Puel, J. (1999). Excitotoxicity, synaptic repair, and functional recovery in the mammalian cochlea: A review of recent findings. Annals of the New York Academy of Sciences, 884, 249–254.Google Scholar
  107. Pujol, R., Rebillard, M., & Rebillard, G. (1977). Primary neural disorders in the deaf white cat cochlea. Acta Oto-Laryngologica, 83(1–2), 59–64.Google Scholar
  108. Pujol, R., Lenoir, M., Robertson, D., Eybalin, M., & Johnstone, B. (1985). Kainic acid selectively alters auditory dendrites connected with cochlear inner hair cells. Hearing Research, 18(2), 145–151.Google Scholar
  109. Ramekers, D., Versnel, H., Grolman, W., & Klis, S. (2012). Neurotrophins and their role in the cochlea. Hearing Research, 288(1–2), 19–33.Google Scholar
  110. Reid, M., Flores-Otero, J., & Davis, R. (2004). Firing patterns of type II spiral ganglion neurons in vitro. Journal of Neuroscience, 24(3), 733–742.Google Scholar
  111. Relkin, E., Doucet, J., & Sterns, A. (1995). Recovery of the compound action potential following prior stimulation: Evidence for a slow component that reflects recovery of low spontaneous-rate auditory neurons. Hearing Research, 83(1–2), 183–189.Google Scholar
  112. Robertson, D. (1983). Functional significance of dendritic swelling after loud sounds in the guinea pig cochlea. Hearing Research, 9(3), 263–278.Google Scholar
  113. Robles, L., & Ruggero, M. (2001). Mechanics of the mammalian cochlea. Physiological Reviews, 81(3), 1305–1352.Google Scholar
  114. Roehm, P., & Hansen, M. (2005). Strategies to preserve or regenerate spiral ganglion neurons. Current Opinion in Otolaryngology & Head and Neck Surgery, 13(5), 294–300.Google Scholar
  115. Rolls, A., Shechter, R., & Schwartz, M. (2009). The bright side of the glial scar in CNS repair. Nature Reviews Neuroscience, 10(3), 235–241.Google Scholar
  116. Roux, I., Safieddine, S., Nouvian, R., Grati, M., Simmler, M., Bahloul, A., Perfettini, I., Le Gall, M., Rostaing, P., Hamard, G., Triller, A., Avan, P., Moser, T., & Petit, C. (2006). Otoferlin, defective in a human deafness form, is essential for exocytosis at the auditory ribbon synapse. Cell, 127(2), 277–289.Google Scholar
  117. Ruan, Q., Ao, H., He, J., Chen, Z., Yu, Z., Zhang, R., Wang, J., & Yin, S. (2014). Topographic and quantitative evaluation of gentamicin-induced damage to peripheral innervation of mouse cochleae. Neurotoxicology, 40, 86–96.Google Scholar
  118. Ruel, J., Emery, S., Nouvian, R., Bersot, T., Amilhon, B., Van Rybroek, J., Rebillard, G., Lenoir, M., Eybalin, M., Delprat, B., Sivakumaran, T., Giros, B., El Mestikawy, S., Moser, T.,Smith, R., Lesperance, M., & Puel, J. (2008). Impairment of SLC17A8 encoding vesicular glutamate transporter-3, VGLUT3, underlies nonsyndromic deafness DFNA25 and inner hair cell dysfunction in null mice. The American Journal of Human Genetics, 83(2), 278–292.Google Scholar
  119. Ryugo, D. (2008). Projections of low spontaneous rate, high threshold auditory nerve fibers to the small cell cap of the cochlear nucleus in cats. Neuroscience, 154(1), 114–126.Google Scholar
  120. Salvi, R., Ahroon, W., Perry, J., Gunnarson, A., & Henderson, D. (1982). Comparison of psychophysical and evoked-potential tuning curves in the chinchilla. American Journal of Otolaryngology, 3(6), 408–416.Google Scholar
  121. Santarelli, R. (2010). Information from cochlear potentials and genetic mutations helps localize the lesion site in auditory neuropathy. Genome Medicine, 2(12), 91.Google Scholar
  122. Schalk, T., & Sachs, M. (1980). Nonlinearities in auditory-nerve fiber responses to bandlimited noise. Journal of the Acoustical Society of America, 67(3), 903–913.Google Scholar
  123. Schmiedt, R. (1989). Spontaneous rates, thresholds and tuning of auditory-nerve fibers in the gerbil: Comparisons to cat data. Hearing Research, 42(1), 23–35.Google Scholar
  124. Schmiedt, R. (2010). The physiology of cochlear presbyacusis. In S. Gordon-Salant, R. D. Frisina, A. N. Popper, & R. R. Fay (Eds.), The aging auditory system: Perceptual characterization and neural bases of presbyacusis. New York: Springer Science+Business Media.Google Scholar
  125. Schmiedt, R., & Zwislocki, J. (1980). Effects of hair cell lesions on responses of cochlear nerve fibers. II. Single- and two-tone intensity functions in relation to tuning curves. Journal of Neurophysiology, 43(5), 1390–1405.Google Scholar
  126. Schmiedt, R., Mills, J., & Boettcher, F. (1996). Age-related loss of activity of auditory-nerve fibers. Journal of Neurophysiology, 76(4), 2799–2803.Google Scholar
  127. Schmiedt, R., Okamura, H., Lang, H., & Schulte, B. (2002). Ouabain application to the round window of the gerbil cochlea: A model of auditory neuropathy and apoptosis. Journal of the Association for Research in Otolaryngology, 3(3), 223–233.Google Scholar
  128. Schoen, C., Emery, S., Thorne, M., Ammana, H., Sliwerska, E., Arnett, J., Hortsch, M., Hannan, F., Burmeister, M., & Lesperance, M. (2010). Increased activity of Diaphanous homolog 3 (DIAPH3)/diaphanous causes hearing defects in humans with auditory neuropathy and in Drosophila. Proceedings of the National Academy of Sciences, of the USA, 107(30), 13396–13401.Google Scholar
  129. Schuknecht, H., & Woellner, R. (1955). An experimental and clinical study of deafness from lesions of the cochlear nerve. The Journal of Laryngology & Otology, 69(2), 75–97.Google Scholar
  130. Schuknecht, H., & Donovan, E. (1986). The pathology of idiopathic sudden sensorineural hearing loss. Archives of Otolaryngology, 243(1), 1–15.Google Scholar
  131. Schuknecht, H., & Gacek, M. (1993). Cochlear pathology in presbycusis. Annals of Otology, Rhinology, and Laryngology, 102(1 Pt 2), 1–16.Google Scholar
  132. Schulte, B., & Schmiedt, R. (1992). Lateral wall Na,K-ATPase and endocochlear potentials decline with age in quiet-reared gerbils. Hearing Research, 61(1–2), 35–46.Google Scholar
  133. Seal, R., Akil, O., Yi, E., Weber, C., Grant, L., Yoo, J., Clause, A., Kandler, K., Noebels, J., Glowatzki, E., Lustig, L., & Edwards, R. (2008). Sensorineural deafness and seizures in mice lacking vesicular glutamate transporter 3. Neuron, 57(2), 263–275.Google Scholar
  134. Sekiya, T., Hatayama, T., Shimamura, N., & Suzuki, S. (2000). An in vivo quantifiable model of cochlear neuronal degeneration induced by central process injury. Experimental Neurology, 161(2), 490–502.Google Scholar
  135. Sekiya, T., Yagihashi, A., Shimamura, N., Asano, K., Suzuki, S., Matsubara, A., Namba, A., & Shinkawa, H. (2003). Apoptosis of auditory neurons following central process injury. Experimental Neurology, 184(2), 648–658.Google Scholar
  136. Sergeyenko, Y., Lall, K., Liberman, M., & Kujawa, S. (2013). Age-related cochlear synaptopathy: An early-onset contributor to auditory functional decline. Journal of Neuroscience, 33(34), 13686–13694.Google Scholar
  137. Sewell, W. (1984). The relation between the endocochlear potential and spontaneous activity in auditory nerve fibres of the cat. The Journal of Physiology, 347, 685–696.Google Scholar
  138. Slepecky, N. (1996). The cochlea. In P. Dallos, A. N. Popper, & R. R. Fay (Eds.). Structure of the mammalian cochlea. New York: Springer-Verlag.Google Scholar
  139. Sone, M., Schachern, P., & Paparella, M. (1998). Loss of spiral ganglion cells as primary manifestation of aminoglycoside ototoxicity. Hearing Research, 115(1–2), 217–223.Google Scholar
  140. Spoendlin, H. (1971). Primary structural changes in the organ of Corti after acoustic overstimulation. Acta Oto-Laryngologica, 71, 166–176.Google Scholar
  141. Spoendlin, H. (1974). Optic cochleovestibular degenerations in hereditary ataxias. II. Temporal bone pathology in two cases of Friedreich’s ataxia with vestibulo-cochlear disorders. Brain, 97(1), 41–48.Google Scholar
  142. Spoendlin, H. (1975). Retrograde degeneration of the cochlear nerve. Acta Oto-Laryngologica, 79, 266–275.Google Scholar
  143. Spoendlin, H. (1984). Factors inducing retrograde degeneration of the cochlear nerve. Annals of Otology, Rhinology, and Laryngology Supplement, 112, 76–82.Google Scholar
  144. Spoendlin, H., & Suter, R. (1976). Regeneration in the VIII nerve. Acta Oto-Laryngologica, 81(3–4), 228–236.Google Scholar
  145. Stankovic, K., Rio, C., Xia, A., Sugawara, M., Adams, J., Liberman, M., & Corfas, G. (2004). Survival of adult spiral ganglion neurons requires erbB receptor signaling in the inner ear. Journal of Neuroscience, 24(40), 8651–8661.Google Scholar
  146. Sugawara, M., Corfas, G., & Liberman, M. (2005). Influence of supporting cells on neuronal degeneration after hair cell loss. Journal of the Association for Research in Otolaryngology, 6(2), 136–147.Google Scholar
  147. Sugawara, M., Murtie, J., Stankovic, K., Liberman, M., & Corfas, G. (2007). Dynamic patterns of neurotrophin 3 expression in the postnatal mouse inner ear. Journal of Comparative Neurology, 501(1), 30–37.Google Scholar
  148. Suh, H., Consiglio, A., Ray, J., Sawai, T., D’Amour, K., & Gage, F. (2007). In vivo fate analysis reveals the multipotent and self-renewal capacities of Sox2+ neural stem cells in the adult hippocampus. Cell Stem Cell, 1(5), 515–528.Google Scholar
  149. Suryadevara, A., Schulte, B., Schmiedt, R., & Slepecky, N. (2001). Auditory nerve fibers in young and quiet-aged gerbils: Morphometric correlations with endocochlear potential. Hearing Research, 161(1–2), 45–53.Google Scholar
  150. Taberner, A., & Liberman, M. (2005). Response properties of single auditory nerve fibers in the mouse. Journal of Neurophysiology, 93(1), 557–569.Google Scholar
  151. Wang, S., Furusho, M., D’Sa, C., Kuwada, S., Conti, L., Morest, D., & Bansal, R. (2009). Inactivation of fibroblast growth factor receptor signaling in myelinating glial cells results in significant loss of adult spiral ganglion neurons accompanied by age-related hearing impairment. Journal of Neuroscience Research, 87(15), 3428–3437.Google Scholar
  152. Webster, D., & Webster, M. (1978). Cochlear nerve projections following organ of Corti destruction. Otolaryngology, 86(2), 342–353.Google Scholar
  153. Webster, M., & Webster, D. (1981). Spiral ganglion neuron loss following organ of Corti loss: A quantitative study. Brain Research, 212, 17–30.Google Scholar
  154. Weisz, C., Glowatzki, E., & Fuchs, P. (2009). The postsynaptic function of type II cochlear afferents. Nature, 461(7267), 1126–1129.Google Scholar
  155. Weisz C., Glowatzki, E., Fuchs, P. (2014). Excitability of type II cochlear afferents. Journal of Neuroscience 34(6), 2365–2373.Google Scholar
  156. White, J., Burgess, B., Hall, R., & Nadol, J. (2000). Pattern of degeneration of the spiral ganglion cell and its processes in the C57BL/6J mouse. Hearing Research, 141(1–2), 12–18.Google Scholar
  157. Whitlon, D., Tieu, D., Grover, M., Reilly, B., & Coulson, M. (2009). Spontaneous association of glial cells with regrowing neurites in mixed cultures of dissociated spiral ganglia. Journal of Neuroscience, 161(1), 227–235.Google Scholar
  158. Winter, I., Robertson, D., & Yates, G. (1990). Diversity of characteristic frequency rate-intensity functions in guinea pig auditory nerve fibres. Hearing Research, 45(3), 191–202.Google Scholar
  159. Yasunaga, S., Grati, M., Cohen-Salmon, M., El-Amraoui, A., Mustapha, M., Salem, N., El-Zir, E., Loiselet, J., & Petit, C. (1999). A mutation in OTOF, encoding otoferlin, a FER-1–like protein, causes DFNB9, a nonsyndromic form of deafness. Nature Genetics, 21(4), 363–369.Google Scholar
  160. Ye, Y., Machado, D., & Kim, D. (2000). Projection of the marginal shell of the anteroventral cochlear nucleus to olivocochlear neurons in the cat. Journal of Comparative Neurology, 420(1), 127–138.Google Scholar
  161. Young, E., & Barta, P. (1986). Rate responses of auditory nerve fibers to tones in noise near masked threshold. Journal of the Acoustical Society of America, 79(2), 426–442.Google Scholar
  162. Yuan, Y., Shi, F., Yin, Y., Tong, M., Lang, H., Polley, D., Liberman, M., & Edge, A. (2014). Ouabain-induced cochlear nerve degeneration: Synaptic loss and plasticity in a mouse model of auditory neuropathy. Journal of the Association for Research in Otolaryngology, 15(1), 31–43.Google Scholar
  163. Zeng, F., Turner, C., Relkin, E. (1991). Recovery from prior stimulation. II: Effects upon intensity discrimination. Hearing Research, 55(2), 223–230.Google Scholar
  164. Zheng, X., Henderson, D., Hu, B., & McFadden, S. (1997). Recovery of structure and function of inner ear afferent synapses following kainic acid excitotoxicity. Hearing Research, 105, 65–76.Google Scholar
  165. Zimmerman, C., Burgess, B., & Nadol, J. (1995). Patterns of degeneration in the human cochlear nerve. Hearing Research, 90(1–2), 192–201.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Pathology and Laboratory MedicineMedical University of South CarolinaCharlestonUSA

Personalised recommendations