Advertisement

The Spiral Ganglion in an Out-of-Body Experience: A Brief History of in Vitro Studies of the Spiral Ganglion

Chapter
  • 1.1k Downloads
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 52)

Abstract

Honor Fell first succeeded in culture of the cochlea in 1928. Throughout most of the time since then, the principal use of cochlear or spiral ganglion cultures has been to facilitate the study of cochlear development: cell differentiation, structural and physiological maturation, and innervation of the sensory cells. More recently, use of spiral ganglion cultures has been extended to additional issues. One of these is neuronal survival in response to neurotrophic factors and electrical activity. The goal of such studies is to prevent degeneration or death of spiral ganglion neurons (SGNs) in the hearing impaired and so improve efficacy of cochlear implants. A second topic is degeneration or death of SGNs following direct trauma, particularly noise-induced excitotoxic trauma. The goal of these studies is to identify means of protecting the SGNs and their synapses on hair cells following trauma and to promote regeneration. The success of these studies has been due to clever exploitation of several technical innovations. Culture conditions have been improved by the use of serum and specialized culture media and the use of more physiological substrate materials. Electrophysiological methods have been applied. Microscopy has advanced from conventional optical methods to the use of electron, conventional fluorescence, and confocal microscopy, greatly improving observations of fixed or live cochlear cultures. Highly specialized substrates have allowed study of SGN axon guidance by chemical or physical cues. There is a greatly expanded repertoire of small molecule pharmacological agents, peptide growth and trophic factors targeting surface molecules and receptors, and cell membrane-permeable reagents for modulating intracellular signaling and regulation. Further expanding the range of experimental manipulations has been the introduction of molecular and genetic techniques, including gene transfer by transfection or viral transduction and culture of cells or organs from transgenic mice. Here we provide a historical overview of the study of the spiral ganglion in vitro noting key experiments exemplifying the application of increasingly sophisticated experimental and observational techniques to the research goals. We hope that readers will obtain, from this overview, ideas for experimental approaches applicable to their own research questions.

Keywords

Axon Axon guidance Cell culture Chemotropic factor Cochlea Extracellular matrix Hair cell Historical review Neurite Neurotrophic factor Organotypic culture Spiral ganglion neuron Synapse Tissue culture 

References

  1. Adamson, C. L., Reid, M. A., & Davis, R. L. (2002a). Opposite actions of brain-derived neurotrophic factor and neurotrophin-3 on firing features and ion channel composition of murine spiral ganglion neurons. The Journal of Neuroscience, 22(4), 1385–1396.Google Scholar
  2. Adamson, C. L., Reid, M. A., Mo, Z. L., Bowne-English, J., & Davis, R. L. (2002b). Firing features and potassium channel content of murine spiral ganglion neurons vary with cochlear location. Journal of Comparative Neurology, 447(4), 331–350.Google Scholar
  3. Aletsee, C., Brors, D., Palacios, S., Pak, K., Mullen, L., Dazert, S., & Ryan, A. F. (2002). The effects of laminin-1 on spiral ganglion neurons are dependent on the MEK/ERK signaling pathway and are partially independent of Ras. Hearing Research, 164(1–2), 1–11.Google Scholar
  4. Aletsee, C., Brors, D., Mlynski, R., Ryan, A. F., & Dazert, S. (2003). Branching of spiral ganglion neurites is induced by focal application of fibroblast growth factor-1. Laryngoscope, 113(5), 791–796.Google Scholar
  5. Anderson, M., Bostrom, M., Pfaller, K., Glueckert, R., Schrott-Fischer, A., Gerdin, B., & Rask-Andersen, H. (2006). Structure and locomotion of adult in vitro regenerated spiral ganglion growth cones – a study using video microscopy and SEM. Hearing Research, 215(1–2), 97–107.Google Scholar
  6. Anniko, M., & Van de Water, T. R. (1986). Synaptogenesis in co-cultured inner ear explants which share a single statoacoustic ganglion. Acta Oto-Laryngologica, 102(5–6), 415–422.Google Scholar
  7. Appler, J. M., Lu, C. C., Druckenbrod, N. R., Yu, W. M., Koundakjian, E. J., & Goodrich, L. V. (2013). Gata3 is a critical regulator of cochlear wiring. The Journal of Neuroscience, 33(8), 3679–3691.Google Scholar
  8. Ard, M. D., Morest, D. K., & Hauger, S. H. (1985). Trophic interactions between the cochleovestibular ganglion of the chick embryo and its synaptic targets in culture. Neuroscience, 16(1), 151–170.Google Scholar
  9. Atkinson, P. J., Cho, C. H., Hansen, M. R., & Green, S. H. (2011). Activity of all JNK isoforms contributes to neurite growth in spiral ganglion neurons. Hearing Research, 278(1–2), 77–85.Google Scholar
  10. Atkinson, P. J., Wise, A. K., Flynn, B. O., Nayagam, B. A., Hume, C. R., O’Leary, S. J., Shepherd, R. K., & Richardson, R. T. (2012). Neurotrophin gene therapy for sustained neural preservation after deafness. PLoS One, 7(12), e52338.Google Scholar
  11. Avila, M. A., Varela-Nieto, I., Romero, G., Mato, J. M., Giraldez, F., Van De Water, T. R., & Represa, J. (1993). Brain-derived neurotrophic factor and neurotrophin-3 support the survival and neuritogenesis response of developing cochleovestibular ganglion cells. Developmental Biology, 159, 266–275.Google Scholar
  12. Bank, L. M., Bianchi, L. M., Ebisu, F., Lerman-Sinkoff, D., Smiley, E. C., Shen, Y. C., Ramamurthy, P., Thompson, D. L., Roth, T. M., Beck, C. R., Flynn, M., Teller, R. S., Feng, L., Llewellyn, G. N., Holmes, B., Sharples, C., Coutinho-Budd, J., Linn, S. A., Chervenak, A. P., Dolan, D. F., Benson, J., Kanicki, A., Martin, C. A., Altschuler, R., Koch, A. E., Jewett, E. M., Germiller, J. A., & Barald, K. F. (2012). Macrophage migration inhibitory factor acts as a neurotrophin in the developing inner ear. Development, 139(24), 4666–4674.Google Scholar
  13. Barclay, M., Ryan, A. F., & Housley, G. D. (2011). Type I vs type II spiral ganglion neurons exhibit differential survival and neuritogenesis during cochlear development. Neural Development, 6(1), 33.Google Scholar
  14. Barde, Y. A., Edgar, D., & Thoenen, H. (1983). New neurotrophic factors. Annual Review of Physiology, 45, 601–612.Google Scholar
  15. Bianchi, L. M., & Cohan, C. S. (1991). Developmental regulation of a neurite-promoting factor influencing statoacoustic neurons. Developmental Brain Research, 64(1–2), 167–174.Google Scholar
  16. Bianchi, L. M., & Cohan, C. S. (1993). Effects of the neurotrophins and CNTF on developing statoacoustic neurons: Comparison with an otocyst-derived factor. Developmental Biology, 159, 353–365.Google Scholar
  17. Bianchi, L. M., & Gray, N. A. (2002). EphB receptors influence growth of ephrin-B1-positive statoacoustic nerve fibers. European Journal of Neuroscience, 16(8), 1499–1506.Google Scholar
  18. Bok, J., Zha, X. M., Cho, Y. S., & Green, S. H. (2003). An extranuclear locus of cAMP-dependent protein kinase action is necessary and sufficient for promotion of spiral ganglion neuronal survival by cAMP. The Journal of Neuroscience, 23, 777–787.Google Scholar
  19. Bok, J., Huang, J., Wang, Q., & Green, S. H. (2007). CaMKII and CaMKIV mediate divergent prosurvival signaling pathways in response to depolarization in neurons. Molecular and Cellular Neuroscience, 36(1), 13–26.Google Scholar
  20. Bostrom, M., Khalifa, S., Bostrom, H., Liu, W., Friberg, U., & Rask-Andersen, H. (2010). Effects of neurotrophic factors on growth and glial cell alignment of cultured adult spiral ganglion cells. Audiology and Neurotology, 15(3), 175–186.Google Scholar
  21. Brand, Y., Sung, M., Chavez, E., Wei, E., Pak, K. K., Housley, G. D., Bodmer, D., & Ryan, A. F. (2013). Neural cell adhesion molecule L1 modulates type I but not type II inner ear spiral ganglion neurite outgrowth in an in vitro alternate choice assay. Journal of Molecular Neuroscience, 51(3), 663–670.Google Scholar
  22. Brors, D., Bodmer, D., Pak, K., Aletsee, C., Schafers, M., Dazert, S., & Ryan, A. F. (2003). EphA4 provides repulsive signals to developing cochlear ganglion neurites mediated through ephrin-B2 and -B3. Journal of Comparative Neurology, 462(1), 90–100.Google Scholar
  23. Brugeaud, A., Tong, M., Luo, L., & Edge, A. S. (2014). Inhibition of repulsive guidance molecule, RGMa, increases afferent synapse formation with auditory hair cells. Developmental Neurobiology, 74(4), 457–466.Google Scholar
  24. Chen, W., Jongkamonwiwat, N., Abbas, L., Eshtan, S. J., Johnson, S. L., Kuhn, S., Milo, M., Thurlow, J. K., Andrews, P. W., Marcotti, W., Moore, H. D., & Rivolta, M. N. (2012). Restoration of auditory evoked responses by human ES-cell-derived otic progenitors. Nature, 490(7419), 278–282.Google Scholar
  25. Clarke, J. C., Tuft, B. W., Clinger, J. D., Levine, R., Figueroa, L. S., Allan Guymon, C., & Hansen, M. R. (2011). Micropatterned methacrylate polymers direct spiral ganglion neurite and Schwann cell growth. Hearing Research, 278(1–2), 96–105.Google Scholar
  26. Coate, T. M., & Kelley, M. W. (2013). Making connections in the inner ear: Recent insights into the development of spiral ganglion neurons and their connectivity with sensory hair cells. Seminars in Cell and Developmental Biology, 24(5), 460–469.Google Scholar
  27. Coate, T. M., Raft, S., Zhao, X., Ryan, A. K., Crenshaw, E. B., 3rd, & Kelley, M. W. (2012). Otic mesenchyme cells regulate spiral ganglion axon fasciculation through a Pou3f4/EphA4 signaling pathway. Neuron, 73(1), 49–63.Google Scholar
  28. Cramer, K. S. (2005). Eph proteins and the assembly of auditory circuits. Hearing Research, 206(1–2), 42–51.Google Scholar
  29. Davis, R. L., & Liu, Q. (2011). Complex primary afferents: What the distribution of electrophysiologically-relevant phenotypes within the spiral ganglion tells us about peripheral neural coding. Hearing Research, 276(1–2), 34–43.Google Scholar
  30. Dazert, S., Kim, D., Luo, L., Aletsee, C., Garfunkel, S., Maciag, T., Baird, A., & Ryan, A. F. (1998). Focal delivery of fibroblast growth factor-1 by transfected cells induces spiral ganglion neurite targeting in vitro. Journal of Cellular Physiology, 177(1), 123–129.Google Scholar
  31. Druckenbrod, N. R., & Goodrich, L. V. (2014). Timelapse imaging of live intact cochlea reveal SGNs undergo region-specific growth patterns and dynamic branching near synaptic targets during development. Paper presented at the Abstracts of Midwinter Meeting of the Association for Research in Otolaryngology, San Diego, CA.Google Scholar
  32. Evans, A. R., Euteneuer, S., Chavez, E., Mullen, L. M., Hui, E. E., Bhatia, S. N., & Ryan, A. F. (2007). Laminin and fibronectin modulate inner ear spiral ganglion neurite outgrowth in an in vitro alternate choice assay. Developmental Neurobiology, 67(13), 1721–1730.Google Scholar
  33. Fantetti, K. N., & Fekete, D. M. (2011). Dissection and culture of chick statoacoustic ganglion and spinal cord explants in collagen gels for neurite outgrowth assays. Journal of Visualized Experiments, doi:  10.3791/3600.
  34. Fayad, J. N., & Linthicum, F. H., Jr. (2006). Multichannel cochlear implants: Relation of histopathology to performance. Laryngoscope, 116(8), 1310–1320.Google Scholar
  35. Fekete, D. M., & Campero, A. M. (2007). Axon guidance in the inner ear. The International Journal of Developmental Biology, 51(6–7), 549–556.Google Scholar
  36. Fell, H. B. (1928). The development in vitro of the isolated otocyst of the embryonic fowl. Archiv fur experimentelle Zellforschung, 7, 69–81.Google Scholar
  37. Flores-Otero, J., Xue, H. Z., & Davis, R. L. (2007). Reciprocal regulation of presynaptic and postsynaptic proteins in bipolar spiral ganglion neurons by neurotrophins. The Journal of Neuroscience, 27(51), 14023–14034.Google Scholar
  38. Friedmann, I. (1956). In vitro culture of the isolated otocyst of the embryonic fowl. Annals of Otology, Rhinology, and Laryngology, 65(1), 98–107.Google Scholar
  39. Friedmann, I. (1959). Electron microscope observations on in vitro cultures of the isolated fowl embryo otocyst. The Journal of Biophysical and Biochemical Cytology, 5(2), 263–268.Google Scholar
  40. Friedmann, I. (1968). The chick embryo otocyst in tissue culture: a model ear. The Journal of Laryngology and Otology, 82(3), 185–201.Google Scholar
  41. Friedmann, I. (1969). The innervation of the developing fowl embryo otocyst in vivo and in vitro. Acta Oto-Laryngologica, 67(2), 224–238.Google Scholar
  42. Friedmann, I., & Bird, E. S. (1967). Electron microscopic studies of the isolated fowl embryo otocyst in tissue culture. Rudimentary kinocilia, cup-shaped nerve endings and synaptic bars. Journal of Ultrastructure Research, 20(5), 356–365.Google Scholar
  43. Fukui, H., Wong, H. T., Beyer, L. A., Case, B. G., Swiderski, D. L., Di Polo, A., Ryan, A. F., & Raphael, Y. (2012). BDNF gene therapy induces auditory nerve survival and fiber sprouting in deaf Pou4f3 mutant mice. Scientific Reports, 2, 838.Google Scholar
  44. Garcia-Diaz, J. F. (1999). Development of a fast transient potassium current in chick cochlear ganglion neurons. Hearing Research, 135(1–2), 124–134.Google Scholar
  45. Green, S. H., Altschuler, R. A., & Miller, J. M. (2008). Cell death and cochlear protection. In J. Schacht, A. N. Popper, & R. R. Fay (Eds.), Auditory trauma, protection and repair. New York: Springer Science + Business Media.Google Scholar
  46. Green, S. H., Bailey, E., Wang, Q., & Davis, R. L. (2012). The Trk A, B, C’s of neurotrophins in the cochlea. The Anatomical Record (Hoboken), 295(11), 877–895.Google Scholar
  47. Hakuba, N., Koga, K., Gyo, K., Usami, S. I., & Tanaka, K. (2000). Exacerbation of noise-induced hearing loss in mice lacking the glutamate transporter GLAST. The Journal of Neuroscience, 20(23), 8750–8753.Google Scholar
  48. Hansen, M. R., Zha, X.-M., Bok, J., & Green, S. H. (2001a). Multiple distinct signal pathways, including an autocrine neurotrophic mechanism, contribute to the survival-promoting effect of depolarization on spiral ganglion neurons. The Journal of Neuroscience, 21(7), 2256–2267.Google Scholar
  49. Hansen, M. R., Vijapurkar, U., Koland, J. G., & Green, S. H. (2001b). Reciprocal signaling between spiral ganglion neurons and Schwann cells involves neuregulin and neurotrophins. Hearing Research, 161(1–2), 87–98.Google Scholar
  50. Hansen, M. R., Devaiah, A. K., Bok, J., Zha, X., & Green, S. H. (2003). Ca2+/calmodulin-dependent protein kinases II and IV both promote survival but differ in their effects on axon growth in spiral ganglion neurons. The Journal of Neuroscience Research, 72(2), 169–184.Google Scholar
  51. Hansen, M. R., Roehm, P., Xu, N., & Green, S. H. (2007). Overexpression of Bcl-2 or Bcl-xL prevents spiral ganglion neuron death and inhibits neurite growth. Journal of Neurobiology, 67(3), 316-25.Google Scholar
  52. Harada, N., Han, D. Y., Komeda, M., & Yamashita, T. (1994). Glutamate-induced intracellular Ca2+ elevation in isolated spiral ganglion cells of the guinea pig cochlea. Acta Oto-Laryngolica, 114(6), 609–612.Google Scholar
  53. Hegarty, J. L., Kay, A. R., & Green, S. H. (1997). Trophic support of cultured spiral ganglion neurons by depolarization exceeds and is additive with that by neurotrophins or cyclic AMP, and requires elevation of [Ca2+]i within a set range. The Journal of Neuroscience, 17(6), 1959–1970.Google Scholar
  54. Herlenius, E., Thonabulsombat, C., Forsberg, D., Jaderstad, J., Jaderstad, L. M., Bjork, L., & Olivius, P. (2012). Functional stem cell integration assessed by organotypic slice cultures. Current Protocols in Stem Cell Biology, doi:  10.1002/9780470151808.sc02d13s23.
  55. Ito, K., & Dulon, D. (2002). Nonselective cation conductance activated by muscarinic and purinergic receptors in rat spiral ganglion neurons. American Journal of PhysiologyCell Physiology, 282(5), C1121–1135.Google Scholar
  56. Jeon, E. J., Xu, N., Xu, L., & Hansen, M. R. (2011). Influence of central glia on spiral ganglion neuron neurite growth. [Research Support, N.I.H., Extramural]. Neuroscience, 177, 321–334.Google Scholar
  57. Jimenez, C., & Nunez, L. (1996). Glutamate receptors in the developing cochlear ganglion. The International Journal of Developmental Biology, Supplement 1, 159S–160S.Google Scholar
  58. Jimenez, C., Gireldez, F., Represa, J., & Garcia-Diaz, J. F. (1997). Calcium currents in dissociated cochlear neurons from the chick embryo and their modification by neurotrophin-3. Neuroscience, 77(3), 673–682.Google Scholar
  59. Jin, Y., Kondo, K., Ushio, M., Kaga, K., Ryan, A. F., & Yamasoba, T. (2013). Developmental changes in the responsiveness of rat spiral ganglion neurons to neurotrophic factors in dissociated culture: Differential responses for survival, neuritogenesis and neuronal morphology. Cell Tissue Research, 351(1), 15–27.Google Scholar
  60. Kaiser, A., Kale, A., Novozhilova, E., Siratirakun, P., Aquino, J. B., Thonabulsombat, C., Ernfors, P., & Olivius, P. (2014). Brain stem slice conditioned medium contains endogenous BDNF and GDNF that affect neural crest boundary cap cells in co-culture. Brain Research, 1566, 12–23.Google Scholar
  61. Kang, S. Y., Colesa, D. J., Swiderski, D. L., Su, G. L., Raphael, Y., & Pfingst, B. E. (2010). Effects of hearing preservation on psychophysical responses to cochlear implant stimulation. Journal of the Association for Research in Otolaryngology, 11(2), 245–265.Google Scholar
  62. Kennedy, H. J. (2012). New developments in understanding the mechanisms and function of spontaneous electrical activity in the developing mammalian auditory system. Journal of the Association for Research in Otolaryngology, 32(31), 437-45.Google Scholar
  63. Kesser, B. W., & Lalwani, A. K. (2009). Gene therapy and stem cell transplantation: Strategies for hearing restoration. Advances in Oto-Rhino-laryngology, 66, 64–86.Google Scholar
  64. Khan, A. M., Handzel, O., Burgess, B. J., Damian, D., Eddington, D. K., & Nadol, J. B., Jr. (2005). Is word recognition correlated with the number of surviving spiral ganglion cells and electrode insertion depth in human subjects with cochlear implants? Laryngoscope, 115(4), 672–677.Google Scholar
  65. Kujawa, S. G., & Liberman, M. C. (2006). Acceleration of age-related hearing loss by early noise exposure: Evidence of a misspent youth. The Journal of Neuroscience, 26(7), 2115–2123.Google Scholar
  66. Kujawa, S. G., & Liberman, M. C. (2009). Adding insult to injury: Cochlear nerve degeneration after “temporary” noise-induced hearing loss. The Journal of Neuroscience, 29(45), 14077–14085.Google Scholar
  67. Lawrence, M., & Merchant, D. J. (1953). Tissue culture techniques for the study of the isolated otic vesicle. Annals of Otology, Rhinology, and Laryngology, 62(3), 770–785.Google Scholar
  68. Leake, P. A., Hradek, G. T., Vollmer, M., & Rebscher, S. J. (2007). Neurotrophic effects of GM1 ganglioside and electrical stimulation on cochlear spiral ganglion neurons in cats deafened as neonates. Journal of Comparative Neurology, 501(6), 837–853.Google Scholar
  69. Leake, P. A., Stakhovskaya, O., Hetherington, A., Rebscher, S. J., & Bonham, B. (2013). Effects of brain-derived neurotrophic factor (BDNF) and electrical stimulation on survival and function of cochlear spiral ganglion neurons in deafened, developing cats. Journal of the Association for Research in Otolaryngology, 14(2), 187–211.Google Scholar
  70. Lee, K. H., & Warchol, M. E. (2008). Promotion of neurite outgrowth and axon guidance in spiral ganglion cells by netrin-1. Archives of Otolaryngology Head and Neck Surgery, 134(2), 146–151.Google Scholar
  71. Lefebvre, P. P., Leprince, P., Weber, T., Rigo, J. M., Delree, P., & Moonen, G. (1990). Neuronotrophic effect of developing otic vesicle on cochleo-vestibular neurons: Evidence for nerve growth factor involvement. Brain Research, 507(2), 254–260.Google Scholar
  72. Lefebvre, P. P., Van de Water, T. R., Weber, T., Rogister, B., & Moonen, G. (1991). Growth factor interactions in cultures of dissociated adult acoustic ganglia: Neuronotrophic effects. Brain Research, 567, 306–312.Google Scholar
  73. Li, S., Li, H., & Wang, Z. (2010). Orientation of spiral ganglion neurite extension in electrical fields of charge-balanced biphasic pulses and direct current in vitro. Hearing Research, 267(1–2), 111–118.Google Scholar
  74. Lie, M., Grover, M., & Whitlon, D. S. (2010). Accelerated neurite growth from spiral ganglion neurons exposed to the Rho kinase inhibitor H-1152. Neuroscience, 169(2), 855–862.Google Scholar
  75. Lin, H. W., Furman, A. C., Kujawa, S. G., & Liberman, M. C. (2011). Primary neural degeneration in the guinea pig cochlea after reversible noise-induced threshold shift. Journal of the Association for Research in Otolaryngology, 12(5), 605–616.Google Scholar
  76. Lin, X., & Chen, S. (2000). Endogenously generated spontaneous spiking activities recorded from postnatal spiral ganglion neurons in vitro. Brain Research. Developmental Brain Research, 119(2), 297–305.Google Scholar
  77. Lopez, I. A., Zhao, P. M., Yamaguchi, M., de Vellis, J., & Espinosa-Jeffrey, A. (2004). Stem/progenitor cells in the postnatal inner ear of the GFP-nestin transgenic mouse. International Journal of Developmental Neuroscience, 22(4), 205–213.Google Scholar
  78. Lv, P., Wei, D., & Yamoah, E. N. (2010). Kv7–type channel currents in spiral ganglion neurons: involvement in sensorineural hearing loss. The Journal of Biological Chemistry, 285(45), 34699–34707.Google Scholar
  79. Lv, P., Sihn, C. R., Wang, W., Shen, H., Kim, H. J., Rocha-Sanchez, S. M., & Yamoah, E. N. (2012). Posthearing Ca2+ currents and their roles in shaping the different modes of firing of spiral ganglion neurons. The Journal of Neuroscience, 32(46), 16314–16330.Google Scholar
  80. Makary, C. A., Shin, J., Kujawa, S. G., Liberman, M. C., & Merchant, S. N. (2011). Age-related primary cochlear neuronal degeneration in human temporal bones. Journal of the Association for Research in Otolaryngology, 12(7), 711–717.Google Scholar
  81. Malgrange, B., Lefebvre, P., Van de Water, T. R., Staecker, H., & Moonen, G. (1996). Effects of neurotrophins on early auditory neurones in cell culture. Neuroreport, 7(0959–4965), 913–917.Google Scholar
  82. Mao, Z., Zhao, L., Pu, L., Wang, M., Zhang, Q., & He, D. Z. (2013). How well can centenarians hear? PLoS One, 8(6), e65565.Google Scholar
  83. Martinez-Monedero, R., Corrales, C. E., Cuajungco, M. P., Heller, S., & Edge, A. S. (2006). Reinnervation of hair cells by auditory neurons after selective removal of spiral ganglion neurons. Journal of Neurobiology, 66(4), 319–331.Google Scholar
  84. Marzella, P. L., Clark, G. M., Shepherd, R. K., Bartlett, P. F., & Kilpatrick, T. J. (1997). LIF potentiates the NT-3-mediated survival of spiral ganglia neurones in vitro. Neuroreport, 8(7), 1641–1644.Google Scholar
  85. Marzella, P. L., Gillespie, L. N., Clark, G. M., Bartlett, P. F., & Kilpatrick, T. J. (1999). The neurotrophins act synergistically with LIF and members of the TGF-beta superfamily to promote the survival of spiral ganglia neurons in vitro. Hearing Research, 138(1–2), 73–80.Google Scholar
  86. Matsumoto, M., Nakagawa, T., Higashi, T., Kim, T. S., Kojima, K., Kita, T., Sakamoto, T., & Ito, J. (2005). Innervation of stem cell-derived neurons into auditory epithelia of mice. NeuroReport, 16(8), 787–790.Google Scholar
  87. Matsumoto, M., Nakagawa, T., Kojima, K., Sakamoto, T., Fujiyama, F., & Ito, J. (2008). Potential of embryonic stem cell-derived neurons for synapse formation with auditory hair cells. The Journal of Neuroscience Research, 86(14), 3075–3085.Google Scholar
  88. Mo, Z. L., & Davis, R. L. (1997). Endogenous firing patterns of murine spiral ganglion neurons. Journal of Neurophysiology, 77(3), 1294–1305.Google Scholar
  89. Nakagawa, T., Komune, S., Uemura, T., & Akaike, N. (1991). Excitatory amino acid response in isolated spiral ganglion cells of guinea pig cochlea. Journal of Neurophysiology, 65(3), 715–723.Google Scholar
  90. Nayagam, B. A., Edge, A. S., Needham, K., Hyakumura, T., Leung, J., Nayagam, D. A., & Dottori, M. (2013). An in vitro model of developmental synaptogenesis using cocultures of human neural progenitors and cochlear explants. Stem Cells and Development, 22(6), 901–912.Google Scholar
  91. Orr, M. F. (1965). Development of acoustic ganglia in tissue cultures of embryonic chick otocysts. Experimental Cell Research, 65, 68–77.Google Scholar
  92. Orr, M. F. (1968). Histogenesis of sensory epithelium in reaggregates of dissociated embryonic chick otocysts. Developmental Biology, 17(1), 39–54.Google Scholar
  93. Oshima, K., Teo, D. T., Senn, P., Starlinger, V., & Heller, S. (2007). LIF promotes neurogenesis and maintains neural precursors in cell populations derived from spiral ganglion stem cells. BMC Developmental Biology, 7, 112.Google Scholar
  94. Osofsky, M. R., Moore, C. M., & Leake, P. A. (2001). Does exogenous GM1 ganglioside enhance the effects of electrical stimulation in ameliorating degeneration after neonatal deafness? Hearing Research, 159(1–2), 23–35.Google Scholar
  95. Parker, M., Brugeaud, A., & Edge, A. S. (2010). Primary culture and plasmid electroporation of the murine organ of Corti. Journal of Visualized Experiments, doi:  10.3791/1685.
  96. Pettingill, L. N., Minter, R. L., & Shepherd, R. K. (2008). Schwann cells genetically modified to express neurotrophins promote spiral ganglion neuron survival in vitro. Neuroscience, 152(3), 821–828.Google Scholar
  97. Pfingst, B. E., Bowling, S. A., Colesa, D. J., Garadat, S. N., Raphael, Y., Shibata, S. B., Strahl, S. B., Su, G. L., & Zhou, N. (2011). Cochlear infrastructure for electrical hearing. Hearing Research, 281(1–2), 65–73.Google Scholar
  98. Pirvola, U., Ylikoski, J., Palgi, J., Lehtonen, E., Arumae, U., & Saarma, M. (1992). Brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the peripheral target fields of developing inner ear ganglia. Proceedings of the National Academy of Sciences of the USA, 89, 9915–9919.Google Scholar
  99. Puel, J. L., Pujol, R., Tribillac, F., Ladrech, S., & Eybalin, M. (1994). Excitatory amino acid antagonists protect cochlear auditory neurons from excitotoxicity. Journal of Comparative Neurology, 341(2), 241–256.Google Scholar
  100. Puel, J. L., Saffiedine, S., Gervais d’Aldin, C., Eybalin, M., & Pujol, R. (1995). Synaptic regeneration and functional recovery after excitotoxic injury in the guinea pig cochlea. Comptes Rendus de l’Academie des Sciences IIILife Sciences, 318(1), 67–75.Google Scholar
  101. Puel, J. L., Ruel, J., Gervais d’Aldin, C., & Pujol, R. (1998). Excitotoxicity and repair of cochlear synapses after noise-trauma induced hearing loss. NeuroReport, 9(9), 2109–2114.Google Scholar
  102. Pujol, R., Lenoir, M., Robertson, D., Eybalin, M., & Johnstone, B. M. (1985). Kainic acid selectively alters auditory dendrites connected with cochlear inner hair cells. Hearing Research, 18(2), 145–151.Google Scholar
  103. Rabejac, D., Raymond, J., & Dechesne, C. J. (1994). Characterization of different neuron populations in mouse statoacoustic ganglion cultures. Brain Research, 652(2), 249–256.Google Scholar
  104. Rask-Andersen, H., Bostrom, M., Gerdin, B., Kinnefors, A., Nyberg, G., Engstrand, T., Miller, J. M., & Lindholm, D. (2005). Regeneration of human auditory nerve. In vitro/in video demonstration of neural progenitor cells in adult human and guinea pig spiral ganglion. Hearing Research, 203(1–2), 180–191.Google Scholar
  105. Reid, M. A., Flores-Otero, J., & Davis, R. L. (2004). Firing patterns of type II spiral ganglion neurons in vitro. The Journal of Neuroscience, 24(3), 733–742.Google Scholar
  106. Reinecke, J., Girgis, T., Allen, G. W., & Shambaugh, G., Jr. (1960). In vitro study of the developing inner ear. Archives of Otolaryngology Head and Neck Surgery, 72, 599–609.Google Scholar
  107. Renton, J. P., Xu, N., Clark, J. J., & Hansen, M. R. (2010). Interaction of neurotrophin signaling with Bcl-2 localized to the mitochondria and endoplasmic reticulum on spiral ganglion neuron survival and neurite growth. The Journal of Neuroscience Research, 88(10), 2239–2251.Google Scholar
  108. Rivolta, M. N. (2013). New strategies for the restoration of hearing loss: Challenges and opportunities. British Medical Bulletin, 105, 69–84.Google Scholar
  109. Roehm, P. C., Xu, N., Woodson, E. A., Green, S. H., & Hansen, M. R. (2008). Membrane depolarization inhibits spiral ganglion neurite growth via activation of multiple types of voltage sensitive calcium channels and calpain. Molecular and Cellular Neuroscience, 37(2), 376–387.Google Scholar
  110. Rose, J. E., Sobkowicz, H. M., & Bereman, B. (1977). Growth in culture of the peripheral axons of the spiral neurons in response to displacement of the receptors. Journal of Neurocytology, 6(1), 49–70.Google Scholar
  111. Ruan, Q., Chen, D., Wang, Z., Chi, F., He, J., Wang, J., & Yin, S. (2010). Effects of Kir2.1 gene transfection in cochlear hair cells and application of neurotrophic factors on survival and neurite growth of co-cultured cochlear spiral ganglion neurons. Molecular and Cellular Neuroscience, 43(3), 326–339.Google Scholar
  112. Rueda, J., De La Sen, C., Juiz, J. M., & Merchán, J. A. (1987). Neuronal loss in the spiral ganglion of young rats. Acta Oto-Laryngologica, 104, 417–421.Google Scholar
  113. Santi, P. A., & Johnson, S. B. (2013). Decellularized ear tissues as scaffolds for stem cell differentiation. Journal of the Association for Research in Otolaryngology, 14(1), 3–15.Google Scholar
  114. Shepherd, R. K., Coco, A., Epp, S. B., & Crook, J. M. (2005). Chronic depolarization enhances the trophic effects of brain-derived neurotrophic factor in rescuing auditory neurons following a sensorineural hearing loss. Journal of Comparative Neurology, 486(2), 145–158.Google Scholar
  115. Shi, F., Corrales, C. E., Liberman, M. C., & Edge, A. S. B. (2007). BMP4 induction of sensory neurons from human embryonic stem cells and reinnervation of sensory epithelium. European Journal of Neuroscience, 26(11), 3016–3023.Google Scholar
  116. Shibata, S. B., Budenz, C. L., Bowling, S. A., Pfingst, B. E., & Raphael, Y. (2011). Nerve maintenance and regeneration in the damaged cochlea. Hearing Research, 281(1–2), 56–64.Google Scholar
  117. Siddiqui, S. A., & Cramer, K. S. (2005). Differential expression of Eph receptors and ephrins in the cochlear ganglion and eighth cranial nerve of the chick embryo. Journal of Comparative Neurology, 482(4), 309–319.Google Scholar
  118. Sobkowicz, H. M., & Slapnick, S. M. (1992). Neuronal sprouting and synapse formation in response to injury in the mouse organ of Corti in culture. International Journal of Developmental Neuroscience, 10(6), 545–566.Google Scholar
  119. Sobkowicz, H. M., Bereman, B., & Rose, J. E. (1975). Organotypic development of the organ of Corti in culture. Journal of Neurocytology, 4(5), 543–572.Google Scholar
  120. Sobkowicz, H. M., Loftus, J. M., & Slapnick, S. M. (1993). Tissue culture of the organ of Corti. Acta Oto-Laryngologica Supplementum, 502, 3–36.Google Scholar
  121. Spoendlin, H. (1971). Primary structural changes in the organ of Corti after acoustic overstimulation. Acta Oto-Laryngologica, 71(2), 166–176.Google Scholar
  122. Spoendlin, H. (1975). Retrograde degeneration of the cochlear nerve. Acta Oto-Laryngologica, 79, 266–275.Google Scholar
  123. Sugawara, M., Murtie, J. C., Stankovic, K. M., Liberman, M. C., & Corfas, G. (2007). Dynamic patterns of neurotrophin 3 expression in the postnatal mouse inner ear. Journal of Comparative Neurology, 501(1), 30–37.Google Scholar
  124. Tong, M., Brugeaud, A., & Edge, A. S. (2013). Regenerated synapses between postnatal hair cells and auditory neurons. Journal of the Association for Research in Otolaryngology, 14(3), 321–329.Google Scholar
  125. Tuft, B. W., Li, S., Xu, L., Clarke, J. C., White, S. P., Guymon, B. A., Perez, K. X., Hansen, M. R., & Guymon, C. A. (2013). Photopolymerized microfeatures for directed spiral ganglion neurite and Schwann cell growth. Biomaterials, 34(1), 42–54.Google Scholar
  126. Tuft, B. W., Xu, L., White, S. P., Seline, A. E., Erwood, A. M., Hansen, M. R., & Guymon, C. A. (2014). Neural pathfinding on uni- and multidirectional photopolymerized micropatterns. ACS Applied Materials and Interfaces, 6(14), 11265-76.Google Scholar
  127. Van De Water, T. R. (1976). Effects of removal of the statoacoustic ganglion complex upon the growing otocyst. Annals of Otology, Rhinology, and Laryngology, 85(6 Supplement 33 Pt 2), 2–31.Google Scholar
  128. Van de Water, T. R., & Ruben, R. J. (1971). Organ culture of the mammalian inner ear. Acta Oto-Laryngologica, 71(4), 303–312.Google Scholar
  129. Van De Water, T. R., & Heywood, P. (1976). The in vitro development of innervated sensory hair cells of a mammal. Acta Oto-Laryngologica, 82(5–6), 337–342.Google Scholar
  130. Van De Water, T. R., & Ruben, R. J. (1983). A possible embryonic mechanism for the establishment of innervation of inner ear sensory structures. Acta Oto-Laryngologica, 95(5–6), 470–479.Google Scholar
  131. Van de Water, T. R., & Ruben, R. J. (1984). Neurotrophic interactions during in vitro development of the inner ear. Annals of Otology, Rhinology, and Laryngology, 93(6 Pt 1), 558–564.Google Scholar
  132. Van de Water, T. R., Heywood, P., & Ruben, R. J. (1973). Development of sensory structures in organ cultures of the twelfth and thirteenth gestation day mouse embryo inner ears. Annals of Otology, Rhinology, and Laryngology, 82, Supplement 4:3–18.Google Scholar
  133. van Heumen, W. R., Claxton, C., & Pickles, J. O. (2000). Expression of EphA4 in developing inner ears of the mouse and guinea pig. Hearing Research, 139(1–2), 42–50.Google Scholar
  134. Vazquez, E., Van de Water, T. R., Del Valle, M., Vega, J. A., Staecker, H., Giráldez, F., & Represa, J. (1994). Pattern of trkB protein-like immunoreactivity in vivo and the in vitro effects of brain-derived neurotrophic factor (BDNF) on developing cochlear and vestibular neurons. Anatomy and Embryology, 189, 157–167.Google Scholar
  135. Wang, Q., & Green, S. H. (2011). Functional role of neurotrophin-3 in synapse regeneration by spiral ganglion neurons on inner hair cells after excitotoxic trauma in vitro. The Journal of Neuroscience, 31(21), 7938–7949.Google Scholar
  136. Wang, Q., & Green, S. H. (2013). Exogenous BDNF and NT-3 have distinct biological effects on afferent synaptogenesis on inner hair cells (IHCs) without endogenous NT-3 in vitro. Paper presented at the Abstracts of Midwinter Meeting of the Association for Research in Otolaryngology, Baltimore, MD.Google Scholar
  137. Whitlon, D. S., Ketels, K. V., Coulson, M. T., Williams, T., Grover, M., Edpao, W., & Richter, C. P. (2006). Survival and morphology of auditory neurons in dissociated cultures of newborn mouse spiral ganglion. Neuroscience, 138(2), 653–662.Google Scholar
  138. Whitlon, D. S., Tieu, D., Grover, M., Reilly, B., & Coulson, M. T. (2009). Spontaneous association of glial cells with regrowing neurites in mixed cultures of dissociated spiral ganglia. Neuroscience, 161(1), 227–235.Google Scholar
  139. Wittig, J. H., Jr., Ryan, A. F., & Asbeck, P. M. (2005). A reusable microfluidic plate with alternate-choice architecture for assessing growth preference in tissue culture. Journal of Neuroscience Methods, 144(1), 79–89.Google Scholar
  140. Xu, N., Engbers, J., Khaja, S., Xu, L., Clark, J. J., & Hansen, M. R. (2012). Influence of cAMP and protein kinase A on neurite length from spiral ganglion neurons. Hearing Research, 283(1–2), 33–44.Google Scholar
  141. Yamaguchi, K., & Ohmori, H. (1990). Voltage-gated and chemically gated ionic channels in the cultured cochlear ganglion neurone of the chick. The Journal of Physiology, 420, 185–206.Google Scholar
  142. Ylikoski, J., Pirvola, U., Moshnyakov, M., Palgi, J., Arumäe, U., & Saarma, M. (1993). Expression patterns of neurotrophin and their receptor mRNAs in the rat inner ear. Hearing Research, 65, 69–78.Google Scholar
  143. Yu, Q., Chang, Q., Liu, X., Wang, Y., Li, H., Gong, S., Ye, K., & Lin, X. (2013a). Protection of spiral ganglion neurons from degeneration using small-molecule TrkB receptor agonists. The Journal of Neuroscience, 33(32), 13042–13052.Google Scholar
  144. Yu, W. M., Appler, J. M., Kim, Y. H., Nishitani, A. M., Holt, J. R., & Goodrich, L. V. (2013b). A Gata3-Mafb transcriptional network directs post-synaptic differentiation in synapses specialized for hearing. eLife, 2, e01341.Google Scholar
  145. Zheng, J. L., & Gao, W. Q. (1996). Differential damage to auditory neurons and hair cells by ototoxins and neuroprotection by specific neurotrophins in rat cochlear organotypic cultures. European Journal of Neuroscience, 8(9), 1897–1905.Google Scholar
  146. Zhou, X. N., & Van de Water, T. R. (1987). The effect of target tissues on survival and differentiation of mammalian statoacoustic ganglion neurons in organ culture. Acta Oto-Laryngologica, 104(1–2), 90–98.Google Scholar
  147. Zhou, Z., Liu, Q., & Davis, R. L. (2005). Complex regulation of spiral ganglion neuron firing patterns by neurotrophin-3. The Journal of Neuroscience, 25(33), 7558–7566.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of BiologyUniversity of IowaIowa CityUSA
  2. 2.Department of OtolaryngologyChildren’s Hospital Colorado and University of Colorado School of MedicineAuroraUSA
  3. 3.Department of Otolaryngology—HNSUniversity of IowaIowa CityUSA

Personalised recommendations