The Electrophysiological Signature of Spiral Ganglion Neurons

Part of the Springer Handbook of Auditory Research book series (SHAR, volume 52)


Examination of the basic features of primary sensory afferents has revealed much about the fundamental principles of neural encoding. This approach has been particularly valuable in the auditory system, which is systematically organized according to sound frequency and has a multiplicity of tonotopic specializations. The first neural element of the auditory pathway, the type I spiral ganglion neurons, consists of unique primary afferents that, unlike other sensory afferents, have their somata positioned directly in the axonal conduction pathway and display both graded and heterogeneous morphological properties. Electrophysiological specializations are also evident, exemplified by multifaceted voltage-gated ionic currents carried by diverse ion channel subunits that likely fine-tune neuronal firing patterns. Ion channel subunit density and the resulting characteristic firing patterns are not uniform throughout the ganglion, but instead show specific distribution patterns, some of which are related to the frequency-specific contour of the cochlear endorgan. Moreover, these properties can be regulated by neurotrophins such that fast firing electrophysiological features predominate in primary afferents innervating the high-frequency regions, whereas slow firing features are prevalent within primary afferents innervating the low-frequency regions. Thus, the complex electrophysiological properties of the spiral ganglion neurons and their regulation suggest that the primary auditory afferents are capable of shaping the electrophysiological signals that they transmit into the brain.


Accommodation Brain-derived neurotrophic factor Membrane potential Neurotrophin 3 Primary auditory afferents Threshold Voltage-gated ion channels 



We thank Dr. Mark R. Plummer for discussions and a critical reading of the manuscript. This work is supported by NIH NIDCD RO1 DC01856.


  1. Adamson, C. L., Reid, M. A., & Davis, R. L. (2002a). Opposite actions of brain-derived neurotrophic factor and neurotrophin-3 on firing features and ion channel composition of murine spiral ganglion neurons. The Journal of Neuroscience, 22(4), 1385–1396.Google Scholar
  2. Adamson, C. L., Reid, M. A., Mo, Z. L., Bowne-English, J., & Davis, R. L. (2002b). Firing features and potassium channel content of murine spiral ganglion neurons vary with cochlear location. The Journal of Comparative Neurology, 447(4), 331–350.Google Scholar
  3. Ahmad, K. M., Klug, K., Herr, S., Sterling, P., & Schein, S. (2003). Cell density ratios in a foveal patch in macaque retina. Visual Neuroscience, 20(2), 189–209.Google Scholar
  4. Altschuler, R. A., Hoffman, D. W., Reeks, K. A., & Fex, J. (1985). Localization of dynorphin B-like and alpha-neoendorphin-like immunoreactivities in the guinea pig organ of Corti. Hearing Research, 17(3), 249–258.Google Scholar
  5. Banks, M. I., Pearce, R. A., & Smith, P. H. (1993). Hyperpolarization-activated cation current (Ih) in neurons of the medial nucleus of the trapezoid body: Voltage-clamp analysis and enhancement by norepinephrine and cAMP suggest a modulatory mechanism in the auditory brain stem. Journal of Neurophysiology, 70(4), 1420–1432.Google Scholar
  6. Barde, Y. A., Edgar, D., & Thoenen, H. (1982). Purification of a new neurotrophic factor from mammalian brain. EMBO Journal, 1(5), 549–553.Google Scholar
  7. Bean, B. P. (2007). The action potential in mammalian central neurons. Nature Reviews Neuroscience, 8(6), 451–465.Google Scholar
  8. Beisel, K. W., Rocha-Sanchez, S. M., Morris, K. A., Nie, L., Feng, F., Kachar, B., Yamoah, E. N., & Fritzsch, B. (2005). Differential expression of KCNQ4 in inner hair cells and sensory neurons is the basis of progressive high-frequency hearing loss. The Journal of Neuroscience, 25(40), 9285–9293.Google Scholar
  9. Bizley, J. K., & Walker, K. M. (2010). Sensitivity and selectivity of neurons in auditory cortex to the pitch, timbre, and location of sounds. Neuroscientist, 16(4), 453–469.Google Scholar
  10. Borst, J. G., & Sakmann, B. (1999). Effect of changes in action potential shape on calcium currents and transmitter release in a calyx-type synapse of the rat auditory brainstem. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 354(1381), 347–355.Google Scholar
  11. Brödel, M., & Malone, P. D. (1946). Three unpublished drawings of the anatomy of the human ear. Philadelphia and London: W. B. Saunders Company.Google Scholar
  12. Brown, M. C. (1994). Antidromic responses of single units from the spiral ganglion. Journal of Neurophysiology, 71(5), 1835–1847.Google Scholar
  13. Burgess, B. J., Adams, J. C., & Nadol, J. B., Jr. (1997). Morphologic evidence for innervation of Deiters’ and Hensen’s cells in the guinea pig. Hearing Research, 108(1–2), 74–82.Google Scholar
  14. Carr, C. E., Soares, D., Parameshwaran, S., & Perney, T. (2001). Evolution and development of time coding systems. Current Opinion in Neurobiology, 11(6), 727–733.Google Scholar
  15. Catterall, W. A., Perez-Reyes, E., Snutch, T. P., & Striessnig, J. (2005). International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacological Reviews, 57(4), 411–425.Google Scholar
  16. Chen, C. (1997). Hyperpolarization-activated current (Ih) in primary auditory neurons. Hearing Research, 110(1–2), 179–190.Google Scholar
  17. Chen, W. C., Xue, H. Z., Hsu, Y. L., Liu, Q., Patel, S., & Davis, R. L. (2011). Complex distribution patterns of voltage-gated calcium channel alpha-subunits in the spiral ganglion. Hearing Research, 278(1–2), 52–68.Google Scholar
  18. Ciuman, R. R. (2010). The efferent system or olivocochlear function bundle—fine regulator and protector of hearing perception. International Journal of Biomedical Science, 6(4), 276–288.Google Scholar
  19. Cleland, B. G., Dubin, M. W., & Levick, W. R. (1971). Sustained and transient neurones in the cat’s retina and lateral geniculate nucleus. The Journal of Physiology, 217(2), 473–496.Google Scholar
  20. Collingridge, G. L., Olsen, R. W., Peters, J., & Spedding, M. (2009). A nomenclature for ligand-gated ion channels. Neuropharmacology, 56(1), 2–5.Google Scholar
  21. Crozier, R. A., & Davis, R. L. (2014). Unmasking of spiral ganglion neuron firing dynamics by membrane potential and neurotrophin-3. The Journal of Neuroscience, 34(29), 9688–9702.Google Scholar
  22. Davis, R. L. (1996). Differential distribution of potassium channels in acutely demyelinated, primary-auditory neurons in vitro. Journal of Neurophysiology, 76(1), 438–447.Google Scholar
  23. Debanne, D., Campanac, E., Bialowas, A., Carlier, E., & Alcaraz, G. (2011). Axon physiology. Physiological Reviews, 91(2), 555–602.Google Scholar
  24. Despres, G., Leger, G. P., Dahl, D., & Romand, R. (1994). Distribution of cytoskeletal proteins (neurofilaments, peripherin and MAP-tau) in the cochlea of the human fetus. Acta Oto-Laryngologica, 114(4), 377–381.Google Scholar
  25. Dulon, D., Jagger, D. J., Lin, X., & Davis, R. L. (2006). Neuromodulation in the spiral ganglion: shaping signals from the organ of corti to the CNS. The Journal of Membrane Biology, 209(2–3), 167–175.Google Scholar
  26. Echteler, S. M., & Nofsinger, Y. C. (2000). Development of ganglion cell topography in the postnatal cochlea. The Journal of Comparative Neurology, 425(3), 436–446.Google Scholar
  27. Farinas, I., Jones, K. R., Tessarollo, L., Vigers, A. J., Huang, E., Kirstein, M., de Caprona, D. C., Coppola, V., Backus, C., Reichardt, L. F., & Fritzsch, B. (2001). Spatial shaping of cochlear innervation by temporally regulated neurotrophin expression. The Journal of Neuroscience, 21(16), 6170–6180.Google Scholar
  28. Fekete, D. M., Rouiller, E. M., Liberman, M. C., & Ryugo, D. K. (1984). The central projections of intracellularly labeled auditory nerve fibers in cats. The Journal of Comparative Neurology, 229(3), 432–450.Google Scholar
  29. Flores-Otero, J., & Davis, R. L. (2011). Synaptic proteins are tonotopically graded in postnatal and adult type I and type II spiral ganglion neurons. The Journal of Comparative Neurology, 519(8), 1455–1475.Google Scholar
  30. Flores-Otero, J., Xue, H. Z., & Davis, R. L. (2007). Reciprocal regulation of presynaptic and postsynaptic proteins in bipolar spiral ganglion neurons by neurotrophins. The Journal of Neuroscience, 27(51), 14023–14034.Google Scholar
  31. Furshpan, E. J., & Furukawa, T. (1962). Intracellular and extracellular responses of the several regions of the Mauthner cell of the goldfish. Journal of Neurophysiology, 25, 732–771.Google Scholar
  32. Garcia-Diaz, J. F. (1999). Development of a fast transient potassium current in chick cochlear ganglion neurons. Hearing Research, 135(1–2), 124–134.Google Scholar
  33. Gray, H., & Lewis, W. H. (1918). Anatomy of the human body (20th ed.). Philadelphia and New York: Lea & Febiger.Google Scholar
  34. Greenberg, M. E., Xu, B., Lu, B., & Hempstead, B. L. (2009). New insights in the biology of BDNF synthesis and release: Implications in CNS function. The Journal of Neuroscience, 29(41), 12764–12767.Google Scholar
  35. Grothe, B., Pecka, M., & McAlpine, D. (2010). Mechanisms of sound localization in mammals. Physiological Reviews, 90(3), 983–1012.Google Scholar
  36. Guinan, J. (2011). Physiology of the medial and lateral olivocochlear systems. In D. K. Ryugo & R. R. Fay (Eds.), Auditory and vestibular efferents (pp. 39–81). New York: Springer Science+Business Media.Google Scholar
  37. Hafidi, A. (1998). Peripherin-like immunoreactivity in type II spiral ganglion cell body and projections. Brain Research, 805(1–2), 181–190.Google Scholar
  38. Heffner, R., & Heffner, H. (1980). Hearing in the elephant (Elephas maximus). Science, 208(4443), 518–520.Google Scholar
  39. Held, H. (1926). Die Cochlea der Säuger und der Vögel, ihre Entwicklung und ihr Bau. In W. Buddenbrock, M. H. Fischer, M. Frey, K. Frisch, M. Gildemeister, A. Goldscheider, K. Grahe, H. Held, H. Henning, H. Herter, F. B. Hofmann, E. M. Hornbostel, L. Jost, A. Kleyn, W. Koehler, W. Kolmer, A. Kreidl, W. Kümmel, R. Magnus, E. Mangold, T. Masuda, H. Rhese, F. Rohrer, H. Runge, A. Seybold, H. Sierp, E. Skramlik, P. Stark, J. Teufer, E. Waetzmann, V. Weizsaecker & C. Zarniko (Eds.), Receptionsorgane I (pp. 467–534). Munich: J. F. Bergmann-Verlag.Google Scholar
  40. Hille, B. (2001). Ion channels of excitable membranes, 3rd ed. Sunderland, MA: Sinauer.Google Scholar
  41. Hodgkin, A. L., & Huxley, A. F. (1952). Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. The Journal of Physiology, 116(4), 449–472.Google Scholar
  42. Hodgkin, A. L., Huxley, A. F., & Katz, B. (1952). Measurement of current-voltage relations in the membrane of the giant axon of Loligo. The Journal of Physiology, 116(4), 424–448.Google Scholar
  43. Hossain, W. A., Antic, S. D., Yang, Y., Rasband, M. N., & Morest, D. K. (2005). Where is the spike generator of the cochlear nerve? Voltage-gated sodium channels in the mouse cochlea. The Journal of Neuroscience, 25(29), 6857–6868.Google Scholar
  44. Huang, E. J., & Reichardt, L. F. (2001). Neurotrophins: Roles in neuronal development and function. Annual Review of Neuroscience, 24, 677–736.Google Scholar
  45. Johnston, D., Wu, S. M.-S., & Gray, R. (1995). Foundations of cellular neurophysiology. Cambridge, MA: MIT Press.Google Scholar
  46. Kanold, P. O., & Manis, P. B. (1999). Transient potassium currents regulate the discharge patterns of dorsal cochlear nucleus pyramidal cells. The Journal of Neuroscience, 19(6), 2195–2208.Google Scholar
  47. Keithley, E. M., & Schreiber, R. C. (1987). Frequency map of the spiral ganglion in the cat. Journal of the Acoustic Society of America, 81(4), 1036–1042.Google Scholar
  48. Kiang, N. Y.-s. (1965). Discharge patterns of single fibers in the cat’s auditory nerve. Cambridge, MA: MIT Press.Google Scholar
  49. Kiang, N. Y. (1990). Curious oddments of auditory-nerve studies. Hearing Research, 49(1–3), 1–16.Google Scholar
  50. Kim, Y. H., & Holt, J. R. (2013). Functional contributions of HCN channels in the primary auditory neurons of the mouse inner ear. Journal of General Physiology, 142(3), 207–223.Google Scholar
  51. Klein, M., & Kandel, E. R. (1980). Mechanism of calcium current modulation underlying presynaptic facilitation and behavioral sensitization in Aplysia. Proceedings of the National Academy of Sciences of the USA, 77(11), 6912–6916.Google Scholar
  52. Kojima, S. (1990). Comparison of auditory functions in the chimpanzee and human. Folia Primatologica (Basel), 55(2), 62–72.Google Scholar
  53. Langer, P., Grunder, S., & Rusch, A. (2003). Expression of Ca2+-activated BK channel mRNA and its splice variants in the rat cochlea. The Journal of Comparative Neurology, 455(2), 198–209.Google Scholar
  54. Lawson, S. N., & Waddell, P. J. (1991). Soma neurofilament immunoreactivity is related to cell size and fibre conduction velocity in rat primary sensory neurons. The Journal of Physiology, 435, 41–63.Google Scholar
  55. Leake, P. A., & Snyder, R. L. (1989). Topographic organization of the central projections of the spiral ganglion in cats. The Journal of Comparative Neurology, 281(4), 612–629.Google Scholar
  56. Levine, E. S., Dreyfus, C. F., Black, I. B., & Plummer, M. R. (1995). Brain-derived neurotrophic factor rapidly enhances synaptic transmission in hippocampal neurons via postsynaptic tyrosine kinase receptors. Proceedings of the National Academy of Sciences of the USA, 92(17), 8074–8077.Google Scholar
  57. Liberman, L. D., Wang, H., & Liberman, M. C. (2011). Opposing gradients of ribbon size and AMPA receptor expression underlie sensitivity differences among cochlear-nerve/hair-cell synapses. The Journal of Neuroscience, 31(3), 801–808.Google Scholar
  58. Liberman, M. C. (1982). Single-neuron labeling in the cat auditory nerve. Science, 216(4551), 1239–1241.Google Scholar
  59. Liberman, M. C., & Oliver, M. E. (1984). Morphometry of intracellularly labeled neurons of the auditory nerve: Correlations with functional properties. Journal of Comparative Neurology, 223(2), 163–176.Google Scholar
  60. Liberman, M. C., Dodds, L. W., & Pierce, S. (1990). Afferent and efferent innervation of the cat cochlea: Quantitative analysis with light and electron microscopy. The Journal of Comparative Neurology, 301(3), 443–460.Google Scholar
  61. Liu, Q., & Davis, R. L. (2007). Regional specification of threshold sensitivity and response time in CBA/CaJ mouse spiral ganglion neurons. Journal of Neurophysiology, 98(4), 2215–2222.Google Scholar
  62. Liu, Q., Manis, P. B., & Davis, R. L. (2014a). I and HCN channels in murine spiral ganglion neurons: Tonotopic variation, local heterogeneity, and kinetic model. Journal of the Association for Research in Otolaryngology, 15(4), 585–599.Google Scholar
  63. Liu, Q., Lee, E., & Davis, R. L. (2014b). Heterogeneous intrinsic excitability of murine spiral ganglion neurons is determined by Kv1 and HCN channels. Neuroscience, 257, 96–110.Google Scholar
  64. Liu, W., & Davis, R. L. (2014). Calretinin and calbindin distribution patterns specify subpopulations of type I and type II spiral ganglion neurons in postnatal murine cochlea. The Journal of Comparative Neurology, 522, 2299–2318.Google Scholar
  65. Loewenstein, W. R., & Mendelson, M. (1965). Components of receptor adaptation in a Pacinian corpuscle. The Journal of Physiology, 177, 377–397.Google Scholar
  66. Lopez, C. A., Olson, E. S., Adams, J. C., Mou, K., Denhardt, D. T., & Davis, R. L. (1995). Osteopontin expression detected in adult cochleae and inner ear fluids. Hearing Research, 85(1–2), 210–222.Google Scholar
  67. Lopez, I., Ishiyama, G., Acuna, D., Ishiyama, A., & Baloh, R. W. (2003). Immunolocalization of voltage-gated calcium channel alpha1 subunits in the chinchilla cochlea. Cell and Tissue Research, 313(2), 177–186.Google Scholar
  68. Luscher, H. R., & Shiner, J. S. (1990). Simulation of action potential propagation in complex terminal arborizations. Biophysical Journal, 58(6), 1389–1399.Google Scholar
  69. Lv, P., Wei, D., & Yamoah, E. N. (2010). Kv7–type channel currents in spiral ganglion neurons: Involvement in sensorineural hearing loss. Journal of Biological Chemistry, 285(45), 34699–34707.Google Scholar
  70. Lv, P., Sihn, C. R., Wang, W., Shen, H., Kim, H. J., Rocha-Sanchez, S. M., & Yamoah, E. N. (2012). Posthearing Ca(2+) currents and their roles in shaping the different modes of firing of spiral ganglion neurons. The Journal of Neuroscience, 32(46), 16314–16330.Google Scholar
  71. Mason, W. T., & Leng, G. (1984). Complex action potential waveform recorded from supraoptic and paraventricular neurones of the rat: Evidence for sodium and calcium spike components at different membrane sites. Experimental Brain Research, 56(1), 135–143.Google Scholar
  72. McCormick, D. A., Connors, B. W., Lighthall, J. W., & Prince, D. A. (1985). Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. Journal of Neurophysiology, 54(4), 782–806.Google Scholar
  73. Merchan-Perez, A., & Liberman, M. C. (1996). Ultrastructural differences among afferent synapses on cochlear hair cells: Correlations with spontaneous discharge rate. The Journal of Comparative Neurology, 371(2), 208–221.Google Scholar
  74. Meyer, A. C., Frank, T., Khimich, D., Hoch, G., Riedel, D., Chapochnikov, N. M., Yarin, Y. M., Harke, B., Hell, S. W., Egner, A., & Moser, T. (2009). Tuning of synapse number, structure and function in the cochlea. Nature Neuroscience, 12(4), 444–453.Google Scholar
  75. Mo, Z. L., & Davis, R. L. (1997a). Heterogeneous voltage dependence of inward rectifier currents in spiral ganglion neurons. Journal of Neurophysiology, 78(6), 3019–3027.Google Scholar
  76. Mo, Z. L., & Davis, R. L. (1997b). Endogenous firing patterns of murine spiral ganglion neurons. Journal of Neurophysiology, 77(3), 1294–1305.Google Scholar
  77. Mo, Z. L., Adamson, C. L., & Davis, R. L. (2002). Dendrotoxin-sensitive K(+) currents contribute to accommodation in murine spiral ganglion neurons. The Journal of Physiology, 542(Pt 3), 763–778.Google Scholar
  78. Mou, K., Adamson, C. L., & Davis, R. L. (1998). Time-dependence and cell-type specificity of synergistic neurotrophin actions on spiral ganglion neurons. The Journal of Comparative Neurology, 402(1), 129–139.Google Scholar
  79. Mountcastle, V. B., Talbot, W. H., & Kornhuber, H. H. (1966). The neural transformation of mechanical stimuli delivered to the monkey’s hand. In Ciba Foundation Symposium: Hormonal Factors in Carbohydrate Metabolism (Colloquia on Endocrinology) (pp. 325–351). Chichester, UK: John Wiley & Sons.Google Scholar
  80. Muller, M., von Hunerbein, K., Hoidis, S., & Smolders, J. W. (2005). A physiological place-frequency map of the cochlea in the CBA/J mouse. Hearing Research, 202(1–2), 63–73.Google Scholar
  81. Nadol, J. B., Jr. (1988). Comparative anatomy of the cochlea and auditory nerve in mammals. Hearing Research, 34(3), 253–266.Google Scholar
  82. Nadol, J. B., Jr., Burgess, B. J., & Reisser, C. (1990). Morphometric analysis of normal human spiral ganglion cells. Annals of Otology, Rhinology, and Laryngology, 99(5 Pt 1), 340–348.Google Scholar
  83. Orduz, D., Bischop, D. P., Schwaller, B., Schiffmann, S. N., & Gall, D. (2013). Parvalbumin tunes spike-timing and efferent short-term plasticity in striatal fast spiking interneurons. The Journal of Physiology, 591(Pt 13), 3215–3232.Google Scholar
  84. Peles, E., Nativ, M., Lustig, M., Grumet, M., Schilling, J., Martinez, R., Plowman, G. D., & Schlessinger, J. (1997). Identification of a novel contactin-associated transmembrane receptor with multiple domains implicated in protein-protein interactions. EMBO Journal, 16(5), 978–988.Google Scholar
  85. Perkins, R. E., & Morest, D. K. (1975). A study of cochlear innervation patterns in cats and rats with the Golgi method and Nomarkski optics. The Journal of Comparative Neurology, 163(2), 129–158.Google Scholar
  86. Puopolo, M., Raviola, E., & Bean, B. P. (2007). Roles of subthreshold calcium current and sodium current in spontaneous firing of mouse midbrain dopamine neurons. The Journal of Neuroscience, 27(3), 645–656.Google Scholar
  87. Rasband, M. N., & Trimmer, J. S. (2001). Developmental clustering of ion channels at and near the node of Ranvier. Developmental Biology, 236(1), 5–16.Google Scholar
  88. Reid, M. A., Flores-Otero, J., & Davis, R. L. (2004). Firing patterns of type II spiral ganglion neurons in vitro. The Journal of Neuroscience, 24(3), 733–742.Google Scholar
  89. Robertson, D. (1976). Possible relation between structure and spike shapes of neurones in guinea pig cochlear ganglion. Brain Research, 109(3), 487–496.Google Scholar
  90. Rosenblatt, K. P., Sun, Z. P., Heller, S., & Hudspeth, A. J. (1997). Distribution of Ca2+-activated K+ channel isoforms along the tonotopic gradient of the chicken’s cochlea. Neuron, 19(5), 1061–1075.Google Scholar
  91. Rosenbluth, J. (1962). The fine structure of acoustic ganglia in the rat. Journal of Cell Biology, 12, 329–359.Google Scholar
  92. Rosowski, J. J. (1991). The effects of external- and middle-ear filtering on auditory threshold and noise-induced hearing loss. Journal of the Acoustic Society of America, 90(1), 124–135.Google Scholar
  93. Rubel, E. W., & Fritzsch, B. (2002). Auditory system development: primary auditory neurons and their targets. Annual Review of Neuroscience, 25, 51–101Google Scholar
  94. Ruggero, M. A., & Temchin, A. N. (2002). The roles of the external, middle, and inner ears in determining the bandwidth of hearing. Proceedings of the National Academy of Sciences of the USA, 99(20), 13206–13210.Google Scholar
  95. Rusznak, Z., & Szucs, G. (2009). Spiral ganglion neurones: An overview of morphology, firing behaviour, ionic channels and function. Pflugers Archiv—European Journal of Physiology, 457(6), 1303–1325.Google Scholar
  96. Ryugo, D. (1992). The auditory nerve: Peripheral innervation, cell body morphology, and central projections. In D. Webster, A. Popper, & R. Fay (Eds.), The mammalian auditory pathway: Neuroanatomy (pp. 23–65). New York: Springer-Verlag.Google Scholar
  97. Safieddine, S., & Eybalin, M. (1992). Triple immunofluorescence evidence for the coexistence of acetylcholine, enkephalins and calcitonin gene-related peptide within efferent (olivocochlear) neurons of rats and guinea-pigs. European Journal of Neuroscience, 4(10), 981–992.Google Scholar
  98. Santos-Sacchi, J. (1993). Voltage-dependent ionic conductances of type I spiral ganglion cells from the guinea pig inner ear. The Journal of Neuroscience, 13(8), 3599–3611.Google Scholar
  99. Schwaller, B., Meyer, M., & Schiffmann, S. (2002). ‘New’ functions for ‘old’ proteins: The role of the calcium-binding proteins calbindin D-28k, calretinin and parvalbumin, in cerebellar physiology. Studies with knockout mice. Cerebellum, 1(4), 241–258.Google Scholar
  100. Shibata, R., Nakahira, K., Shibasaki, K., Wakazono, Y., Imoto, K., & Ikenaka, K. (2000). A-type K+ current mediated by the Kv4 channel regulates the generation of action potential in developing cerebellar granule cells. The Journal of Neuroscience, 20(11), 4145–4155.Google Scholar
  101. Simmons, D., Duncan, J., de Caprona, D. C., & Fritzsch, B. (2011). Development of the inner ear efferent system. In D. K. Ryugo, R. R. Fay, & A. N. Popper (Eds.), Auditory and vestibular efferents (pp. 187–216). New York: Springer Science+Business Media.Google Scholar
  102. Spoendlin, H. (1973). The innervation of the cochlear receptor. In A.R. Møller (Ed.), Basic mechanisms in hearing (pp. 185–234). New York: Academic Press.Google Scholar
  103. Spoendlin, H., & Schrott, A. (1989). Analysis of the human auditory nerve. Hearing Research, 43(1), 25–38.Google Scholar
  104. Sudhof, T. C., Lottspeich, F., Greengard, P., Mehl, E., & Jahn, R. (1987). A synaptic vesicle protein with a novel cytoplasmic domain and four transmembrane regions. Science, 238(4830), 1142–1144.Google Scholar
  105. Sugawara, M., Murtie, J. C., Stankovic, K. M., Liberman, M. C., & Corfas, G. (2007). Dynamic patterns of neurotrophin 3 expression in the postnatal mouse inner ear. The Journal of Comparative Neurology, 501(1), 30–37.Google Scholar
  106. Sundgren-Andersson, A. K., & Johansson, S. (1998). Calcium spikes and calcium currents in neurons from the medial preoptic nucleus of rat. Brain Research, 783(2), 194–209.Google Scholar
  107. Szabo, Z. S., Harasztosi, C. S., Sziklai, I., Szucs, G., & Rusznak, Z. (2002). Ionic currents determining the membrane characteristics of type I spiral ganglion neurons of the guinea pig. European Journal of Neuroscience, 16(10), 1887–1895.Google Scholar
  108. Taberner, A. M., & Liberman, M. C. (2005). Response properties of single auditory nerve fibers in the mouse. Journal of Neurophysiology, 93(1), 557–569.Google Scholar
  109. Thiers, F. A., Nadol, J. B., Jr., & Liberman, M. C. (2008). Reciprocal synapses between outer hair cells and their afferent terminals: Evidence for a local neural network in the mammalian cochlea. Journal of the Association for Research in Otolaryngology, 9(4), 477–489.Google Scholar
  110. Verheugen, J. A., Fricker, D., & Miles, R. (1999). Noninvasive measurements of the membrane potential and GABAergic action in hippocampal interneurons. The Journal of Neuroscience, 19(7), 2546–2555.Google Scholar
  111. Weisz, C. J., Glowatzki, E., & Fuchs, P. A. (2014). Excitability of type II cochlear afferents. The Journal of Neuroscience, 34(6), 2365–2373.Google Scholar
  112. Whitlon, D. S., Ketels, K. V., Coulson, M. T., Williams, T., Grover, M., Edpao, W., & Richter, C. P. (2006). Survival and morphology of auditory neurons in dissociated cultures of newborn mouse spiral ganglion. Neuroscience, 138(2), 653–662.Google Scholar
  113. Yamaguchi, K., & Ohmori, H. (1990). Voltage-gated and chemically gated ionic channels in the cultured cochlear ganglion neurone of the chick. The Journal of Physiology, 420, 185–206.Google Scholar
  114. Yang, Y. M., & Wang, L. Y. (2006). Amplitude and kinetics of action potential-evoked Ca2+ current and its efficacy in triggering transmitter release at the developing calyx of held synapse. The Journal of Neuroscience, 26(21), 5698–5708.Google Scholar
  115. Zhou, Z., Liu, Q., & Davis, R. L. (2005). Complex regulation of spiral ganglion neuron firing patterns by neurotrophin-3. The Journal of Neuroscience, 25(33), 7558–7566.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Cell Biology and NeuroscienceRutgers UniversityPiscatawayUSA

Personalised recommendations