Skip to main content

Linear Canonical Domains and Degrees of Freedom of Signals and Systems

  • Chapter
Linear Canonical Transforms

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 198))

  • 1793 Accesses

Abstract

We discuss the relationships between linear canonical transform (LCT) domains, fractional Fourier transform (FRT) domains, and the space-frequency plane. In particular, we show that LCT domains correspond to scaled fractional Fourier domains and thus to scaled oblique axes in the space-frequency plane. This allows LCT domains to be labeled and monotonically ordered by the corresponding fractional order parameter and provides a more transparent view of the evolution of light through an optical system modeled by LCTs. We then study the number of degrees of freedom of optical systems and signals based on these concepts. We first discuss the bicanonical width product (BWP), which is the number of degrees of freedom of LCT-limited signals. The BWP generalizes the space-bandwidth product and often provides a tighter measure of the actual number of degrees of freedom of signals. We illustrate the usefulness of the notion of BWP in two applications: efficient signal representation and efficient system simulation. In the first application we provide a sub-Nyquist sampling approach to represent and reconstruct signals with arbitrary space-frequency support. In the second application we provide a fast discrete LCT (DLCT) computation method which can accurately compute a (continuous) LCT with the minimum number of samples given by the BWP. Finally, we focus on the degrees of freedom of first-order optical systems with multiple apertures. We show how to explicitly quantify the degrees of freedom of such systems, state conditions for lossless transfer through the system and analyze the effects of lossy transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.K. Luneburg, Mathematical Theory of Optics (University of California Press, Berkeley, 1966)

    Google Scholar 

  2. S.A. Collins, Lens-system diffraction integral written in terms of matrix optics. J. Opt. Soc. Am. 60(9), 1168–1177 (1970)

    Article  ADS  Google Scholar 

  3. M.J. Bastiaans, Wigner distribution function and its application to first-order optics. J. Opt. Soc. Am. 69(12), 1710–1716 (1979)

    Article  ADS  Google Scholar 

  4. M. Nazarathy, J. Shamir, First-order optics—a canonical operator representation: lossless systems. J. Opt. Soc. Am. 72(3), 356–364 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  5. H.M. Ozaktas, Z. Zalevsky, M.A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing (Wiley, New York, 2001)

    Google Scholar 

  6. K.B. Wolf, Construction and properties of canonical transforms, Chap. 9, in Integral Transforms in Science and Engineering (Plenum Press, New York, 1979)

    Google Scholar 

  7. H.M. Ozaktas, O. Aytur, Fractional Fourier domains. Signal Process. 46(1), 119–124 (1995)

    Article  MATH  Google Scholar 

  8. H. Zhao, Q.-W. Ran, J. Ma, L.-Y. Tan, On bandlimited signals associated with linear canonical transform. IEEE Signal Process. Lett. 16(5), 343–345 (2009)

    Article  ADS  Google Scholar 

  9. B. Deng, R. Tao, Y. Wang, Convolution theorems for the linear canonical transform and their applications. Sci. China Ser. F Inf. Sci. 49(5), 592–603 (2006)

    Article  MathSciNet  Google Scholar 

  10. K.K. Sharma, S.D. Joshi, Uncertainty principle for real signals in the linear canonical transform domains. IEEE Trans. Signal Process. 56(7), 2677–2683 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  11. K.K. Sharma, S.D. Joshi, Signal separation using linear canonical and fractional Fourier transforms. Opt. Commun. 265(2), 454–460 (2006)

    Article  ADS  Google Scholar 

  12. K.K. Sharma, S.D. Joshi, Signal reconstruction from the undersampled signal samples. Opt. Commun. 268(2), 245–252 (2006)

    Article  ADS  Google Scholar 

  13. K.K. Sharma, New inequalities for signal spreads in linear canonical transform domains. Signal Process. 90(3), 880–884 (2010)

    Article  MATH  Google Scholar 

  14. B.-Z. Li, R. Tao, Y. Wang, New sampling formulae related to linear canonical transform. Signal Process. 87(5), 983–990 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Stern, Uncertainty principles in linear canonical transform domains and some of their implications in optics. J. Opt. Soc. Am. A 25(3), 647–652 (2008)

    Article  ADS  Google Scholar 

  16. A. Stern, Sampling of compact signals in offset linear canonical transform domains. Signal Image Video Process. 1, 359–367 (2007)

    Article  MATH  Google Scholar 

  17. G. Toraldo di Francia, Resolving power and information. J. Opt. Soc. Am. 45(7), 497–499 (1955)

    Article  ADS  Google Scholar 

  18. D. Gabor, Light and information, in Progress in Optics, vol. I, Chap. 4, ed. by E. Wolf (Elsevier, Amsterdam, 1961), pp. 109–153

    Chapter  Google Scholar 

  19. G. Toraldo di Francia, Degrees of freedom of an image. J. Opt. Soc. Am. 59(7), 799–803 (1969)

    Article  ADS  Google Scholar 

  20. F. Gori, G. Guattari, Effects of coherence on the degrees of freedom of an image. J. Opt. Soc. Am. 61(1), 36–39 (1971)

    Article  ADS  Google Scholar 

  21. F. Gori, G. Guattari, Shannon number and degrees of freedom of an image. Opt. Commun. 7(2), 163–165 (1973)

    Article  ADS  Google Scholar 

  22. F. Gori, G. Guattari, Degrees of freedom of images from point-like-element pupils. J. Opt. Soc. Am. 64(4), 453–458 (1974)

    Article  ADS  Google Scholar 

  23. F. Gori, S. Paolucci, L. Ronchi, Degrees of freedom of an optical image in coherent illumination, in the presence of aberrations. J. Opt. Soc. Am. 65(5), 495–501 (1975)

    Article  ADS  Google Scholar 

  24. F. Gori, L. Ronchi, Degrees of freedom for scatterers with circular cross section. J. Opt. Soc. Am. 71(3), 250–258 (1981)

    Article  ADS  Google Scholar 

  25. L. Ronchi, F. Gori, Degrees of freedom for spherical scatterers. Opt. Lett. 6(10), 478–480 (1981)

    Article  ADS  Google Scholar 

  26. A. Starikov, Effective number of degrees of freedom of partially coherent sources. J. Opt. Soc. Am. 72(11), 1538–1544 (1982)

    Article  ADS  Google Scholar 

  27. G. Newsam, R. Barakat, Essential dimension as a well-defined number of degrees of freedom of finite-convolution operators appearing in optics. J. Opt. Soc. Am. A 2(11), 2040–2045 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  28. A.W. Lohmann, Optical Information Processing. Lecture Notes (Optik+Info, Uttenreuth, 1986)

    Google Scholar 

  29. F. Gori, Sampling in optics, in Advanced Topics in Shannon Sampling and Interpolation Theory, Chap. 2 (Springer, New York, 1993), pp. 37–83

    Google Scholar 

  30. A.W. Lohmann, R.G. Dorsch, D. Mendlovic, Z. Zalevsky, C. Ferreira, Space-bandwidth product of optical signals and systems. J. Opt. Soc. Am. A 13(3), 470–473 (1996)

    Article  ADS  Google Scholar 

  31. R. Piestun, D.A.B. Miller, Electromagnetic degrees of freedom of an optical system. J. Opt. Soc. Am. A 17(5), 892–902 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  32. R. Solimene, R. Pierri, Number of degrees of freedom of the radiated field over multiple bounded domains. Opt. Lett. 32(21), 3113–3115 (2007)

    Article  ADS  Google Scholar 

  33. F.S. Oktem, Signal representation and recovery under partial information, redundancy, and generalized finite extent constraints, Master’s thesis, Bilkent University, 2009

    Google Scholar 

  34. F.S. Oktem, H.M. Ozaktas, Equivalence of linear canonical transform domains to fractional Fourier domains and the bicanonical width product: a generalization of the space–bandwidth product. J. Opt. Soc. Am. A 27(8), 1885–1895 (2010)

    Article  ADS  Google Scholar 

  35. F.S. Oktem, H.M. Ozaktas, Exact relation between continuous and discrete linear canonical transforms. IEEE Signal Process. Lett. 16(8), 727–730 (2009)

    Article  ADS  Google Scholar 

  36. F.S. Oktem, H.M. Ozaktas, Degrees of freedom of optical systems and signals with applications to sampling and system simulation, in Imaging and Applied Optics Conference, Optical Society of America, 2013

    Google Scholar 

  37. H.M. Ozaktas, F.S. Oktem, Phase-space window and degrees of freedom of optical systems with multiple apertures. J. Opt. Soc. Am. A 30(4), 682–690 (2013)

    Article  ADS  Google Scholar 

  38. T. Alieva, M.J. Bastiaans, Alternative representation of the linear canonical integral transform. Opt. Lett. 30(24), 3302–3304 (2005)

    Article  ADS  Google Scholar 

  39. M.J. Bastiaans, T. Alieva, Synthesis of an arbitrary ABCD system with fixed lens positions. Opt. Lett. 31(16), 2414–2416 (2006)

    Article  ADS  Google Scholar 

  40. J.A. Rodrigo, T. Alieva, M.L. Calvo, Optical system design for orthosymplectic transformations in phase space. J. Opt. Soc. Am. A 23(10), 2494–2500 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  41. H.M. Ozaktas, M.F. Erden, Relationships among ray optical, Gaussian beam, and fractional Fourier transform descriptions of first-order optical systems. Opt. Commun. 143(1–3), 75–86 (1997)

    Article  ADS  Google Scholar 

  42. H. Ozaktas, S. Arık, T. Coşkun, Fundamental structure of Fresnel diffraction: natural sampling grid and the fractional Fourier transform. Opt. Lett. 36(13), 2524–2526 (2011)

    Article  ADS  Google Scholar 

  43. H. Ozaktas, S. Arık, T. Coşkun, Fundamental structure of Fresnel diffraction: longitudinal uniformity with respect to fractional Fourier order. Opt. Lett. 37(1), 103–105 (2012)

    Article  ADS  Google Scholar 

  44. L. Cohen, Integral Time-Frequency Analysis (Prentice-Hall, Englewood Cliffs, 1995)

    Google Scholar 

  45. M.J. Bastiaans, Applications of the Wigner distribution function in optics, in The Wigner Distribution: Theory and Applications in Signal Processing (Elsevier, Amsterdam, 1997), pp. 375–426

    Google Scholar 

  46. G. Forbes, V. Maniko, H. Ozaktas, R. Simon, K. Wolf, Wignerdistributions and phase space in optics. J. Opt. Soc. Am. A 17(12), 2274–2274 (2000)

    Article  ADS  Google Scholar 

  47. A. Stern, Sampling of linear canonical transformed signals. Signal Process. 86(7), 1421–1425 (2006)

    Article  MATH  Google Scholar 

  48. J.J. Ding, Research of fractional Fourier transform and linear canonical transform. Ph.D. thesis, National Taiwan University, Taipei, 2001

    Google Scholar 

  49. X.-G. Xia, On bandlimited signals with fractional Fourier transform. IEEE Signal Process. Lett. 3(3), 72–74 (1996)

    Article  ADS  Google Scholar 

  50. A. Zayed, On the relationship between the Fourier and fractional Fourier transforms. IEEE Signal Process. Lett. 3(12), 310–311 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  51. C. Candan, H.M. Ozaktas, Sampling and series expansion theorems for fractional Fourier and other transforms. Signal Process. 83, 1455–1457 (2003)

    Article  Google Scholar 

  52. T. Erseghe, P. Kraniauskas, G. Carioraro, Unified fractional Fourier transform and sampling theorem. IEEE Trans. Signal Process. 47(12), 3419–3423 (1999)

    Article  ADS  MATH  Google Scholar 

  53. R. Torres, P. Pellat-Finet, Y. Torres, Sampling theorem for fractional bandlimited signals: A self-contained proof application to digital holography. IEEE Signal Process. Lett. 13(11), 676–679 (2006)

    Article  ADS  Google Scholar 

  54. R. Tao, B. Deng, W.-Q. Zhang, Y. Wang, Sampling and sampling rate conversion of band limited signals in the fractional Fourier transform domain. IEEE Trans. Signal Process. 56(1), 158–171 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  55. O. Aytur, H.M. Ozaktas, Non-orthogonal domains in phase space of quantum optics and their relation to fractional Fourier transforms. Opt. Commun. 120(3–4), 166–170 (1995)

    Article  ADS  Google Scholar 

  56. H.M. Ozaktas, B. Barshan, D. Mendlovic, L. Onural, Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms. J. Opt. Soc. Am. A 11(2), 547–559 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  57. J.J. Healy, J.T. Sheridan, Cases where the linear canonical transform of a signal has compact support or is band-limited. Opt. Lett. 33(3), 228–230 (2008)

    Article  ADS  Google Scholar 

  58. H.M. Ozaktas, D. Mendlovic, Fractional Fourier optics. J. Opt. Soc. Am. A 12(4), 743–751 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  59. L. Cohen, Time-frequency distributions-a review. Proc. IEEE 77(7), 941–981 (1989)

    Article  ADS  Google Scholar 

  60. A. Stern, B. Javidi, Sampling in the light of Wigner distribution. J. Opt. Soc. Am. A 21(3), 360–366 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  61. A. Stern, Why is the linear canonical transform so little known?, in AIP Conference Proceedings (2006), pp. 225–234

    Google Scholar 

  62. A. Papoulis, Signal Analysis (McGraw-Hill, New York, 1977)

    MATH  Google Scholar 

  63. S.-C. Pei, J.-J. Ding, Closed-form discrete fractional and affine Fourier transforms. IEEE Trans. Signal Process. 48(5), 1338–1353 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  64. B.M. Hennelly, J.T. Sheridan, Fast numerical algorithm for the linear canonical transform. J. Opt. Soc. Am. A 22(5), 928–937 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  65. B.M. Hennelly, J.T. Sheridan, Generalizing, optimizing, and inventing numerical algorithms for the fractional Fourier, Fresnel, and linear canonical transforms. J. Opt. Soc. Am. A 22(5), 917–927 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  66. J.J. Healy, B.M. Hennelly, J.T. Sheridan, Additional sampling criterion for the linear canonical transform. Opt. Lett. 33(22), 2599–2601 (2008)

    Article  ADS  Google Scholar 

  67. J.J. Healy, J.T. Sheridan, Sampling and discretization of the linear canonical transform. Signal Process. 89, 641–648 (2009)

    Article  MATH  Google Scholar 

  68. H.M. Ozaktas, A. Koç, I. Sari, M.A. Kutay, Efficient computation of quadratic-phase integrals in optics. Opt. Lett. 31(1), 35–37 (2006)

    Article  ADS  Google Scholar 

  69. A. Koc, H.M. Ozaktas, C. Candan, M.A. Kutay, Digital computation of linear canonical transforms. IEEE Trans. Signal Process. 56(6), 2383–2394 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  70. J.J. Healy, J.T. Sheridan, Reevaluation of the direct method of calculating Fresnel and other linear canonical transforms. Opt. Lett. 35(7), 947–949 (2010)

    Article  ADS  Google Scholar 

  71. J.J. Healy, J.T. Sheridan, Fast linear canonical transforms. J. Opt. Soc. Am. A 27(1), 21–30 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  72. H. Ozaktas, O. Arikan, M. Kutay, G. Bozdagi, Digital computation of the fractional Fourier transform. IEEE Trans. Signal Process. 44(9), 2141–2150 (1996)

    Article  ADS  Google Scholar 

  73. A. Koc, H. Ozaktas, L. Hesselink, Fast and accurate computation of two-dimensional non-separable quadratic-phase integrals. J. Opt. Soc. Am. A 27(6), 1288–1302 (2010)

    Article  ADS  Google Scholar 

  74. L. Durak, O. Arikan, Short-time Fourier transform: two fundamental properties and an optimal implementation. IEEE Trans. Signal Process. 51(5), 1231–1242 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  75. A.W. Lohmann, The space-bandwidth product, applied to spatial filtering and holography, Research Paper RJ-438, IBM San Jose Research Laboratory, San Jose, 1967

    Google Scholar 

  76. A. Stern, B. Javidi, Shannon number and information capacity of three-dimensional integral imaging. J. Opt. Soc. Am. A 21(9), 1602–1612 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  77. D. Mendlovic, A. Lohmann, Space–bandwidth product adaptation and its application to superresolution: fundamentals. J. Opt. Soc. Am. A 14(3), 558–562 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  78. Z. Zalevsky, D. Mendlovic, A. Lohmann, Understanding superresolution in Wigner space. J. Opt. Soc. Am. A 17(12), 2422–2430 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  79. P. Catrysse, B. Wandell, Optical efficiency of image sensor pixels. J. Opt. Soc. Am. A 19(8), 1610–1620 (2002)

    Article  ADS  Google Scholar 

  80. J. Maycock, C. McElhinney, B. Hennelly, T. Naughton, J. McDonald, B. Javidi, Reconstruction of partially occluded objects encoded in three-dimensional scenes by using digital holograms. Appl. Opt. 45(13), 2975–2985 (2006)

    Article  ADS  Google Scholar 

  81. D. Mendlovic, A. Lohmann, Z. Zalevsky, Space–bandwidth product adaptation and its application to superresolution: examples. J. Opt. Soc. Am. A 14(3), 563–567 (1997)

    Article  ADS  Google Scholar 

  82. K. Wolf, D. Mendlovic, Z. Zalevsky, Generalized Wigner function for the analysis of superresolution systems. Appl. Opt. 37(20), 4374–4379 (1998)

    Article  ADS  Google Scholar 

  83. Z. Zalevsky, N. Shamir, D. Mendlovic, Geometrical superresolution in infrared sensor: experimental verification. Opt. Eng. 43(6), 1401–1406 (2004)

    Article  ADS  Google Scholar 

  84. Z. Zalevsky, V. Mico, J. Garcia, Nanophotonics for optical super resolution from an information theoretical perspective: a review. J. Nanophotonics 3(1), 032502–032502 (2009)

    Article  ADS  Google Scholar 

  85. J. Lindberg, Mathematical concepts of optical superresolution. J. Opt. 14(8), 083001 (2012)

    Google Scholar 

  86. L. Xu, X. Peng, Z. Guo, J. Miao, A. Asundi et al., Imaging analysis of digital holography. Opt. Express 13(7), 2444–2452 (2005)

    Article  ADS  Google Scholar 

  87. M. Testorf, A. Lohmann, Holography in phase space. Appl. Opt. 47(4), A70–A77 (2008)

    Article  ADS  Google Scholar 

  88. U. Gopinathan, G. Pedrini, B. Javidi, W. Osten, Lensless 3D digital holographic microscopic imaging at vacuum UV wavelength. J. Disp. Technol. 6(10), 479–483 (2010)

    Article  ADS  Google Scholar 

  89. D. Claus, D. Iliescu, P. Bryanston-Cross, Quantitative space-bandwidth product analysis in digital holography. Appl. Opt. 50(34), H116–H127 (2011)

    Article  Google Scholar 

  90. B. Hennelly, J. Sheridan, Optical encryption and the space bandwidth product. Opt. Commun. 247(4), 291–305 (2005)

    Article  ADS  Google Scholar 

  91. J. Healy, J. Sheridan, Bandwidth, compact support, apertures and the linear canonical transform in ABCD systems, in Proceedings of the SPIE, vol. 6994 (2008), p. 69940W

    Google Scholar 

  92. Z. Zalevsky, D. Mendlovic, Optical Superresolution (Springer, New York, 2004)

    Book  Google Scholar 

Download references

Acknowledgements

This chapter is based on [33–37]. H.M. Ozaktas acknowledges partial support of the Turkish Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Figen S. Oktem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Oktem, F.S., Ozaktas, H.M. (2016). Linear Canonical Domains and Degrees of Freedom of Signals and Systems. In: Healy, J., Alper Kutay, M., Ozaktas, H., Sheridan, J. (eds) Linear Canonical Transforms. Springer Series in Optical Sciences, vol 198. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3028-9_7

Download citation

Publish with us

Policies and ethics