Skip to main content

Deterministic Phase Retrieval Using the LCT

  • Chapter
Linear Canonical Transforms

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 198))

  • 1813 Accesses

Abstract

Phase retrieval is one of the most interesting and widely researched inverse problems in optical sciences. Since all the forward problems based on real-world physical phenomenon involve some loss of information, the corresponding inverse problem is ill-posed unlike its forward counterpart. This makes the solution of inverse problems quite challenging. A majority of the approaches to solve the phase retrieval problem broadly fall into two categories. In the first category, one uses a priori information of the signal to find one of the many possible approximate solutions to the problem within an acceptable error criteria. One of the first and the most widely used method in this category is the Gerchberg–Saxon (GS) algorithm that uses a priori information of the signal at the input and output plane of an optical system that performs a Fourier Transformation. The second category consists of a direct approach based on a deterministic algorithm. The present chapter is concerned with these approaches. Typically, these algorithms are based on linear transformations on a set of intensity measurements of the signal. These intensity measurements are performed at different planes as the signal propagates through an optical system. In this chapter, we discuss the complex signal determination from multiple intensity measurements. We derive a generic algorithm that can retrieve a complex valued signal from two intensity measurements, one at the input plane and the second at the output plane, of an arbitrary optical system that consists of thin lenses (refractive or GRIN elements) separated by sections of free space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Bertero, P. Boccacci, Introduction to Inverse Problems in Imaging (Institute of Physics Publishing, London, 1998)

    Book  MATH  Google Scholar 

  2. R.W. Gerchberg, W.O. Saxton, A practical algorithm for the determination of the phase from image and diffraction plane pictures. Optik 35, 237–246 (1972)

    Google Scholar 

  3. M.R. Teague, Deterministic phase retrieval: a Green’s function solution. J. Opt. Soc. Am. 73(11), 1434–1441 (1983)

    Article  ADS  Google Scholar 

  4. M.R. Teague, Image formation in terms of transport equation. J. Opt. Soc. Am. A 2(11), 2019–2026 (1985)

    Article  ADS  Google Scholar 

  5. N. Streibl, Phase imaging by the transport equation of intensity. Opt. Commun. 49(1), 6–10 (1984)

    Article  ADS  Google Scholar 

  6. A. Barty, K.A. Nugent, D. Paganin, A. Roberts, Quantitative optical phase microscopy. Opt. Lett. 23(1), 817–819 (1998)

    Article  ADS  Google Scholar 

  7. M. Jayashree, G.K. Dutta, R.M. Vasu, Optical tomographic microscope for quantitative imaging of phase objects. Appl. Opt. 39, 277–283 (2000)

    Article  ADS  Google Scholar 

  8. F. Roddier, Wavefront sensing and the irradiance transport equation. Appl. Opt. 29, 1402–1403 (1990)

    Article  ADS  Google Scholar 

  9. K. Ichikawa, A.W. Lohmann, M. Takeda, Phase retrieval based on irradiance transport equation and the Fourier transport method. Appl. Opt. 27(16), 3433–3436 (1988)

    Article  ADS  Google Scholar 

  10. G.K. Datta, R.M. Vasu, Non-interferometric methods of phase estimation for application in optical tomography. J. Mod. Opt. 46(9), 1377–1388 (1999)

    Article  ADS  Google Scholar 

  11. D. Paganin, K.A. Nugent, Non-interferometric phase imaging with partially coherent light. Phys. Rev. Lett. 80(12), 2586–2589 (1998)

    Article  ADS  Google Scholar 

  12. T.E. Gureyev, A. Roberts, K.A. Nugent, Partially coherent fields, the transport-of-intensity equation, and the phase uniqueness. J. Opt. Soc. Am. A 12(9), 1942–1946 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  13. K.A. Nugent, X-ray non-interferometric phase imaging. J. Opt. Soc. Am. A 24(2), 536–547 (2007)

    Article  ADS  Google Scholar 

  14. J. Tu, S. Tomura, Wave field determination using tomography of the Ambiguity function. Phys. Rev. E 55(2), 1946–1949 (1997)

    Article  ADS  Google Scholar 

  15. J. Tu, S. Tomura, Analytical relation for recovering the mutual intensity by means of intensity information. J. Opt. Soc. Am. A 15(1), 202–206 (1998)

    Article  ADS  Google Scholar 

  16. D.F. McAlister, M. Beck, L. Clarke, A. Mayer, M.G. Raymer, Optical phase retrieval by phase-space tomography and fractional-order Fourier transforms. Opt. Lett. 20(10), 1181–1183 (1995)

    Article  ADS  Google Scholar 

  17. M.G. Raymer, M. Beck, D.F. McAlister, Complex-wavefield reconstruction using phase-space tomography. Phys. Rev. Lett. 72(8), 1137–1140 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. A. Semichaevsky, M. Testorf, Phase-space interpretation of deterministic phase retrieval. J. Opt. Soc. Am. A 21(11), 2173–2179 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  19. D. Dragoman, Redundancy of phase-space distribution functions in complex field recovery problems. Appl. Opt. 42(11), 1932–1937 (2003)

    Article  ADS  Google Scholar 

  20. T. Alieva, M.J. Bastiaans, Phase-space distributions in quasi-polar coordinates and the fractional Fourier transform. J. Opt. Soc. Am. A 17(12), 2324–2329 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  21. T. Alieva, M.J. Bastiaans, On fractional Fourier moments. IEEE Signal Process. Lett. 7(11), 320–323 (2000)

    Article  ADS  Google Scholar 

  22. T. Alieva, M.J. Bastiaans, L. Stankovic, Signal reconstruction from two close fractional Fourier power spectra. IEEE Trans. Signal Process. 51(1), 112–123 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  23. U. Gopinathan, G. Situ, T.J. Naughton, J.T. Sheridan, Non-interferometric phase retrieval using a fractional Fourier system. J. Opt. Soc. Am. A 25(1), 108–115 (2008)

    Article  ADS  Google Scholar 

  24. J. Frank, S. Altmeyer, G. Wernicke, Non-interferometric, non-iterative phase retrieval by Green’s function. J. Opt. Soc. Am. A 27, 2244–2251 (2010)

    Article  ADS  Google Scholar 

  25. L. Preda, Fractional derivative applied to the retrieval of phase information from an interferogram. Appl. Phys. B 108, 533–538 (2012)

    Article  ADS  Google Scholar 

  26. M.J. Bastiaans, Application of Wigner distribution function in optics, in Wigner Distribution—Theory and Applications in Signal Processing, ed. by W. Mecklenbraüker, F. Hlawatsch (Elsevier Science, Amsterdam, 1997), pp. 375–426

    Google Scholar 

  27. J.T. Sheridan, R. Patten, Holographic interferometry and the fractional Fourier transformation. Opt. Lett. 25, 448–450 (2000)

    Article  ADS  Google Scholar 

  28. J.T. Sheridan, B.M. Hennelly, D.P. Kelly, Motion detection, the Wigner Distribution Function and the optical fractional Fourier transform. Opt. Lett. 28, 884–886 (2003)

    Article  ADS  Google Scholar 

  29. D.P. Kelly, J.E. Ward, U. Gopinathan, B.M. Hennelly, F.T. O’Neill, J.T. Sheridan, Paraxial speckle based metrology system with an aperture. J. Opt. Soc. Am. A 23, 2861–2870 (2006)

    Article  ADS  Google Scholar 

  30. B.M. Hennelly, J.T. Sheridan, Generalizing, optimizing, and inventing numerical algorithms for the fractional Fourier, Fresnel and linear canonical transforms. J. Opt. Soc. Am. A 22(5), 917–927 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  31. L.Z. Cai, Y.Q. Yang, Optical implementation of scale invariant fractional Fourier transform of continuously variable orders with a two-lens system. Opt. Laser Technol. 34, 249–252 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John T. Sheridan .

Editor information

Editors and Affiliations

Appendix

Appendix

The AF can be written as:

$$ A\left(\overline{x},\overline{\nu}\right)={\displaystyle \int }f\left(x+\frac{\overline{x}}{2}\right){f}^{*}\left(x-\frac{\overline{x}}{2}\right) \exp \left(-j2\pi \overline{\nu}x\right)dx. $$
(11.A1)
$$ {\left.\frac{dA\left(\overline{x},\overline{\nu}\right)}{d\overline{x}}\right|}_{\overline{x}=0}={\displaystyle \int }{\left.\frac{d\left[f\left(x+\frac{\overline{x}}{2}\right){f}^{*}\left(x-\frac{\overline{x}}{2}\right)\right]}{d\overline{x}}\right|}_{\overline{x}=0} \exp \left(-j2\pi \overline{\nu}x\right)dx. $$
(11.A2)

Let \( f(x)=A(x) \exp \left[i\varphi (x)\right] \), then

$$\begin{array}{lll} f\left(x+\frac{\overline{x}}{2}\right){f}^{*}\left(x-\frac{\overline{x}}{2}\right)=A\left(x+\frac{\overline{x}}{2}\right)A\left(x-\frac{\overline{x}}{2}\right) \nonumber\\ \exp \left\{i\left[\varphi \left(x+\frac{\overline{x}}{2}\right)-\varphi \left(x-\frac{\overline{x}}{2}\right)\right]\right\}. \end{array}$$
(11.A3)

Differentiating both sides with respect to \( \overline{x} \)and substituting \( \overline{x}=0 \), we get:

$$ {\left.\frac{d\left[f\left(x+\frac{\overline{x}}{2}\right){f}^{*}\left(x-\frac{\overline{x}}{2}\right)\right]}{d\overline{x}}\right|}_{\overline{x}=0}=i{I}_0(x)\frac{d\varphi (x)}{dx}, $$
(11.A4)

where \( {I}_0(x)={\left|A(x)\right|}^2 \)

$$ {\left.\frac{dA\left(\overline{x},\overline{\nu}\right)}{d\overline{x}}\right|}_{\overline{x}=0}=i{\displaystyle \int }{I}_0(x)\frac{d\varphi (x)}{dx} \exp \left(-i2\pi \overline{\nu}x\right)dx. $$
(11.A5)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gopinathan, U., Healy, J.J., Kelly, D.P., Sheridan, J.T. (2016). Deterministic Phase Retrieval Using the LCT. In: Healy, J., Alper Kutay, M., Ozaktas, H., Sheridan, J. (eds) Linear Canonical Transforms. Springer Series in Optical Sciences, vol 198. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3028-9_11

Download citation

Publish with us

Policies and ethics