Skip to main content

Fast Algorithms for Digital Computation of Linear Canonical Transforms

  • Chapter
Linear Canonical Transforms

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 198))

Abstract

Fast and accurate algorithms for digital computation of linear canonical transforms (LCTs) are discussed. Direct numerical integration takes O(N 2) time, where N is the number of samples. Designing fast and accurate algorithms that take \(O(N\log N)\) time is of importance for practical utilization of LCTs. There are several approaches to designing fast algorithms. One approach is to decompose an arbitrary LCT into blocks, all of which have fast implementations, thus obtaining an overall fast algorithm. Another approach is to define a discrete LCT (DLCT), based on which a fast LCT (FLCT) is derived to efficiently compute LCTs. This strategy is similar to that employed for the Fourier transform, where one defines the discrete Fourier transform (DFT), which is then computed with the fast Fourier transform (FFT). A third, hybrid approach involves a DLCT but employs a decomposition-based method to compute it. Algorithms for two-dimensional and complex parametered LCTs are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.J. Bastiaans, Wigner distribution function and its application to first-order optics. J. Opt. Soc. Am. 69, 1710ā€“1716 (1979)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  2. A.E. Siegman, Lasers (University Science Books, Mill Valley, 1986)

    Google ScholarĀ 

  3. D.F.V. James, G.S. Agarwal, The generalized Fresnel transform and its application to optics. Opt. Commun.Ā 126(4ā€“6), 207ā€“212 (1996)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  4. C.Ā Palma, V.Ā Bagini, Extension of the Fresnel transform to ABCD systems. J. Opt. Soc. Am. A 14(8), 1774ā€“1779 (1997)

    ArticleĀ  MathSciNetĀ  ADSĀ  Google ScholarĀ 

  5. S.Ā Abe, J.T. Sheridan, Generalization of the fractional Fourier transformation to an arbitrary linear lossless transformation an operator approach. J. Phys. A Math. Gen. 27(12), 4179ā€“4187 (1994)

    ArticleĀ  MathSciNetĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  6. S.Ā Abe, J.T. Sheridan, Optical operations on wavefunctions as the Abelian subgroups of the special affine Fourier transformation. Opt. Lett. 19, 1801ā€“1803 (1994)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  7. J.Ā Hua, L.Ā Liu, G.Ā Li, Extended fractional Fourier transforms. J. Opt. Soc. Am. A 14(12), 3316ā€“3322 (1997)

    ArticleĀ  MathSciNetĀ  ADSĀ  Google ScholarĀ 

  8. K.B. Wolf, Construction and properties of canonical transforms, Chap.Ā 9, in Integral Transforms in Science and Engineering (Plenum Press, New York, 1979)

    Google ScholarĀ 

  9. E.Ā Hecht, Optics, 4th edn. (Addison Wesley, Reading, 2001)

    MATHĀ  Google ScholarĀ 

  10. H.M. Ozaktas, Z.Ā Zalevsky, M.A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing (Wiley, New York, 2001)

    Google ScholarĀ 

  11. M.J. Bastiaans, The Wigner distribution function applied to optical signals and systems. Opt. Commun. 25(1), 26ā€“30 (1978)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  12. M.J. Bastiaans, Applications of the Wigner distribution function in optics, in The Wigner Distribution: Theory and Applications in Signal Processing, ed. by W. MecklenbrƤuker, F.Ā Hlawatsch (Elsevier, Amsterdam, 1997), pp.Ā 375ā€“426

    Google ScholarĀ 

  13. M.Ā Moshinsky, Canonical transformations and quantum mechanics. SIAM J. Appl. Math. 25(2), 193ā€“212 (1973)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  14. C.Ā Jung, H.Ā Kruger, Representation of quantum mechanical wavefunctions by complex valued extensions of classical canonical transformation generators. J. Phys. A Math. Gen. 15, 3509ā€“3523 (1982)

    ArticleĀ  MathSciNetĀ  ADSĀ  Google ScholarĀ 

  15. B.Ā Davies, Integral Transforms and Their Applications (Springer, New York, 1978)

    BookĀ  MATHĀ  Google ScholarĀ 

  16. D.J. Griffiths, C.A. Steinke, Waves in locally periodic media. Am. J. Phys. 69(2), 137ā€“154 (2001)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  17. D.W.L. Sprung, H.Ā Wu, J.Ā Martorell, Scattering by a finite periodic potential. Am. J. Phys. 61(12), 1118ā€“1124 (1993)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  18. L.L. Sanchez-Soto, J.F. Carinena, A.G. Barriuso, J.J. Monzon, Vector-like representation of one-dimensional scattering. Eur. J. Phys. 26(3), 469ā€“480 (2005)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  19. S.Ā Baskal, Y.S. Kim, Lens optics as an optical computer for group contractions. Phys. Rev. E 67(5), 056601 (2003)

    Google ScholarĀ 

  20. S.Ā Baskal, Y.S. Kim, ABCD matrices as similarity transformations of Wigner matrices and periodic systems in optics. J. Opt. Soc. Am. A 26(9), 2049ā€“2054 (2009)

    ArticleĀ  MathSciNetĀ  ADSĀ  Google ScholarĀ 

  21. E.Ā Georgieva, Y.S. Kim, Slide-rule-like property of Wignerā€™s little groups and cyclic S matrices for multilayer optics. Phys. Rev. E 68(2), 026606 (2003)

    Google ScholarĀ 

  22. B.Ā Barshan, M.A. Kutay, H.M. Ozaktas, Optimal filtering with linear canonical transformations. Opt. Commun. 135(1ā€“3), 32ā€“36 (1997)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  23. S.C. Pei, J.J. Ding, Eigenfunction of linear canonical transform. IEEE Trans. Signal Process. 50, 11ā€“26 (2002)

    ArticleĀ  MathSciNetĀ  ADSĀ  Google ScholarĀ 

  24. T.Ā Alieva, M.J. Bastiaans, Properties of the canonical integral transformation. J. Opt. Soc. Am. A 24, 3658ā€“3665 (2007)

    ArticleĀ  MathSciNetĀ  ADSĀ  Google ScholarĀ 

  25. M.J. Bastiaans, T.Ā Alieva, Classification of lossless first-order optical systems and the linear canonical transformation. J. Opt. Soc. Am. A 24, 1053ā€“1062 (2007)

    ArticleĀ  MathSciNetĀ  ADSĀ  Google ScholarĀ 

  26. J.Ā Rodrigo, T.Ā Alieva, M.Ā Luisa Calvo, Optical system design for orthosymplectic transformations in phase space. J. Opt. Soc. Am. A 23, 2494ā€“2500 (2006)

    ArticleĀ  ADSĀ  MathSciNetĀ  Google ScholarĀ 

  27. R.Ā Simon, K.B. Wolf, Structure of the set of paraxial optical systems. J. Opt. Soc. Am. AĀ 17(2), 342ā€“355 (2000)

    ArticleĀ  MathSciNetĀ  ADSĀ  Google ScholarĀ 

  28. K.B. Wolf, Canonical transformations I. Complex linear transforms. J. Math. Phys. 15(8), 1295ā€“1301 (1974)

    MATHĀ  Google ScholarĀ 

  29. K.B. Wolf, On self-reciprocal functions under a class of integral transforms. J. Math. Phys. 18(5), 1046ā€“1051 (1977)

    ArticleĀ  ADSĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  30. A.Ā Torre, Linear and radial canonical transforms of fractional order. J. Comput. Appl. Math. 153, 477ā€“486 (2003)

    ArticleĀ  MathSciNetĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  31. K.K. Sharma, Fractional Laplace Transform. Signal Image Video Process. 4(3), 377ā€“379 (2009)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  32. C.C. Shih, Optical interpretation of a complex-order Fourier transform. Opt. Lett. 20(10), 1178ā€“1180 (1995)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  33. L.M. Bernardo, O.D.D. Soares, Optical fractional Fourier transforms with complex orders. Appl. Opt. 35(17), 3163ā€“3166 (1996)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  34. C.Ā Wang, B.Ā Lu, Implementation of complex-order Fourier transforms in complex ABCD optical systems. Opt. Commun. 203(1ā€“2), 61ā€“66 (2002)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  35. L.M. Bernardo, Talbot self-imaging in fractional Fourier planes of real and complex orders. Opt. Commun. 140, 195ā€“198 (1997)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  36. N.M. Atakishiyev, K.B. Wolf, Fractional Fourierā€“Kravchuk transform. J. Opt. Soc. Am. AĀ 14(7), 1467ā€“1477 (1997)

    ArticleĀ  MathSciNetĀ  ADSĀ  Google ScholarĀ 

  37. S.C. Pei, M.H. Yeh, Improved discrete fractional Fourier transform. Opt. Lett. 22(14), 1047ā€“1049 (1997)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  38. N.M. Atakishiyev, S.M. Chumakov, K.B. Wolf, Wigner distribution function for finite systems. J. Math. Phys. 39(12), 6247ā€“6261 (1998)

    ArticleĀ  MathSciNetĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  39. N.M. Atakishiyev, L.E. Vicent, K.B. Wolf, Continuous vs. discrete fractional Fourier transforms. J. Comput. Appl. Math. 107(1), 73ā€“95 (1999)

    Google ScholarĀ 

  40. S.C. Pei, M.H. Yeh, C.C. Tseng, Discrete fractional Fourier transform based on orthogonal projections. IEEE Trans. Signal Process. 47(5), 1335ā€“1348 (1999)

    ArticleĀ  MathSciNetĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  41. S.C. Pei, M.H. Yeh, T.L. Luo, Fractional Fourier series expansion for finite signals and dual extension to discrete-time fractional Fourier transform. IEEE Trans. Signal Process. 47(10), 2883ā€“2888 (1999)

    ArticleĀ  MathSciNetĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  42. T.Ā Erseghe, P.Ā Kraniauskas, G.Ā Carioraro, Unified fractional Fourier transform and sampling theorem. IEEE Trans. Signal Process. 47(12), 3419ā€“3423 (1999)

    ArticleĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  43. M.A. Kutay, H.Ā Ozaktas, H.M. Ozaktas, O.Ā Arikan, The fractional Fourier domain decomposition. Signal Process. 77(1), 105ā€“109 (1999)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  44. A.I. Zayed, A.G. GarcÄ·a, New sampling formulae for the fractional Fourier transform. Signal Process. 77(1), 111ā€“114 (1999)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  45. C.Ā Candan, M.A. Kutay, H.M. Ozaktas, The discrete fractional Fourier transform. IEEE Trans. Signal Process. 48(5), 1329ā€“1337 (2000)

    ArticleĀ  MathSciNetĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  46. I.S. Yetik, M.A. Kutay, H.Ā Ozaktas, H.M. Ozaktas, Continuous and discrete fractional Fourier domain decomposition, in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSPā€™00), vol. 1 (2000), pp. 93ā€“96

    Google ScholarĀ 

  47. S.C. Pei, M.H. Yeh, The discrete fractional cosine and sine transforms. IEEE Trans. Signal Process. 49(6), 1198ā€“1207 (2001)

    ArticleĀ  MathSciNetĀ  ADSĀ  Google ScholarĀ 

  48. G.Ā Cariolaro, T.Ā Erseghe, P.Ā Kraniauskas, The fractional discrete cosine transform. IEEE Trans. Signal Process. 50(4), 902ā€“911 (2002)

    ArticleĀ  MathSciNetĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  49. L.Ā Barker, Continuum quantum systems as limits of discrete quantum systems, IV. Affine canonical transforms. J. Math. Phys. 44(4), 1535ā€“1553 (2003)

    MathSciNetĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  50. C.Ā Candan, H.M. Ozaktas, Sampling and series expansion theorems for fractional Fourier and other transforms. Signal Process. 83(11), 2455ā€“2457 (2003)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  51. J.G. Vargas-Rubio, B.Ā Santhanam, On the multiangle centered discrete fractional Fourier transform. IEEE Signal Process. Lett. 12(4), 273ā€“276 (2005)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  52. M.H. Yeh, Angular decompositions for the discrete fractional signal transforms. Signal Process. 85(3), 537ā€“547 (2005)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  53. K.B. Wolf, Finite systems, fractional Fourier transforms and their finite phase spaces. Czech. J. Phys. 55, 1527ā€“1534 (2005)

    ArticleĀ  ADSĀ  MathSciNetĀ  Google ScholarĀ 

  54. K.B. Wolf, Finite systems on phase space. J. Mod. Phys. B 20(11), 1956ā€“1967 (2006)

    ArticleĀ  ADSĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  55. K.B. Wolf, G.Ā Krƶtzsch, Geometry and dynamics in the fractional discrete Fourier transform. J. Opt. Soc. Am. A 24(3), 651ā€“658 (2007)

    ArticleĀ  ADSĀ  MathSciNetĀ  Google ScholarĀ 

  56. D.Ā Mendlovic, Z.Ā Zalevsky, N.Ā Konforti, Computation considerations and fast algorithms for calculating the diffraction integral. J. Mod. Opt. 44(2), 407ā€“414 (1997)

    ArticleĀ  MathSciNetĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  57. D.Ā Mas, J.Ā Garcia, C.Ā Ferreira, L.M. Bernardo, F.Ā Marinho, Fast algorithms for free-space diffraction patterns calculation. Opt. Commun. 164(4ā€“6), 233ā€“245 (1999)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  58. J.W. Cooley, J.W. Tukey, An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297ā€“301 (1965)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  59. H.M. Ozaktas, O.Ā Arıkan, M.A. Kutay, G.Ā Bozdağı, Digital computation of the fractional Fourier transform. IEEE Trans. Signal Process. 44, 2141ā€“2150 (1996)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  60. M.J. Bastiaans, The Wigner distribution function and Hamiltonā€™s characteristics of a geometric-optical system. Opt. Commun. 30(3), 321ā€“326 (1979)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  61. F.S. Oktem, H.M. Ozaktas, Equivalence of linear canonical transform domains to fractional Fourier domains and the bicanonical width product: a generalization of the space-bandwidth product. J. Opt. Soc. Am. A 27(8), 1885ā€“1895 (2010)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  62. F.Ā Hlawatsch, G.F. Boudreaux-Bartels, Linear and quadratic time-frequency signal representations. IEEE Signal Process. Mag. 9(2), 21ā€“67 (1992)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  63. L.Ā Cohen, Time-Frequency Analysis (Prentice Hall, Englewood Cliffs, 1995)

    Google ScholarĀ 

  64. H.M. Ozaktas, A.Ā KoƧ, I.Ā Sari, M.A. Kutay, Efficient computation of quadratic-phase integrals in optics. Opt. Lett. 31, 35ā€“37 (2006)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  65. A.Ā KoƧ, H.M. Ozaktas, C.Ā Candan, M.A. Kutay, Digital computation of linear canonical transforms. IEEE Trans. Signal Process. 56(6), 2383ā€“2394 (2008)

    ArticleĀ  MathSciNetĀ  ADSĀ  Google ScholarĀ 

  66. H.M. Ozaktas, M.F. Erden, Relationships among ray optical, Gaussian beam, and fractional Fourier transform descriptions of first-order optical systems. Opt. Commun. 143, 75ā€“86 (1997)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  67. T.Ā Alieva, M.J. Bastiaans, Alternative representation of the linear canonical integral transform. Opt. Lett. 30(24), 3302ā€“3304 (2005)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  68. M.J. Bastiaans, T.Ā Alieva, Synthesis of an arbitrary ABCD systemwith fixed lens positions. Opt. Lett. 31, 2414ā€“2416 (2006)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  69. B.M. Hennelly, J.T. Sheridan, Generalizing, optimizing, and inventing numerical algorithms for the fractional Fourier, Fresnel, and linear canonical transforms. J. Opt. Soc. Am. A 22, 917ā€“927 (2005)

    ArticleĀ  MathSciNetĀ  ADSĀ  Google ScholarĀ 

  70. X.Ā Yang, Q.Ā Tan, X.Ā Wei, Y.Ā Xiang, Y.Ā Yan, G.Ā Jin, Improved fast fractional-Fourier-transform algorithm. J. Opt. Soc. Am. A 21(9), 1677ā€“1681 (2004)

    ArticleĀ  MathSciNetĀ  ADSĀ  Google ScholarĀ 

  71. J.Ā GarcĆ­a, D.Ā Mas, R.G. Dorsch, Fractional-Fourier-transform calculation through the fast-Fourier-transform algorithm. Appl. Opt. 35(35), 7013ā€“7018 (1996)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  72. F.J. Marinho, L.M. Bernardo, Numerical calculation of fractional Fourier transforms with a single fast-Fourier-transform algorithm. J. Opt. Soc. Am. A 15(8), 2111ā€“2116 (1998)

    ArticleĀ  MathSciNetĀ  ADSĀ  Google ScholarĀ 

  73. X.Ā Liu, K.H. Brenner, Minimal optical decomposition of ray transfer matrices. Appl. Opt. 47(22), E88ā€“E98 (2008)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  74. B.M. Hennelly, J.T. Sheridan, Fast numerical algorithm for the linear canonical transform. J.Ā Opt. Soc. Am. A 22, 928ā€“937 (2005)

    ArticleĀ  MathSciNetĀ  ADSĀ  Google ScholarĀ 

  75. S.C. Pei, J.J. Ding, Closed-form discrete fractional and affine Fourier transforms. IEEE Trans. Signal Process. 48, 1338ā€“1353 (2000)

    ArticleĀ  MathSciNetĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  76. J.J. Healy, J.T. Sheridan, Fast linear canonical transforms. J. Opt. Soc. Am. A 27(1), 21ā€“30 (2010)

    ArticleĀ  MathSciNetĀ  ADSĀ  Google ScholarĀ 

  77. A.Ā Stern, Why is the linear canonical transform so little known?, in AIP Conference Proceedings, 2006, pp. 225ā€“234

    Google ScholarĀ 

  78. F.S. Oktem, H.M. Ozaktas, Exact relation between continuous and discrete linear canonical transforms. IEEE Signal Process. Lett. 16(8), 727ā€“730 (2009)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  79. J.J. Healy, B.M. Hennelly, J.T. Sheridan, Additional sampling criterion for the linear canonical transform. Opt. Lett. 33(22), 2599ā€“2601 (2008)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  80. J.J. Healy, J.T. Sheridan, Sampling and discretization of the linear canonical transform. Signal Process. 89(4), 641ā€“648 (2009)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  81. A.Ā Papoulis, Signal Analysis (McGraw-Hill, New York, 1977)

    MATHĀ  Google ScholarĀ 

  82. J.J. Healy, J.T. Sheridan, Cases where the linear canonical transform of a signal has compact support or is band-limited. Opt. Lett. 33(3), 228ā€“230 (2008)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  83. A.Ā KoƧ, H.M. Ozaktas, L.Ā Hesselink, Fast and accurate computation of two-dimensional non-separable quadratic-phase integrals. J. Opt. Soc. Am. A 27(6), 1288ā€“1302 (2010)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  84. F.S. Oktem, Signal representation and recovery under partial information, redundancy, and generalized finite extent constraints. M.S. thesis, Bilkent University, Turkey, 2009

    Google ScholarĀ 

  85. J.J. Healy, J.T. Sheridan, Reevaluation of the direct method of calculating Fresnel and other linear canonical transforms. Opt. Lett. 35(7), 947ā€“949 (2010)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  86. R.G. Campos, J.Ā Figueroa, A fast algorithm for the linear canonical transform. Signal Process. 91(6), 1444ā€“1447 (2011)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  87. A.Ā Sahin, H.M. Ozaktas, D.Ā Mendlovic, Optical implementations of two-dimensional fractional Fourier transforms and linear canonical transforms with arbitrary parameters. Appl. Opt. 37, 2130ā€“2141 (1998)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  88. M.Ā Moshinsky, C.Ā Quesne, Linear canonical transformations and their unitary representations. J. Math. Phys. 12(8), 1772ā€“1780 (1971)

    ArticleĀ  MathSciNetĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  89. M.Ā Nazarathy, J.Ā Shamir, First-order opticsā€”a canonical operator representation: lossless systems. J. Opt. Soc. Am. 72(3), 356ā€“364 (1982)

    ArticleĀ  MathSciNetĀ  ADSĀ  Google ScholarĀ 

  90. A.Ā Sahin, H.M. Ozaktas, D.Ā Mendlovic, Optical implementation of the two-dimensional fractional Fourier transform with different orders in the two dimensions. Opt. Commun. 120, 134ā€“138 (1995)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  91. M.F. Erden, H.M. Ozaktas, A.Ā Sahin, D.Ā Mendlovic, Design of dynamically adjustable anamorphic fractional Fourier transformer. Opt. Commun. 136(1ā€“2), 52ā€“60 (1997)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  92. E.G. Abramochkin, V.G. Volostnikov, Generalized Gaussian beams. J. Opt. A Pure Appl. Opt. 6, S157ā€“S161 (2004)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  93. L.Ā Allen, M.W. Beijersbergen, R.K.C. Spreeuw, J.P. Woerdman, Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45(11), 8185ā€“8189 (1992)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  94. R.Ā Pratesi, L.Ā Ronchi, Generalized Gaussian beams in free space. J. Opt. Soc. Am. 67(9), 1274ā€“1276 (1977)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  95. J.A. Rodrigo, T.Ā Alieva, M.L. Calvo, Experimental implementation of the gyrator transform. J. Opt. Soc. Am. A 24(10), 3135ā€“3139 (2007)

    ArticleĀ  MathSciNetĀ  ADSĀ  Google ScholarĀ 

  96. J.A. Rodrigo, T.Ā Alieva, M.L. Calvo, Gyrator transform: properties and applications. Opt. Express 15(5), 2190ā€“2203 (2007)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  97. J.A. Rodrigo, T.Ā Alieva, M.L. Calvo, Applications of gyrator transform for image processing. Opt. Commun. 278(2), 279ā€“284 (2007)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  98. K.B. Wolf, T.Ā Alieva, Rotation and gyration of finite two-dimensional modes. J. Opt. Soc. Am. A 25(2), 365ā€“370 (2008)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  99. K.B. Wolf, Geometric Optics on Phase Space (Springer, Berlin, 2004)

    MATHĀ  Google ScholarĀ 

  100. G.B. Folland, Harmonic Analysis in Phase Space (Princeton University Press, Princeton, 1989)

    MATHĀ  Google ScholarĀ 

  101. J. Ding, S.Ā Pei, C.Ā Liu, Improved implementation algorithms of the two-dimensional nonseparable linear canonical transform. J. Opt. Soc. Am. A 29(8), 1615ā€“1624 (2012)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  102. K.B. Wolf, Canonical transformations II. Complex radial transforms. J. Math. Phys. 15(12), 2102ā€“2111 (1974)

    MATHĀ  Google ScholarĀ 

  103. P.Ā Kramer, M.Ā Moshinsky, T.H. Seligman, Complex extensions of canonical transformations and quantum mechanics, in Group Theory and Its Applications, vol.Ā 3, ed. by E.M. Loebl (Academic, New York, 1975), pp. 249ā€“332

    Google ScholarĀ 

  104. A.A. Malyutin, Complex-order fractional Fourier transforms in optical schemes with Gaussian apertures. Quantum Electron. 34(10), 960ā€“964 (2004)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  105. A.Ā KoƧ, H.M. Ozaktas, L.Ā Hesselink, Fast and accurate algorithm for the computation of complex linear canonical transforms. J. Opt. Soc. Am. A 27(9), 1896ā€“1908 (2010)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  106. C.Ā Liu, D.Ā Wang, J.J. Healy, B.M. Hennelly, J.T. Sheridan, M.K. Kim, Digital computation of the complex linear canonical transform. J. Opt. Soc. Am. A 28(7), 1379ā€“1386 (2011)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  107. Y.Ā Liu, Fast evaluation of canonical oscillatory integrals. Appl. Math. Inf. Sci. 6(2), 245ā€“251 (2012)

    MathSciNetĀ  Google ScholarĀ 

Download references

Acknowledgement

H.M. Ozaktas acknowledges partial support of the Turkish Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aykut KoƧ .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

KoƧ, A., Oktem, F.S., Ozaktas, H.M., Kutay, M.A. (2016). Fast Algorithms for Digital Computation of Linear Canonical Transforms. In: Healy, J., Alper Kutay, M., Ozaktas, H., Sheridan, J. (eds) Linear Canonical Transforms. Springer Series in Optical Sciences, vol 198. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3028-9_10

Download citation

Publish with us

Policies and ethics