Skip to main content

Towards Human Oxygen Images with Electron Paramagnetic Resonance Imaging

  • Conference paper

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 876))

Abstract

Electron paramagnetic resonance imaging (EPRI) has been used to noninvasively provide 3D images of absolute oxygen concentration (pO2) in small animals. These oxygen images are well resolved both spatially (~1 mm) and in pO2 (1–3 mmHg). EPRI preclinical images of pO2 have demonstrated extremely promising results for various applications investigating oxygen related physiologic and biologic processes as well as the dependence of various disease states on pO2, such as the role of hypoxia in cancer.

Recent developments have been made that help to progress EPRI towards the eventual goal of human application. For example, a bimodal crossed-wire surface coil has been developed. Very preliminary tests demonstrated a 20 dB isolation between transmit and receive for this coil, with an anticipated additional 20 dB achievable. This could potentially be used to image local pO2 in human subjects with superficial tumors with EPRI. Local excitation and detection will reduce the specific absorption rate limitations on images and eliminate any possible power deposition concerns. Additionally, a large 9 mT EPRI magnet has been constructed which can fit and provide static main and gradient fields for imaging local anatomy in an entire human. One potential obstacle that must be overcome in order to use EPRI to image humans is the approved use of the requisite EPRI spin probe imaging agent (trityl). While nontoxic, EPRI trityl spin probes have been injected intravenously when imaging small animals, and require relatively high total body injection doses that would not be suitable for human imaging applications. Work has been done demonstrating the alternative use of intratumoral (IT) injections, which can reduce the amount of trityl required for imaging by a factor of 2000- relative to a whole body intravenous injection.

The development of a large magnet that can accommodate human subjects, the design of a surface coil for imaging of superficial pO2, and the reduction of required spin probe using IT injections all are crucial steps towards the eventual use of EPRI to image pO2 in human subjects. In the future this can help investigate the oxygenation status of superficial tumors (e.g., breast tumors). The ability to image pO2 in humans has many other potential applications to diseases such as peripheral vascular disease, heart disease, and stroke.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Elas M, Bell R, Hleihel D et al (2008) Electron paramagnetic resonance oxygen image hypoxic fraction plus radiation dose strongly correlates with tumor cure in FSa fibrosarcomas. Int J Radiat Oncol Biol Phys 71:542–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Epel B, Bowman MK, Mailer C, Halpern HJ (2014) Absolute oxygen R1e imaging in vivo with pulse electron paramagnetic resonance. Magn Reson Med 72:362–368

    Article  PubMed  Google Scholar 

  3. Overgaard J (2007) Hypoxic radiosensitization: adored and ignored. J Clin Oncol 25:4066–4074

    Article  PubMed  Google Scholar 

  4. Epel B, Sundramoorthy SV, Mailer C, Halpern HJ (2008) A versatile high speed 250‐MHz pulse imager for biomedical applications. Concepts Magn Reson Part B Magn Reson Eng 33B:163–176

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Supported by NIH grants P41 EB002034 and R01 CA98575.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard J. Halpern .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media, New York

About this paper

Cite this paper

Epel, B., Redler, G., Tormyshev, V., Halpern, H.J. (2016). Towards Human Oxygen Images with Electron Paramagnetic Resonance Imaging. In: Elwell, C.E., Leung, T.S., Harrison, D.K. (eds) Oxygen Transport to Tissue XXXVII. Advances in Experimental Medicine and Biology, vol 876. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3023-4_45

Download citation

Publish with us

Policies and ethics