Preoperative Stress Conditioning in Humans: Is Oxygen the Drug of Choice?

  • G. A. PerdrizetEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 876)


Complications following invasive medical and surgical procedures are common and costly. No clinical protocols exist to actively condition patients prior to these high risk interventions. Effective preconditioning algorithms have been repeatedly demonstrated in animal models for more than a quarter century, where brief exposures to hyperthermia (heat shock), ischemia (ischemic preconditioning) or hypoxia have been employed. Heat shock pretreatment confers protection against experimental acute ischemia-reperfusion, endotoxin challenge and other stressors. The resulting state of protection is short lived (hours) and is associated with new gene expression, typical of a cell stress response (CSR). We aim to use the CSR to actively precondition patients before surgery, a process termed stress conditioning (SC). SC is a procedure in which tissues are briefly exposed to a conditioning stressor and recovered to permit the development of a transient state of resistance to ischemia-reperfusion injury. Successful SC of humans prior to surgery may reduce postoperative complications related to periods of hypotension, hypoxia, or ischemia. Stressors such as heat shock, acute ischemia, endotoxin, heavy metals or hypoxia can induce this protected state but are themselves harmful and of limited clinical utility. The identification of a stressor that could induce the CSR in a non-harmful manner seemed unlikely, until high dose oxygen was considered. Human microvascular endothelial cells (HMEC-1) exposed to high dose oxygen at 2.4 ATA × 60–90 min developed increased resistance to an oxidant challenge in vitro (peroxide). The molecular changes described here, together with our understanding of the CSR and SC phenomena, suggest high dose oxygen may be the drug of choice for clinical preconditioning protocols and should be systematically tested in clinical trials. Oxygen dosing includes the following ranges: room air exposure is 0.21 ATA, clinical oxygen therapy 0.3–1.0 ATA (normobaric hyperoxia) and hyperbaric oxygen is 1.5–3.0 ATA (ATA—atmosphere absolute).


Heat shock Hyperbaric oxygen Stress response Ischemia Reperfusion Adverse events Molecular chaperones Preconditioning 


  1. 1.
    Bracton 1240 (1966) Oxford dictionary of English proverbs (De Legibus), 2nd edn. Clarendon Press, Glocestershire, UK, p 251Google Scholar
  2. 2.
    Bartels K, Karhausen J, Clambey ET et al (2013) Perioperative organ injury. Anesthesiology 119(6):1474–1489CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Nearman H, Klick JC, Eisenberg P, Pesa N (2014) Perioperative complications of cardiac surgery and postoperative care. Crit Care Clin 30(3):527–555CrossRefPubMedGoogle Scholar
  4. 4.
    Levinson DR (2010) Adverse events in hospitals: national incidence among medicare beneficiaries. OIG, Department of Health and Human Services, OEI 06-09-00090,
  5. 5.
    Vincent C, Neale G, Woloshynowych M (2001) Adverse events in British hospitals: preliminary retrospective record review. BMJ 322:517–519CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wilson RM, Runciman WB, Gibberd RW et al (1995) The quality in Australian health care study. Med J Aust 163:458–471PubMedGoogle Scholar
  7. 7.
    Tarakji KG, Sabik JF 3rd, Bhudia SK et al (2011) Temporal onset, risk factors, and outcomes associated with stroke after coronary artery bypass grafting. JAMA 305(4):381–390CrossRefPubMedGoogle Scholar
  8. 8.
    Ovize M, Thibault H, Przyklenk K (2013) Myocardial conditioning: opportunities for clinical translation. Circ Res 113(4):439–450CrossRefPubMedGoogle Scholar
  9. 9.
    Dezfulian C, Garrett M, Gonzalez NR (2013) Clinical application of preconditioning and postconditioning to achieve neuroprotection. Transl Stroke Res 4(1):19–24CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Perdrizet GA (1997) Heat shock response and organ preservation: models of stress conditioning. R.G. Landes/Chapman and Hall, Austin/New YorkGoogle Scholar
  11. 11.
    Perdrizet GA, Rewinski MJ, Noonan EJ, Hightower LE (2007) The biology of the heat shock response and stress conditioning. In: Calderwood S (ed) Protein reviews, cell stress proteins. Springer, New York, pp 7–56CrossRefGoogle Scholar
  12. 12.
    Henle KJ, Dethlefsen LA (1978) Heat fractionation and thermotolerance: a review. Cancer Res 38:1843–1851PubMedGoogle Scholar
  13. 13.
    Perdrizet GA, Heffron TG, Buckingham FC et al (1989) Stress conditioning: a novel approach to organ preservation. Curr Surg 46:23–26PubMedGoogle Scholar
  14. 14.
    Perdrizet GA, Lena CJ, Shapiro D, Rewinski MJ (2002) Preoperative stress conditioning prevents paralysis following experimental aortic surgery. J Thorac Cardiovasc Surg 124:162–170CrossRefPubMedGoogle Scholar
  15. 15.
    Perdrizet GA (1997) Heat shock response and organ preservation: models of stress conditioning, medical intelligence unit. RG Landes, AustinGoogle Scholar
  16. 16.
    Perdrizet GA (1995) Heat shock and tissue protection. New Horiz 3:312–320PubMedGoogle Scholar
  17. 17.
    Landry J, Bernier D, Chrétien P et al (1982) Synthesis and degradation of heat shock proteins during development and decay of thermotolerance. Cancer Res 42:2457–2461PubMedGoogle Scholar
  18. 18.
    Urano M (1986) Kinetics of thermotolerance in normal and tumor tissues: a review. Cancer Res 46:474–482PubMedGoogle Scholar
  19. 19.
    Crile G Jr (1963) The effects of heat and radiation on cancers implanted on the feet of mice. Cancer Res 23:372–380PubMedGoogle Scholar
  20. 20.
    Ritossa F (1964) Experimental activation of specific loci in polytene chromosomes of Drosophila. Exp Cell Res 35:601–607CrossRefPubMedGoogle Scholar
  21. 21.
    Schlesinger MJ, Ashburner J, Tissières A (eds) (1982) Heat shock from bacteria to man. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  22. 22.
    Lindquist S (1986) The heat-shock response. Annu Rev Biochem 55:1151–1191CrossRefPubMedGoogle Scholar
  23. 23.
    Voellmy R, Boellman F (2007) Chaperone regulation of heat shock protein response. In: Csermely P, Vigh L (eds) Molecular aspects of the stress response: chaperones, membranes and networks. Landes Bioscience/Springer Science + Business Media, Austin/New York, pp 89–99CrossRefGoogle Scholar
  24. 24.
    Selye H (1936) A syndrome produced by diverse nocuous agents. Nature 138:32Google Scholar
  25. 25.
    Hightower LE, Guidon PT, Whelan SA et al (1985) Stress responses in avian and mammalian cells. In: Atkinson BC, Walden DB (eds) Changes in eukaryotic gene expression in response to environmental stress. Academic, Orlando, pp 197–210CrossRefGoogle Scholar
  26. 26.
    Selye H (1976) Stress in health and disease. Butterworth, BostonGoogle Scholar
  27. 27.
    Perdrizet GA (1997) Hans Selye and beyond: responses to stress. Cell Stress Chaperones 2(4):1–6CrossRefGoogle Scholar
  28. 28.
    Neely JR, Grotyohann LW (1984) Role of glycolytic products in damage to ischemic myocardium. Circ Res 55:816–824CrossRefPubMedGoogle Scholar
  29. 29.
    Kato H, Liu Y, Araki T, Kogure K (1991) Temporal profile of the effects of pretreatment with brief cerebral ischemia on the neuronal damage following secondary ischemic insult in the gerbil: cumulative damage and protective effects. Brain Res 553(2):238–242CrossRefPubMedGoogle Scholar
  30. 30.
    Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74(5):1124–1136CrossRefPubMedGoogle Scholar
  31. 31.
    Zhao H (2013) Hurdles to clear before clinical translation of ischemic post conditioning against stroke. Transl Stroke Res 4(1):63–70CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Frank L, Yam J, Roberts RJ (1978) The role of endotoxin in protection of adult rats from oxygen-induced lung toxicity. J Clin Invest 61:269–275CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Brown JM, Grosso M, Terada LS et al (1989) Endotoxin pretreatment increases endogenous myocardial catalase activity and decreases ischemia-reperfusion injury of isolated rat hearts. Proc Natl Acad Sci U S A 86:2516–2520CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    White CW, Ghezzi P, McMahon S et al (1989) Cytokines increase rat lung antioxidant enzymes during exposure to hyperoxia. J Appl Physiol 66(2):1003–1007CrossRefPubMedGoogle Scholar
  35. 35.
    Lin H, Chang CP, Lin HJ, Lin MT, Tsai CC (2012) Attenuating brain edema, hippocampal oxidative stress, and cognitive dysfunction in rats using hyperbaric oxygen preconditioning during simulated high-altitude exposure. J Trauma Acute Care Surg 72(5):1220–1227CrossRefPubMedGoogle Scholar
  36. 36.
    Shinkai M, Shinohia N, Kanoh S et al (2004) Oxygen stress effects proliferation rates and heat shock proteins in lymphocytes. Aviat Space Environ Med 75:109–113PubMedGoogle Scholar
  37. 37.
    Frank L, Massaro D (1980) Oxygen toxicity. Am J Med 69(1):117–126CrossRefPubMedGoogle Scholar
  38. 38.
    Clark JM, Lambertsen CJ, Gelfand R, Troxel AB (2006) Optimization of oxygen tolerance extension in rats by intermittent exposure. J Appl Physiol (1985) 100(3):869–879Google Scholar
  39. 39.
    Hendricks PL, Hall DA, Hunter WL Jr, Haley PJ (1977) Extension of pulmonary O2 tolerance in man at 2 ATA by intermittent O2 exposure. J Appl Physiol Respir Environ Exerc Physiol 42(4):593–599PubMedGoogle Scholar
  40. 40.
    Godman CA et al (2010) Hyperbaric oxygen induces a cytoprotective and angiogenic response in human microvascular endothelial cells. Cell Stress Chaperones 15:431–442CrossRefPubMedGoogle Scholar
  41. 41.
    Godman CA et al (2010) Hyperbaric oxygen treatment induces antioxidant gene expression. Ann N Y Acad Sci 1197:178–183CrossRefPubMedGoogle Scholar
  42. 42.
    Chen MF, Chen HM, Ueng SW, Shyr MH (1998) Hyperbaric oxygen pretreatment attenuates hepatic reperfusion injury. Liver 18(2):110–116CrossRefPubMedGoogle Scholar
  43. 43.
    Wada K, Ito M, Miyazawa T et al (1996) Repeated hyperbaric oxygen induces ischemic tolerance in gerbil hippocampus. Brain Res 740(1–2):15–20CrossRefPubMedGoogle Scholar
  44. 44.
    Wang L, Li W, Kang Z et al (2009) Hyperbaric oxygen preconditioning attenuates early apoptosis after spinal cord ischemia in rats. J Neurotrauma 26(1):55–66CrossRefPubMedGoogle Scholar
  45. 45.
    Sun L, Xie K, Zhang C et al (2014) Hyperbaric oxygen preconditioning attenuates postoperative cognitive impairment in aged rats. Neuroreport 25(9):718–724CrossRefPubMedGoogle Scholar
  46. 46.
    Kim CH, Choi H, Chun YS et al (2001) Hyperbaric oxygenation pretreatment induces catalase and reduces infarct size in ischemic rat myocardium. Pflugers Arch 442(4):519–525CrossRefPubMedGoogle Scholar
  47. 47.
    Kang N, Hai Y, Liang F et al (2014) Preconditioned hyperbaric oxygenation protects skin flap grafts in rats against ischemia/reperfusion injury. Mol Med Rep 9(6):2124–2130CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Cabigas BP, Su J, Hutchins W et al (2006) Hyperoxic and hyperbaric-induced cardioprotection: role of nitric oxide synthase 3. Cardiovasc Res 72(1):143–151CrossRefPubMedGoogle Scholar
  49. 49.
    Dong H, Xiong L, Zhu Z et al (2002) Preconditioning with hyperbaric oxygen and hyperoxia induces tolerance against spinal cord ischemia in rabbits. Anesthesiology 96(4):907–912CrossRefPubMedGoogle Scholar
  50. 50.
    Nie H, Xiong L, Lao N et al (2006) Hyperbaric oxygen preconditioning induces tolerance against spinal cord ischemia by upregulation of antioxidant enzymes in rabbits. J Cereb Blood Flow Metab 26(5):666–674CrossRefPubMedGoogle Scholar
  51. 51.
    He X, Xu X, Fan M et al (2011) Preconditioning with hyperbaric oxygen induces tolerance against renal ischemia-reperfusion injury via increased expression of heme oxygenase-1. J Surg Res 170(2):e271–e277CrossRefPubMedGoogle Scholar
  52. 52.
    Yamashita S, Hirata T, Mizukami Y et al (2009) Repeated preconditioning with hyperbaric oxygen induces neuroprotection against forebrain ischemia via suppression of p38 mitogen activated protein kinase. Brain Res 1301:171–179CrossRefPubMedGoogle Scholar
  53. 53.
    Li Y, Dong H, Chen M et al (2011) Preconditioning with repeated hyperbaric oxygen induces myocardial and cerebral protection in patients undergoing coronary artery bypass graft surgery: a prospective, randomized, controlled clinical trial. J Cardiothorac Vasc Anesth 25(6):908–916CrossRefPubMedGoogle Scholar
  54. 54.
    Yogaratnam JZ, Laden G, Guvendik L et al (2010) Hyperbaric oxygen preconditioning improves myocardial function, reduces length of intensive care stay, and limits complications post coronary artery bypass graft surgery. Cardiovasc Revasc Med 11(1):8–19CrossRefPubMedGoogle Scholar
  55. 55.
    Jeysen ZY, Gerard L, Levant G et al (2011) Research report: the effects of hyperbaric oxygen preconditioning on myocardial biomarkers of cardioprotection in patients having coronary artery bypass graft surgery. Undersea Hyperb Med 38(3):175–185PubMedGoogle Scholar
  56. 56.
    Alex J, Laden G, Cale AR et al (2005) Pretreatment with hyperbaric oxygen and its effect on neuropsychometric dysfunction and systemic inflammatory response after cardiopulmonary bypass: a prospective randomized double-blind trial. J Thorac Cardiovasc Surg 130(6):1623–1630CrossRefPubMedGoogle Scholar
  57. 57.
    Huang G, Xu J, Xu L et al (2014) Hyperbaric oxygen preconditioning induces tolerance against oxidative injury and oxygen-glucose deprivation by up-regulating heat shock protein 32 in rat spinal neurons. PLoS One 9(1), e85967. doi: 10.1371/journal.pone.0085967 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Yan W, Fang Z, Yang Q et al (2013) SirT1 mediates hyperbaric oxygen preconditioning-induced ischemic tolerance in rat brain. J Cereb Blood Flow Metab 33(3):396–406CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Yan W, Zhang H, Bai X et al (2011) Autophagy activation is involved in neuroprotection induced by hyperbaric oxygen preconditioning against focal cerebral ischemia in rats. Brain Res 1402:109–121CrossRefPubMedGoogle Scholar
  60. 60.
    Xu J, Huang G, Zhang K et al (2014) Nrf2 activation in astrocytes contributes to spinal cord ischemic tolerance induced by hyperbaric oxygen preconditioning. J Neurotrauma 31:1343–1353CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Peng Z, Ren P, Kang Z et al (2008) Up-regulated HIF-1alpha is involved in the hypoxic tolerance induced by hyperbaric oxygen preconditioning. Brain Res 1212:71–78CrossRefPubMedGoogle Scholar
  62. 62.
    Gu GJ, Li YP, Peng ZY et al (2008) Mechanism of ischemic tolerance induced by hyperbaric oxygen preconditioning involves upregulation of hypoxia-inducible factor-1alpha and erythropoietin in rats. J Appl Physiol (1985) 104(4):1185–1191Google Scholar
  63. 63.
    Sun L, Wolferts G, Veltkamp R (2014) Oxygen therapy does not increase production and damage induced by reactive oxygen species in focal cerebral ischemia. Neurosci Lett 577:1–5CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2016

Authors and Affiliations

  1. 1.Department of Emergency MedicineCenter for Wound Healing and Hyperbaric Medicine, UCSDSan DiegoUSA
  2. 2.Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsUSA

Personalised recommendations