Impact of Oxygenation Status on 18F-FDG Uptake in Solid Tumors

  • Marie-Aline Neveu
  • Vanesa Bol
  • Anne Bol
  • Vincent Grégoire
  • Bernard GallezEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 876)


The influence of changes in tumor oxygenation (monitored by EPR oximetry) on the uptake of 18F-FDG tracer was evaluated using micro-PET in two different human tumor models. The 18F-FDG uptake was higher in hypoxic tumors compared to tumors that present a pO2 value larger than 10 mmHg.


EPR 18F-FDG PET Carbogen Tumor oxygenation 



This study was supported by grants from the Belgian National Fund for Scientific Research (FNRS).


  1. 1.
    Dierckx RA, Van de Wiele C (2008) FDG uptake, a surrogate of tumour hypoxia? Eur J Nucl Med Mol Imaging 35:1544–1549CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Mayer A, Höckel M, Wree A et al (2005) Microregional expression of glucose transporter-1 and oxygenation status: lack of correlation in locally advanced cervical cancers. Clin Cancer Res 11:2768–2773CrossRefPubMedGoogle Scholar
  3. 3.
    Mayer A, Höckel M, Vaupel P (2008) Endogenous hypoxia markers: case not proven! Adv Exp Med Biol 614:127–136CrossRefPubMedGoogle Scholar
  4. 4.
    Thews O, Kelleher DK, Esser N et al (2003) Lack of association between tumor hypoxia, GLUT-1 expression and glucose uptake in experimental sarcomas. Adv Exp Med Biol 510:57–61CrossRefPubMedGoogle Scholar
  5. 5.
    Jordan BF, Baudelet C, Gallez B (1998) Carbon-centered radicals as oxygen sensors for in vivo electron paramagnetic resonance: screening for an optimal probe among commercially available charcoals. Magn Reson Mater Phys Biol Med 7:121–129CrossRefGoogle Scholar
  6. 6.
    Gallez B, Jordan BF, Baudelet C et al (1999) Pharmacological modifications of the partial pressure of oxygen in murine tumors: evaluation using in vivo EPR. Magn Reson Med 42:627–630CrossRefPubMedGoogle Scholar
  7. 7.
    Gallez B, Baudelet C, Jordan BF (2004) Assessment of tumor oxygenation by electron paramagnetic resonance: principles and applications. NMR Biomed 17:240–262CrossRefPubMedGoogle Scholar
  8. 8.
    Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891–899CrossRefPubMedGoogle Scholar
  9. 9.
    Sonveaux P, Végran F, Schroeder T et al (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 118:3930–3942PubMedPubMedCentralGoogle Scholar
  10. 10.
    Busk M, Horsman MR, Kristjansen PE et al (2008) Aerobic glycolysis in cancers: implications for the usability of oxygen-responsive genes and fluorodeoxyglucose-PET as markers of tissue hypoxia. Int J Cancer 122:2726–2734CrossRefPubMedGoogle Scholar
  11. 11.
    Busk M, Horsman MR, Jakobsen S et al (2008) Cellular uptake of PET tracers of glucose metabolism and hypoxia and their linkage. Eur J Nucl Med Mol Imaging 35:2294–2303CrossRefPubMedGoogle Scholar
  12. 12.
    Waki A, Fujibayashi Y, Yonekura Y et al (1997) Reassessment of FDG uptake in tumor cells: high FDG uptake as a reflection of oxygen-independent glycolysis dominant energy production. Nucl Med Biol 24:665–670CrossRefPubMedGoogle Scholar
  13. 13.
    Clavo AC, Brown RS, Wahl RL (1995) Fluorodeoxyglucose uptake in human cancer cell lines is increased by hypoxia. J Nucl Med 36:1625–1632PubMedGoogle Scholar
  14. 14.
    Burgman P, Odonoghue JA, Humm JL et al (2001) Hypoxia-induced increase in FDG uptake in MCF7 cells. J Nucl Med 42:170–175PubMedGoogle Scholar
  15. 15.
    Chan LW, Hapdey S, English S et al (2006) The influence of tumor oxygenation on (18)F-FDG (fluorine-18 deoxyglucose) uptake: a mouse study using positron emission tomography (PET). Radiat Oncol 1:3CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Gagel B, Piroth M, Pinkawa M et al (2007) pO2 polarography, contrast enhanced color duplex sonography (CDS), [18F] fluoromisonidazole and [18F] fluorodeoxyglucose positron emission tomography: validated methods for the evaluation of therapy-relevant tumor oxygenation or only bricks in the puzzle of tumor hypoxia? BMC Cancer 7:113CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    de Geus-Oei LF, Kaanders JH, Pop LA et al (2006) Effects of hyperoxygenation on FDG-uptake in head-and-neck cancer. Radiother Oncol 80:51–56CrossRefPubMedGoogle Scholar
  18. 18.
    Li XF, Ma Y, Sun X et al (2010) High 18F-FDG uptake in microscopic peritoneal tumors requires physiologic hypoxia. J Nucl Med 51:632–638CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Christian N, Deheneffe S, Bol A et al (2010) Is (18)F-FDG a surrogate tracer to measure tumor hypoxia? Comparison with the hypoxic tracer (14)C-EF3 in animal tumor models. Radiother Oncol 97:183–188CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2016

Authors and Affiliations

  • Marie-Aline Neveu
    • 1
  • Vanesa Bol
    • 2
  • Anne Bol
    • 2
  • Vincent Grégoire
    • 2
  • Bernard Gallez
    • 1
    Email author
  1. 1.Biomedical Magnetic Resonance GroupLouvain Drug Research Institute, Université Catholique de LouvainBrusselsBelgium
  2. 2.Radiation Oncology Department & Center for Molecular ImagingInstitute of Experimental and Clinical Research, Université Catholique de LouvainBrusselsBelgium

Personalised recommendations