Myocardial Microcirculation and Mitochondrial Energetics in the Isolated Rat Heart

  • J. F. AshrufEmail author
  • C. InceEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 876)


Normal functioning of myocardium requires adequate oxygenation, which in turn is dependent on an adequate microcirculation. NADH-fluorimetry enables a direct evaluation of the adequacy of tissue oxygenation while the measurement of quenching of Pd-porphyrine (PpIX) phosphorescence enables quantitative measurement of microvascular pO2. Combination of these two techniques provides information about the relation between microvascular oxygen content and parenchymal oxygen availability in Langendorff hearts. In normal myocardium there is heterogeneity at the microcirculatory level resulting in the existence of microcirculatory weak units, originating at the capillary level, which reoxygenate the slowest upon reoxygenation after an episode of ischemia. Sepsis and myocardial hypertrophia alter the pattern of oxygen transport whereby the microcirculation is disturbed at the arteriolar/arterial level. NADH fluorimetry also reveals a disturbance of mitochondrial oxygen availability in sepsis. Furthermore it is shown that these techniques can also be applied to various organs and tissues in vivo.


Microcirculation Mitochondrial redox state NADH fluorescence Sepsis Hypertrophia 


  1. 1.
    Barlow CH, Chance B (1976) Ischemic areas in perfused rat hearts: measurement by NADH fluorescence photography. Science 193:909–910CrossRefPubMedGoogle Scholar
  2. 2.
    Ince C, Ashruf JF, Avontuur JAM et al (1993) Heterogeneity of the hypoxic state in rat heart is determined at capillary level. Am J Physiol 264 (Heart Circ Physiol 33):H294–H301Google Scholar
  3. 3.
    Zuurbier CJ, van Iterson M, Ince C (1999) Functional heterogeneity of oxygen supply-consumption ratio in the heart. Cardiovasc Res 44(3):488–497CrossRefPubMedGoogle Scholar
  4. 4.
    Ashruf JF, Coremans JM, Bruining HA et al (1995) Increase of cardiac work is associated with decrease of mitochondrial NADH. Am J Physiol 269(3 Pt 2):H856–H862PubMedGoogle Scholar
  5. 5.
    Ashruf JF, Coremans JM, Bruining HA et al (1996) Mitochondrial NADH in the Langendorff rat heart decreases in response to increases in work: increase of cardiac work is associated with decrease of mitochondrial NADH. Adv Exp Med Biol 388:275–282CrossRefPubMedGoogle Scholar
  6. 6.
    Steenbergen CG, Deleeuw C, Barlow B et al (1977) Heterogeneity of the hypoxic state in perfused rat heart. Circ Res 4:606–615CrossRefGoogle Scholar
  7. 7.
    Ashruf JF, Ince C, Bruining HA et al (1994) Ischemic areas in hypertrophic Langendorff rat hearts visualized by NADH videofluorimetry. Adv Exp Med Biol 345:259–262CrossRefPubMedGoogle Scholar
  8. 8.
    Ashruf JF, Ince C, Bruining HA (1999) Regional ischemia in hypertrophic Langendorff-perfused rat hearts. Am J Physiol 277 (Heart Circ Physiol 46):H1532–H1539Google Scholar
  9. 9.
    Anderson PG, Bishop SP, Digerness SB (1987) Transmural progression of morphologic changes during ischemic contracture and reperfusion in the normal and hypertrophied rat heart. Am J Pathol 129(1):152–167PubMedPubMedCentralGoogle Scholar
  10. 10.
    Dellsperger KC, Marcus LM (1990) Effects of left ventricular hypertrophy on the coronary circulation. Am J Cardiol 65:1504–1510CrossRefPubMedGoogle Scholar
  11. 11.
    Einzig SJ, Leonard J, Tripp MR et al (1981) Changes in regional myocardial blood flow and variable development of hypertrophy after aortic banding in puppies. Cardiovasc Res 15:711–723CrossRefPubMedGoogle Scholar
  12. 12.
    Hulsmann WC, Ashruf JF, Bruining HA et al (1993) Imminent ischemia in normal and hypertrophic Langendorff rat hearts: effects of fatty acids and superoxide dismutase monitored by NADH surface fluorescence. Biochim Biophys Acta 1181:273–278CrossRefPubMedGoogle Scholar
  13. 13.
    Territo PR, French SA, Dunleavy MC et al (2001) Calcium activation of heart mitochondrial oxidative phosphorylation: rapid kinetics of mVO2, NADH, AND light scattering. J Biol Chem 276(4):2586–2599CrossRefPubMedGoogle Scholar
  14. 14.
    Avontuur JA, Bruining HA, Ince C (1995) Inhibition of nitric oxide synthesis causes myocardial ischemia in endotoxemic rats. Circ Res 76(3):418–425CrossRefPubMedGoogle Scholar
  15. 15.
    Ince C, Sinaasappel M (1999) Microcirculatory oxygenation and shunting in sepsis and shock. Crit Care Med 27(7):1369–1377CrossRefPubMedGoogle Scholar
  16. 16.
    Ince C, Coremans JM, Bruining HA (1992) In vivo NADH fluorescence. Adv Exp Med Biol 317:277–296CrossRefPubMedGoogle Scholar
  17. 17.
    Bruining HA, Pierik GJ, Ince C et al (1992) Optical spectroscopic imaging for non-invasive evaluation of tissue oxygenation. Chirurgie 118(5):317–322, discussion 323PubMedGoogle Scholar
  18. 18.
    Ince C, Ashruf JF, Sanderse EA et al (1992) In vivo NADH and Pd-porphyrin video fluori-/phosphorimetry. Adv Exp Med Biol 317:267–275CrossRefPubMedGoogle Scholar
  19. 19.
    Ince C, van der Sluijs JP, Sinaasappel M et al (1994) Intestinal ischemia during hypoxia and experimental sepsis as observed by NADH videofluorimetry and quenching of Pd-porphine phosphorescence. Adv Exp Med Biol 36:105–110CrossRefGoogle Scholar
  20. 20.
    Coremans JM, Ince C, Bruining HA (1997) (Semi-)quantitative analysis of reduced nicotinamide adenine dinucleotide fluorescence images of blood-perfused rat heart. Biophys J 72(4):1849–1860CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    van der Laan L, Coremans A, Ince C et al (1998) NADH videofluorimetry to monitor the energy state of skeletal muscle in vivo. J Surg Res 74(2):155–160CrossRefPubMedGoogle Scholar
  22. 22.
    Ashruf JF, Ince C, Bruining HA (2013) New insights into the pathophysiology of cardiogenic shock: the role of the microcirculation. Curr Opin Crit Care 19(5):381–386CrossRefPubMedGoogle Scholar
  23. 23.
    Mik EG, Stap J, Sinaasappel M et al (2006) Mitochondrial PO2 measured by delayed fluorescence of endogenous protoporphyrin IX. Nat Methods 3(11):939–945CrossRefPubMedGoogle Scholar
  24. 24.
    Mik EG, Johannes T, Zuurbier C et al (2008) In vivo mitochondrial oxygen tension measured by a delayed fluorescence lifetime technique. Biophys J 95(8):3977–3990CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Mik EG, Ince C, Eerbeek O et al (2009) Mitochondrial oxygen tension within the heart. J Mol Cell Cardiol 46(6):943–951CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2016

Authors and Affiliations

  1. 1.Department of SurgeryOZG HospitalGroningenThe Netherlands
  2. 2.Department of Translational PhysiologyAcademic Medical Center, University of AmsterdamAmsterdamThe Netherlands

Personalised recommendations