Skip to main content

Ice Skating

  • Chapter

Abstract

What we are proposing in this chapter is an overview of the ice skating. We are now not considering the figurative ice skating, but only the ice speed-skating. Furthermore, only few hints will be provided about the outdoor skating, focusing then on the indoor competitions. After an historical reconstruction of the origins of this sport, the analysis will be divided into two main blocks: the dynamical model and the aerodynamic analysis of a speed skater (both numerical and experimental). Few notes about the track will be discussed along the chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    There is a written Latin text dated back to circa 1190 of William Fitzstephen (sub-deacon to Archbishop Thomas-a-Becket) which states [2]:

    When the great fen or moor which watereth the walls of the City (London) on the Northside is frozen, many young men play upon the ice [..] Some tie bones to their feet, [..] and shoving themselves by a little picked staff, do slide as swiftly as a bird flyeth.

  2. 2.

    An interested reader can refer to Martin [12].

  3. 3.

    This analysis has considered only the skating mechanics in the plane through the ankle, knee, and hip. An exorotation or abduction of the hip can provide some additional work outside this plane (see [29, 38]).

  4. 4.

    A non-holonomic constraint states an algebraic relationship in differential, non-integrable form, usually expressed in form of the time derivative of q: \(\varPsi (q,\dot{q},t) = 0\), generally written in the form \(A(q,t)\dot{q} = b(q,t)\). See [42].

  5. 5.

    One of the limitations of this model was to assume a constant body position of the athlete, but the combination of trunk and knee angle during a run involves an increase in k, the air friction coefficient. Further the fatigue of the athlete and its consequences are not considered.

  6. 6.

    It is a regime with a transition in boundary layer. The TrBL regime has a lower Reynolds number bound of 100000–200000 and an upper bound of about three to five million [57]. In Zdravkovich studies, like [56], this flow regime is further sub-divided, and the TrBL2 condition presents two laminar bubbles, while TrBL1 has a laminar bubble on one side of the cylinder and TrBL3 presents a spanwise disruption of bubbles.

  7. 7.

    This technique is based on a collimated beam of low energy electrons (20–200 eV) which bombards the surface of a crystalline material. It is useful to determine both the symmetry of the surface structure and the atomic positions of molecules on the surface.

  8. 8.

    This hypothesis is made to simplify the model, avoiding to introduce a biomechanical model for the skater.

References

  1. Wikipedia -speed skating (May 2014). http://en.wikipedia.org/wiki/Speed_skating

  2. D.L. Bird, Skating a brief history of ice and the national ice skating association of great Britain (May 2014). http://www.iceskating.org.uk/about/history

  3. Wikipedia -Edinburgh skating club (May 2014). http://en.wikipedia.org/wiki/Edinburgh_Skating_Club

  4. The edinburgh skating-club, with diagrams of figures and a list of the members. Edinburgh skating club (1865). http://books.google.it/books?id=8CQ7MwEACAAJ

  5. Wikipedia -international skating union (May 2014). http://en.wikipedia.org/wiki/International_Skating_Union

  6. The international skating union (ISU) (May 2014). http://www.isu.org/en/home

  7. Special regulations and technical rules -speed skating and short track speed skating. As accepted by the 54th Ordinary Congress June 2012. International Skating Union (ISU) (2012)

    Google Scholar 

  8. Olympic -speed skating equipment and history (May 2014). http://www.olympic.org/speed-skating-equipment-andhistory?tab=equipment

  9. Wikipedia -clap skate, May 2014. http://it.wikipedia.org/wiki/Clap_skate

  10. G.J. Van Ingen Schenau et al., Skate, more particularly ice-skate for speed skating. EP Patent App. EP19,860,200,279, 1986. https://www.google.com/patents/EP0192312A2?cl=en

  11. A. Shum, Clap skate with spring and cable biasing system. US Patent 6,007,075, 1999. http://www.google.com/patents/US6007075

  12. T. Martin, Evolution of ice rinks. ASHRAE J. 46(11), S24–S30 (2004)

    Google Scholar 

  13. G. McCourt, S.L. Goodrich, Calgary’s olympic oval (Canada). Industria Italiana del Cemento 59(9), 524–543 (1989)

    Google Scholar 

  14. S.S. Jensen, Ice skating rink at the brisbane bicentenary sports and entertainment complex: Boondall Queensland. Aust. Refrig. Air Cond. Heat. 40(8), 23–24, 28 (1986)

    Google Scholar 

  15. K. Tusima et al., Development of a high speed skating rink by the control of the crystallographic plane of ice. Jpn. J. Tribol. 45, 17–26 (2000)

    Google Scholar 

  16. C. C\(\hat{a}\) mpian, M. Cristujiu, I. Benke, The supporting steel structure of the ice rink—city of T\(\hat{a}\) rgu Mureş, Romania Zs. Nagy, in Structures & Architecture, ed. by P.J.S. Cruz. ICSA 2010 – 1st International Conference on Structures & Architecture, 21–23 July 2010, Guimaraes (CRC Press, 2010), pp. 167–168

    Google Scholar 

  17. M. Schulitz, J. Güsgen, J. Kaußen, Ice skating and swimming stadium Lentpark in Cologne [Eis-und Schwimmstadion Lentpark in Köln] Stahlbau 83(1), 57–60 (2014)

    Google Scholar 

  18. Anon, roofing of an artificial ice skating rink. [Couverture D’UNE Patinoire Artificielle Ueberdachung Der Kunsteisbahn Arosa (CH).] Acier English ed. 44(4), 153–155 (1979)

    Google Scholar 

  19. www.scopus.com, Stadiums and arenas: a grandstand construction for German ice rink. Concr. Eng. Int. 11(1), 42–43 (2007)

  20. Z. Nagy, I. Mircea Cristutiu, Advanced nonlinear investigations of a 50 m span frame case study: the steel structure of the ice rink, city of Targu-Mures, Romania, vol. 2, cited by (since 1996)1. 2010, pp. 649–656

    Google Scholar 

  21. A. Zak, O. Sikula, M. Trcala, Analysis of local moisture increase of timber constructions on ice arena roof. Adv. Mater. Res. 649, 291–294 (2013)

    Article  Google Scholar 

  22. T. Davis, S. Kneisel, Building control systems at three new arenas. Can. Consult. Eng. (1995). www.scopus.com

  23. H. Guo, S.C. Lee, L.Y. Chan, Indoor air quality in ice skating rinks in Hong Kong. Environ. Res. 94(3), 327–335 (2004)

    Article  Google Scholar 

  24. J. Matsuo, T. Nagai, A. Sagae, M. Nakamura, S. Shimizu, T. Fujimoto, F. Maeda, Thermal characteristics and energy conservation measures in an indoor speed-skating arena. Paper presented at the Proceedings of Building Simulation 2011: 12th Conference of International Building Performance Simulation Association (2011), pp. 2072–2079

    Google Scholar 

  25. G. Teyssedou, R. Zmeureanu, D. Giguère, Thermal response of the concrete slab of an indoor ice rink (rp-1289). HVAC R Res. 15(3), 509–523 (2009)

    Article  Google Scholar 

  26. G. Teyssedou, R. Zmeureanu, D. Giguère, Benchmarking model for the ongoing commissioning of the refrigeration system of an indoor ice rink. Autom. Constr. 35, 229–237 (2013)

    Article  Google Scholar 

  27. Real world physics problems: physics of ice skating (June 2014). http://www.real-world-physics-problems.com/physics-of-ice-skating.html

  28. D.M. Fintelman, O. den Braver, A.L. Schwab, A simple 2-dimensional model of speed skating which mimics observed forces and motions, in Multibody Dynamics 2011, ECCOMAS Thematic Conference, 2011

    Google Scholar 

  29. H. Houdijk et al., Push-off mechanics in speed skating with conventional skates and klapskates. Med. Sci. Sports Exerc. 32(3), 635–641 (2000)

    Article  Google Scholar 

  30. G.J. Van Ingen Schenau, R.W. De Boer, G. De Groot, On the technique of speed skating. Int. J. Sport Biomech. 3, 419–431 (1987)

    Google Scholar 

  31. G.J. Van Ingen Schenau, R.W. de Boer, G. de Groot, The control of speed in elite female speed skaters. J. Biomech. 18, 91–96 (1985)

    Article  Google Scholar 

  32. J.J. De Koning, Biomechanical aspects of speed skating. Ph.D. thesis, Vrije Universiteit, Faculty of Human Movement Sciences, Amsterdam, 1991

    Google Scholar 

  33. M.R. Yeadon, A method for obtaining three-dimensional data on ski jumping using pan and tilt cameras. Int. J. Sport Biomech. 5, 238–247 (1989)

    Google Scholar 

  34. J.J. De Koning, G. De Groot, G.J. van Ingen Schenau, Ice friction during speed skating. J. Biomech. 25, 565–571 (1992)

    Article  Google Scholar 

  35. H. Jobse et al., Measurement of the push-off force and ice friction during speed skating. Int. J. Sport Biomech. 6, 92–100 (1990)

    Google Scholar 

  36. J.J. De Koning et al., From biomechanical theory to application in top sports: the Klapskate story. J. Biomech. 33, 1225–1229 (2000)

    Article  Google Scholar 

  37. G.J. Van Ingen Schenau et al., A new skate allowing powerful plantar flexions improves performance. Med. Sci. Sports Exerc. 28, 531–535 (1996)

    Article  Google Scholar 

  38. J.J. De Koning, G. De Groot, G.J. van Ingen Schenau, Coordination of leg muscles during speed skating. J. Biomech. 24(2), 137–146 (1991)

    Article  Google Scholar 

  39. T.L. Allinger, A.J. Bogert, Skating technique for the straights, based on the optimization of a simulation model. Med. Sci. Sports Exerc. 29(2), 279–286 (1997)

    Article  Google Scholar 

  40. J.J. De Koning, G.J. van Ingen Schenau, Performance-determining factors in speed skating, in Biomechanics in Sport: Performance Enhancement and Injury Prevention: Olympic Encyclopaedia of Sports Medicine, ed. by V. Zatsiorsky, vol. IX (Blackwell Science Ltd, Oxford, 2000), pp. 232–246. doi:http://dx.doi.org/10.1002/9780470693797.ch11.

  41. E. Otten, Inverse and forward dynamics: models of multi-body systems. Philos. Trans. R. Soc. Lond. 358, 1493–1500 (2003)

    Article  Google Scholar 

  42. P. Mantegazza, P. Masarati, Analysis of Systems of Differential-Algebraic Equations (DAE). Lecture Notes of Graduate Course on “Multibody System Dynamics” (22 November 2012)

    Google Scholar 

  43. R.W. de Boer, K.L. Nislen, The gliding and push-off technique of male and female olympic speed skaters. J. Appl. Biomech. 5(2), 119–134 (1989)

    Google Scholar 

  44. J.J. De Koning, G. de Groot, G.J. van Ingen Schenau, A power equation for the sprint in speed skating. J. Biomech 25, 573–580 (1992)

    Article  Google Scholar 

  45. J.J. De Koning, G.J. van Ingen Schenau, On the estimation of mechanical power in endurance sports. Sport Sci. Rev. 3, 34–54 (1994)

    Google Scholar 

  46. J.J. De Koning, G.J. van Ingen Schenau, Performance-determining factors in speed skating, in Biomechanics in Sport, ed. by V.M. Zatsiorsky (Blackwell Science Ltd., Oxford, 2008)

    Google Scholar 

  47. G.J. Van Ingen Schenau, J.J. De Koning, G. De Groot, A simulation of speed skating performances based on a power equation. Med. Sci. Sports. Exerc. 22, 718–728 (1990)

    Article  Google Scholar 

  48. J.J. De Koning et al., Experimental evaluation of the power balance model of speed skating. J. Appl. Physiol. 98(1), 227–233 (2004)

    Article  Google Scholar 

  49. T.J. Barstow, P.A. Mole, Linear and nonlinear characteristics of oxygen uptake kinetics during heavy exercise. J. Appl. Physiol. 71, 2099–2106 (1991)

    Google Scholar 

  50. C. Foster et al., Pattern of energy expenditure during simulated competition. Med. Sci. Sports Exerc. 35, 826–831 (2003)

    Article  Google Scholar 

  51. G.J. van Ingen Schenau, G. De Groot, A.P. Hollander, Some technical, physiological and anthropometrical aspects of speed skating. Eur. J. Appl. Physiol. Occup. Physiol. 50(3), 343–354 (1983)

    Article  Google Scholar 

  52. G.J. van Ingen Schenau, The influence of air friction in speed skating. J. Biomech. 15(6), 449–58 (1982)

    Article  Google Scholar 

  53. A. D’Auteuil, G. Larose, S. Zan, The effect of motion on wind tunnel drag measurement for athletes. Procedia Eng. 34, 62–67 (2012)

    Article  Google Scholar 

  54. A. D’Auteuil, G.L. Larose, S.J. Zan, Relevance of similitude parameters for drag reduction in sport aerodynamics. Procedia Eng. 2, 2393–2398 (2010)

    Article  Google Scholar 

  55. A. D’Auteuil et al., Detection of the boundary layer transition for non-circular cross-sections using surface pressure measurements, in Proceedings of the 13th International Conference on Wind Engineering, Amsterdam, 2011

    Google Scholar 

  56. M.M. Zdravkovich, Flow Around Circular Cylinders Volume 1: Fundamentals (Oxford Science Publications, New York, 1997)

    Google Scholar 

  57. S.J. Zan, K. Matsuda, Steady and unsteady loading on a roughened circular cylinder at Reynolds numbers up to 900,000. J. Wind Eng. Ind. Aerodyn. 90, 567–58 (2002)

    Article  Google Scholar 

  58. A. D’Auteuil, G. Larose, S. Zan, Wind turbulence in speed skating: measurement, simulation and its effect on aerodynamic drag. J. Wind Eng. Ind. Aerodyn. 104–106, 585–593 (2012)

    Article  Google Scholar 

  59. L.W. Brownlie et al., Reducing the aerodynamic drag of sports apparel: development of the Nike Swift sprint running and SwiftSkin speed skating suits, in The Engineering of Sport 5 (ISEA, Sheffield, 2004), pp. 90–96

    Google Scholar 

  60. G.H. Kuper, E. Sterken, Do skin suits increase average skating speed? Technical Report. University of Groningen, 2008

    Google Scholar 

  61. L.W. Brownlie, C.R. Kyle. Evidence that skin suits affect long track speed skating performance. Procedia Eng. 34, 26–31 (2012)

    Article  Google Scholar 

  62. R. Rosenberg, Why is ice slippery? Phys. Today 58(12), 50–55 (2005)

    Article  Google Scholar 

  63. E.P. Lozowski, K. Szilder, S. Maw, A model of ice friction for a speed skate blade. Sports Eng. 16(4), 239–253 (2013)

    Article  Google Scholar 

  64. A.M. Kietzig, S.G. Hatzikiriakos, P. Englezos, Physics of ice friction. J. Appl. Phys. 107, 08110 (2010)

    Article  Google Scholar 

  65. P. Barnes, D. Tabor, Plastic flow and pressure melting in the deformation of ice I. Nature 210, 878–882 (1966)

    Article  Google Scholar 

  66. F.P. Bowden, T.P. Hughes, The mechanism of sliding on ice and snow. Proc. R. Soc. Lond. A 172(949), 280–298 (1939)

    Article  Google Scholar 

  67. F.P. Bowden, Friction on snow and ice. Proc. R. Soc. Lond. A 217, 462–478 (1953)

    Article  Google Scholar 

  68. M.J. Furey, Friction, wear and lubrication, in Chemistry and Physics of Interfaces II (American Chemical Society Publications, Washington, 1971)

    Google Scholar 

  69. V.F. Petrenko, R.W. Whitworth, Physics of Ice (Oxford University Press, Oxford, 1999), p. 373

    Google Scholar 

  70. P.V. Hobbs, Ice Physics (Clarendon Press, Oxford, 1974)

    Google Scholar 

  71. N.H. Fletcher, Surface structure of water and ice. Philos. Mag. 7, 255–59 (1962)

    Article  Google Scholar 

  72. N.H. Fletcher, Surface structure of water and ice: II. A revised model. Philos. Mag. 18, 1287–1300 (1968)

    Article  Google Scholar 

  73. R. Lacmann, I.N. Stranski, The growth of snow crystals. J. Cryst. Growth 13–14(C), 236–240 (1972)

    Article  Google Scholar 

  74. J.G. Dash, F. Haiying, J.S. Wettlaufer. The premelting of ice and its environmental consequences. Rep. Prog. Phys. 58, 115 (1995)

    Article  Google Scholar 

  75. L. Makkonen, Surface melting of ice. J. Phys. Chem. B 101(32), 6196–6200 (1997)

    Article  Google Scholar 

  76. N. Fukuta, J. Phys. (Paris) 48, 503 (1987)

    Article  Google Scholar 

  77. G.-J. Kroes, Surface melting of the (0001) face of {TIP4P} ice. Surf. Sci. 275(3), 365–382 (1992). ISSN: 0039-6028. doi: http://dx.doi.org/10.1016/0039-6028(92)90809-K. http://www.sciencedirect.com/science/article/pii/003960289290809K

    Google Scholar 

  78. J.P. Devlin, V. Buch, Surface of ice as viewed from combined spectroscopic and computer modeling studies. J. Phys. Chem. 99(45), 16534–16548 (1995)

    Article  Google Scholar 

  79. Y. Furukawa, H. Nada, Anisotropic surface melting of an ice crystal and its relationship to growth forms. J. Phys. Chem. B 101(32), 6167–6170 (1997)

    Article  Google Scholar 

  80. N. Materer et al., Molecular surface structure of ice(0001): dynamical low-energy electron diffraction, total-energy calculations and molecular dynamics simulations. Surf. Sci. 381(2–3), 190–210 (1997)

    Article  Google Scholar 

  81. F.P. Bowden, Introduction to the discussion: the mechanism of friction. Proc. R. Soc. Lond. A Math. Phys. Sci. 212, 440–449 (1952)

    Article  Google Scholar 

  82. B.N.J. Persson, Sliding Friction. Physical Principles and Applications, 2nd edn. (Springer, Berlin, 2000)

    Google Scholar 

  83. B. Bhusam, Introduction to Tribology (Wiley, New York, 2002)

    Google Scholar 

  84. F.P. Bowden, D. Tabor, The Friction and Lubrication of Solids (Oxford University Press, Oxford, 1964)

    Google Scholar 

  85. V.F. Petrenko, R.W. Whitworth, Physics of Ice (Oxford University Press, Oxford, 1999)

    Google Scholar 

  86. S.C. Colbeck, Kinetic friction of snow. J. Glaciol. 34(116), 78–86 (1988)

    Google Scholar 

  87. A.-M. Kietzig, S.G. Hatzikiriakos, P. Englezos, Ice friction: the effects of surface roughness, structure and hydrophobicity. J. Appl. Phys. 106 024303 (2009)

    Article  Google Scholar 

  88. A. Penny et al., Speedskate ice friction: review and numerical model -FAST 1.0, in Physics and Chemistry of Ice, ed. by W.F. Kuhs. R. Soc. Chem. (2007), pp. 495–504. doi:10.1039/9781847557773

    Google Scholar 

  89. E.P. Lozowski, K. Szilder, Derivation and new analysis of a hydrodynamic model of speed skate ice friction. Int. J. Offshore Polar Eng. 23, 104–111 (2013)

    Google Scholar 

  90. L. Poirier et al., Getting a grip on ice friction, in Proceedings of the Twenty-first (2011) International Offshore and Polar Engineering Conference, Maui, HI, 19–24 June 2011

    Google Scholar 

  91. E.P. Lozowski, K. Szilder, S. Maw, A model of ice friction for an inclined incising slider, in The Twenty-second International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers (2012), pp. 1243–1251

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edoardo Belloni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Editor

About this chapter

Cite this chapter

Belloni, E., Sabbioni, E., Melzi, S. (2016). Ice Skating. In: Braghin, F., Cheli, F., Maldifassi, S., Melzi, S., Sabbioni, E. (eds) The Engineering Approach to Winter Sports. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3020-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3020-3_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3019-7

  • Online ISBN: 978-1-4939-3020-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics