Skip to main content

Cross-Country Ski

  • Chapter

Abstract

Cross-country skiing, biathlon and ski orienteering are competitive sports with practitioners who are mostly from countries in the northern hemisphere. The competition season is during the time when the ground is covered with snow, which roughly extends from mid-November to late March. During the rest time of the year, which is a long preparatory period of training for the skiers before the competition season, the skiers use roller skis for dryland training with the aim of imitating skiing on snow. Furthermore, over the last few decades, fairly specific indoor testing methods for cross-country skiers have become possible due to the development of treadmills that allow roller skiing using classical and freestyle techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Former head of Tegnässkidan AB, Granö, Sweden.

References

  1. M. Ainegren et al. The influence of grip on oxygen consumption and leg forces when using classical style roller skis. Scand. J. Med. Sci. Sports 24(2), 301–310 (2014)

    Article  Google Scholar 

  2. M. Ainegren, P. Carlsson, M. Tinnsten, Roller ski rolling resistance and its effects on elite athletes’ performance. Sports Eng. 11, 143–157 (2009)

    Article  Google Scholar 

  3. D. Buhl, M. Fauve, H. Rhyner, The kinetic friction of polyethylen on snow: the influence of the snow temperature and the load. Cold Reg. Sci. Technol. 33, 133–140 (2001)

    Article  Google Scholar 

  4. S.C. Colbeck, A review of the processes that control snow friction, in Cold Regions Research and Engineering Laboratory, CRREL Monograph 92–2 (U.S. Army Corps of Engineers, Hanover, 1993)

    Google Scholar 

  5. F. Saibene et al. The energy cost of level cross-country skiing and the effect of the friction of the ski. Eur. J. Appl. Physiol. 58(7), 791–795 (1989)

    Article  Google Scholar 

  6. M.D. Hoffman et al. Influence of body-mass on energy-cost of roller skiing. Int. J. Sport Biomech. 6, 374–385 (1990)

    Google Scholar 

  7. M.D. Hoffman et al. Physiological comparison of uphill roller skiing-diagonal stride versus double pole. Med. Sci. Sports Exerc. 26(10), 1284–9 (1994)

    Article  Google Scholar 

  8. G.Y. Millet et al. Effect of rolling resistance on poling forces and metabolic demands of roller skiing. Med. Sci. Sports Exerc. 30(5), 755–62 (1998)

    Article  MathSciNet  Google Scholar 

  9. R.W. de Boer et al. Physiological and biomechanical comparison of roller skating and speed skating on ice. Eur. J. Appl. Physiol. Occup. Physiol. 56(5), 562–9 (1987)

    Article  Google Scholar 

  10. M. Ainegren, P. Carlsson, M. Tinnsten, Rolling resistance for treadmill roller skiing. Sports Eng. 11, 23–29 (2008)

    Article  Google Scholar 

  11. M.D. Hoffman et al. Delta efficiency of uphill roller skiing with the double pole and diagonal stride techniques. Can. J. Appl. Physiol. 20(4), 465–79 (1995)

    Article  Google Scholar 

  12. M. Ainegren, P. Carlsson, M. Tinnsten, A portable rolling resistance measurement system, in The Impact of Technology on Sport V, ed. by P. Fuss, P. Clifton, K.M. Chan (Subic A., Hong Kong, 2013)

    Google Scholar 

  13. M. D. Hoffman et al. Physiological effects of technique and rolling resistance in uphill roller skiing. Med. Sci. Sports Exerc. 30(2), 311–7 (1998)

    Article  Google Scholar 

  14. H. Ekström, Force interplay in cross-country skiing. Scand. J. Sports Sci. 3, 69–76 (1981)

    Google Scholar 

  15. P.V. Komi, Force measurements during cross-country skiing. Int. J. Sport Biomech. 3, 370–381 (1987)

    Google Scholar 

  16. P.V. Komi, Ground reaction forces in cross-country skiing, in Biomechanics IX-B, ed. by R. Norman, D. Winter et al. (Human Kinetics, Champaign, 1985)

    Google Scholar 

  17. P.V. Komi, R.W. Norman, Preloading of the thrust phase in cross-country skiing. Int. J. Sports 8, 48–54 (1987)

    Article  Google Scholar 

  18. P. Vahasoyrinki et al. Effect of skiing speed on ski and pole forces in cross-country skiing. Med. Sci. Sports Exerc. 40(6), 1111–6 (2008)

    Article  Google Scholar 

  19. G.A. Smith, Cross-country skiing: technique, equipment and environmental factors affecting performance, in Biomechanics in Sport, ed. by V. Zatsiorsky (Blackwell Science Ltd, London, England, 2000)

    Google Scholar 

  20. M. Ainegren, P. Carlsson, M. Tinnsten, An experimental study to compare the grip of classical style roller skis with on-snow skiing. Sports Eng. 16, 115–122 (2013)

    Article  Google Scholar 

  21. M. Ainegren et al. The multifunctional roller ski, in Second International Congress on Science and Skiing, Vuokatti, ed. by S. Lindinger, V. Linnamo, A. Hakkarainen (2012)

    Google Scholar 

  22. FIS Cross-Country Homologation Manual (International Ski Federation, 2012)

    Google Scholar 

  23. S.C. Colbeck, A review of the friction of snow skis. J. Sports Sci. 12, 285–295 (1994)

    Article  Google Scholar 

  24. E. Spring et al. Drag area of a cross country skier. Int. J. Sports Biomech. 4, 103–113 (1988)

    Google Scholar 

  25. J.F. Moxnes, K. Hausken, Cross-country skiing motion equations, locomotive forces and mass scaling laws. Math. Comput. Model. Dyn. Syst. 14(6), 535–569 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. P. Carlsson, M. Tinnsten, M. Ainegren, Numerical simulation of cross-country skiing. Comput. Methods Biomech. Biomed. Eng. 14(8), 741–746 (2011)

    Article  Google Scholar 

  27. J.F. Moxnes, O. Sandbakk, K. Hausken, Using the power balance model to simulate cross-country skiing on varying terrain. Open Access J. Sports Med. 5, 89–98 (2014)

    Google Scholar 

  28. D. Sundström et al. Numerical optimization of pacing strategy in cross-country skiing. Struct. Multidiscip. Optim. 47(6), 943–950 (2013)

    Article  MathSciNet  Google Scholar 

  29. R.H. Morton, Modelling human power and endurance. J. Math. Biol. 28(1), 49–64 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  30. D. Sundström, P. Carlsson, M. Tinnsten, Comparing bioenergetic models for the optimisation of pacing strategy in road cycling. Sports Eng. 17, 1–9 (2014)

    Article  Google Scholar 

  31. OASIS-ALADDIN User’s Manual (Alfgam Optimering AB, Stockholm, 1990)

    Google Scholar 

  32. B. Esping, D. Holm, O. Romell, The OASIS-ALADDIN structural optimization system. Int. Ser. Numer. Math. 110, 159–186 (1993)

    Google Scholar 

  33. D. Zenkert, An Introduction to Sandwich Construction (Royal Institute of Technology, Stockholm, 1993)

    Google Scholar 

  34. K. Åström, O. Norberg, Förhistoriska och medeltida skidor, in Västerbotten, Västerbottens läns Hembygdsförbund (1984)

    Google Scholar 

  35. P. Carlsson, B. Esping, Optimization of a Racing Ski (Mitthögskolan, 1994)

    Google Scholar 

  36. B.N.J. Persson, Sliding Friction. Physical Principles and Applications, 2nd edn. (Springer, Berlin, 2000)

    Google Scholar 

  37. L. Bocquet, Friction: an introduction with emphasis on some implications in winter sports, in Sports Physics, ed. by C. Clanet (2013), pp. 407–427

    Google Scholar 

  38. F.P. Bowden, T.P. Hughes, The mechanism of sliding on ice and snow. Proc. R. Soc. Lond. A 172(949), 280–298 (1939)

    Article  Google Scholar 

  39. P. Oksanen, J. Keinonen, The mechanism of friction of ice. Wear 78, 315–324 (1982)

    Article  Google Scholar 

  40. H. Ekström, Force interplay in cross-country skiing. Lic thesis, Linköping University, 1980

    Google Scholar 

  41. D. Buhl, M. Fauve, H. Rhyner, The kinetic friction of polyethylen on snow: the influence of the snow temperature and the load. Cold Reg. Sci. Technol. 33, 133–140 (2001)

    Article  Google Scholar 

  42. P. Sturesson, Friction characteristics between ski base and ice-fundamental lab scale tests and practical implications. M.Sc thesis, Uppsala University and Primatera AB, 2008

    Google Scholar 

  43. A.-M. Keitzig, Microscopic ice friction. Ph.D. thesis, Technishe Universität Berlin, 2006

    Google Scholar 

  44. L. Bäurle, Sliding friction of polyethylene on snow and ice. MA thesis, Swiss Federal Institute of Technology, Zurich, 2006

    Google Scholar 

  45. P. Federolf, B. Nigg, Skating performance in ice hockey when using a flared skate blade design. Cold Reg. Sci. Technol. 70, 12–18 (2012)

    Article  Google Scholar 

  46. F.P. Bowden, Friction on snow and ice. Proc. R. Soc. Lond. A 217, 462–478 (1953)

    Article  Google Scholar 

  47. O.M. Braun, A.G. Naumovets, Nanotribology: microscopic mechanisms of friction. Surf. Sci. Rep. 60(6–7), 79–158 (2006)

    Article  Google Scholar 

  48. D. Kuroiwa, The kinetic friction on snow and ice. J. Glaciol. 19(81), 225–235 (1977)

    Google Scholar 

  49. S. Sukhorukov, Ice-ice and ice-steel friction in field and laboratory. Ph.D. thesis, Norwegian University of Science and Technology, 2013

    Google Scholar 

  50. S.C. Colbeck, Kinetic friction of snow. J. Glaciol. 34(116), 78–86 (1988)

    Google Scholar 

  51. A.-M. Kietzig, S.G. Hatzikiriakos, P. Englezos, Ice friction: the effects of thermal conductivity. J. Glaciol. 56(197), 473–479 (2010)

    Article  Google Scholar 

  52. P. Kapps, W. Nachbauer, M. Mossner, Determination of kinetic friction and drag area in alpine skiing. Ski Trauma Skiing Saf. 10, 1–17 (1996)

    Google Scholar 

  53. C. Stamboulides, Microscopic ice friction of polymeric substrates. Ph.D. thesis, The University of British Columbia, Vancouver, 2010

    Google Scholar 

  54. C. Stamboulides, P. Englezos, S.G. Hatzikiriakos, The ice friction of polymeric substrates. Tribol. Int. 55, 59–67 (2012)

    Article  Google Scholar 

  55. N. Maeno, M. Arakawa, Adhesion shear theory of ice friction at low sliding velocities combined with ice sintering. J. Appl. Phys. 95(1), 134–139 (2004)

    Article  Google Scholar 

  56. D.A. Moldestad, Some aspects of ski base sliding friction and ski base structure. Engineering thesis, Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim, 1999

    Google Scholar 

  57. A. Koptyug, L. Kuzmin, Experimental field studies of the cross-country ski running surface interaction with snow. Procedia Eng. 13, 23–29 (2011)

    Article  Google Scholar 

  58. L. Kuzmin, Investigation of the most essential factors influencing ski glide. MA thesis, Licentiate Thesis, Luleå University of Technology, 2006

    Google Scholar 

  59. Global speed skydiving database (2014), http://www.gssdb.speedskydiving.eu/hall_of_fame.php

  60. S. Colbeck et al. The International Classification for Seasonal Snow on the Ground (International Commission for Snow and Ice, World Data Center for Glaciology, University of Colorado, Boulder, Colorado, 1990)

    Google Scholar 

  61. T. Katutosi, The temperature dependence of hardness of snow, in Snow Mechanics. Proceedings of the Grindelwald Symposium, vol. 114, 1975, pp. 103–109

    Google Scholar 

  62. T. Theile et al. Mechanics of the ski-snow contact. Tribol. Lett. 36, 223–231 (2009)

    Article  Google Scholar 

  63. T. Iwase, T. Sakuma, K. Yoshihisa, Measurements of sound propagation characteristics in snow layer, in Proceedings of 17th International Congress on Acoustics, Rome, vol. 1, 2001, pp. 274–275

    Google Scholar 

  64. R.A. Sommerfeld, A review of snow acoustics. Rev. Geophys. Space Phys. 20(1), 62–66 (1982)

    Article  Google Scholar 

  65. M. Mössner et al. Modeling the ski-snow contact in skiing turns using a hypoplastic vs an elastic force-penetration relation. Scand. J. Med. Sci. Sports 24, 577–585 (2014)

    Article  Google Scholar 

  66. W. Nachbauer, P. Schröcksnadel, B. Lackinger, Effects of snow and air conditions on ski friction. Skiing Trauma Saf. 10(1266), 178–186 (1996)

    Article  Google Scholar 

  67. S.C. Colbeck, A review of the friction of snow skis. J. Sports Sci. 12, 285–295 (1994)

    Article  Google Scholar 

  68. S.C. Colbeck, A review of the friction of snow, in Physics of Sliding Friction, ed. by B.N.J Persson, E. Tosatti. NATO ASI Series, vol. 311 (Springer, The Netherlands, 1996)

    Google Scholar 

  69. B. Glenne, Sliding friction and boundary lubrication of snow. J. Tribol. 109(4), 614–617 (1987)

    Article  Google Scholar 

  70. B. Bhusam, Introduction to Tribology (Wiley, New York, 2002)

    Google Scholar 

  71. S.C. Colbeck, Pressure melting and ice skating. Am. J. Phys. 63, 888–890 (1995)

    Article  Google Scholar 

  72. P. Federolf et al. Does a skier’s position on the ski affect the results of gliding tests used to assess ski-snow friction?, in Proceedings of the ISBS-Conference 24 International Symposium on Biomechanics in Sports (2006), 2007, pp. 554–557

    Google Scholar 

  73. A. Koptyug, M. Bäckström, M. Tinnsten, Cross country ski vibrations: loaded vs. unloaded skis, in Proceedings of 2nd International Congress on Science and Nordic Skiing, ICSNS 2011, Vuokatti, Finland, 28–31 May 2012, p. 83

    Google Scholar 

  74. A. Koptyug et al. Cross-country ski vibrations and possible mechanisms of their influence on the free gliding. Procedia Eng. 34, 473–478 (2012)

    Article  Google Scholar 

  75. A. Koptyug, M. Bäckström, M. Tinnsten, Studies into the mechanisms of the cross-country ski vibrations and possible models of the phenomenon. Procedia Eng. 60, 40–45 (2013)

    Article  Google Scholar 

  76. A. Koptyug, M. Bäckström, M. Tinnsten, Gliding-induced ski vibrations: approaching proper modeling. Procedia Eng. 72, 539–544 (2014)

    Article  Google Scholar 

  77. A. Shionoya, K. Sato, Development of a simulator generating ski board vibrations in actual skiing. Procedia Eng. 60, 269–274 (2013)

    Article  Google Scholar 

  78. K.W. Buffinton et al. Laboratory, computational and field studies of snowboard dynamics, in TMS Series. Materials and Science in Sports, 2001, pp. 171–183

    Google Scholar 

  79. M.A. Chowdhury, M. Helali, The effect of relative humidity and roughness on the friction coefficient under horizontal vibration. Open Mech. Eng. J. 2(1), 128–135 (2008)

    Article  Google Scholar 

  80. M.A. Chowdhury, D.V. Nuruzzaman, M.L. Rahman, Influence of frequency and direction of vibration on the coefficient of friction of aluminum, in Proceedings of the 4th BSME-ASME International Conference on Thermal Engineering, (BSME-ASME 2008), 2008, pp. 826–831

    Google Scholar 

  81. Lab view Software package LabVIEW-2014, http://www.ni.com/labview/

  82. J.L. Giesbrecht, Polymers on snow: towards skiing faster. Ph.D. thesis, ETZ Zurich, 2010

    Google Scholar 

  83. A.-M. Kietzig, S.G. Hatzikiriakos, P. Englezos, Ice friction: the effects of surface roughness, structure and hydrophobicity. J. Appl. Phys. 106, 024303 (2009)

    Article  Google Scholar 

  84. A.-M. Kietzig, A biomimetic approach to ice friction, in Green Tribology, ed. by M. Nosonovsky, B. Bhushan. Green Energy and Technology (Springer, Berlin/Heidelberg, 2012), pp. 223–264

    Google Scholar 

  85. L. Kuzmin, P. Carlsson, M. Tinnsten, The relationship between the type of machining of the ski running surface and its wettability and capillary drag. Sports Technol. 3(2), 121–130 (2010)

    Google Scholar 

  86. L. Bäurle et al. Sliding friction of polyethylene on ice: tribometer measurements. Tribol. Lett. 24(1), 77–84 (2006)

    Article  Google Scholar 

  87. D. Dressler, S.I. Green, An examination of the wettability of the running surface of skis as a means of minimizing snow friction, in 4th Asia Pacific Conference on Sports Technology, Honolulu, 2009

    Google Scholar 

  88. L. Kuzmin, Interfacial kinetic ski friction. Ph.D. thesis, Mid Sweden University, Sweden, 2010

    Google Scholar 

  89. F. Breitschädel, Ø. Lund, S. Løset, Cross country ski base tuning with structure imprint tools. Procedia Eng. 2(2), 2907–2911 (2010)

    Article  Google Scholar 

  90. S. Lyng, Plastic non-wax ski base and methods for its manufacture. U.S. Patent 4272577 A, 1981

    Google Scholar 

  91. W.D. Danner, H. Woitschatzke, Ski with three-dimensional running surface. Patent EP 0015447 B1, 1984

    Google Scholar 

  92. V. Tonel, Ski or snowboard with improved gliding. Patent WO 1995015794 A1, 1995

    Google Scholar 

  93. W.D. Danner, I.L. Ver, H. Woitschatzke, Three-dimensional ski surface. U.S. Patent 3858894 A, 1975

    Google Scholar 

  94. Kuzmin ski technology AB (2014), http://www.kuzmin.se/pgs/scrapers_engl.html

  95. Primateria AB (2014), http://www.primateriasport.se/Scrapers.php

  96. K. Pärssinen, Finite element method for the calculation of nominal pressure distribution between ski and track. Finite Elem. Anal. Des. 10, 1–8 (1991)

    Article  Google Scholar 

  97. R.F. Orellana, Experimental methods to measure mechanical properties of cross country skis. M.Sc thesis, Luleå University of Technology, 2012

    Google Scholar 

  98. J. Nilsson, L. Karlöf, V. Jakobsen, A new device for measuring ski running surface force and pressure profiles. Sports Eng. 16, 55–59 (2013)

    Article  Google Scholar 

  99. Tekscan Inc (2014), http://www.tekscan.com/medical/system-fscan1.html

  100. J. Huang, Speed of a skydiver (terminal velocity), in The Physics Factbook, ed. by G. Elert (Midwood High School, Brooklyn College, Brooklyn, 1999)

    Google Scholar 

  101. C. Pielmeier, M. Schneebel, Snow stratigraphy measured by snow hardness and compared to surface section images, in Proceedings of the International Snow Science Workshop, vol. 29, 2002

    Google Scholar 

  102. M. Schneebeli, C. Pielmeier, J.B. Johnson, Measuring snow microstructure and hardness using a high resolution penetrometer. Cold Regions Science and Technology 30, 101–114 (1999)

    Article  Google Scholar 

  103. S.K. De, J.R. White, Rubber Technologist’s Handbook, vol. 1 (Rapra Technology Limited, Exeter, 2001). ISBN:9781859572627

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Carlsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Editor

About this chapter

Cite this chapter

Carlsson, P. et al. (2016). Cross-Country Ski. In: Braghin, F., Cheli, F., Maldifassi, S., Melzi, S., Sabbioni, E. (eds) The Engineering Approach to Winter Sports. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3020-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3020-3_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3019-7

  • Online ISBN: 978-1-4939-3020-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics