Skip to main content

Why Did We Lose? Towards an Integrated Approach to Winter Sports Science

  • Chapter
The Engineering Approach to Winter Sports

Abstract

Women’s Downhill podium of Sochi in 2014 is likely to remain in the Olympic Winter Games history [1]. After 100 s at Rosa Khutor’s slope, Dominique Gisin, Tina Maze, and Lara Gut arrived at the finish line wrapped in just 10/100 of a second. More than 2700 m of race, with several turns and jumps; and the difference between first and third place was less than 3 m, i.e. in the order of 1 %! Even more extraordinary was the result of the first two Athletes: exactly the same time, giving to the annals the first ex aequo gold medal of Winter Olympics. The same result, accurate to a hundredth of a second, was obtained by athletes differing in ages, nationalities, anthropometric characteristics, technical equipments, and race number. In Winter Sports and Olympics it was not the first time, in different disciplines. Even without these exceptional events, in modern sports differences between top athletes are almost minimal. It often happens that long races like the 50 km Cross Country Skiing of Vancouver 2010 end at photo finish: achieving the podium is often a matter of hundredths of second or centimetres. Athletes, coaches, trainers, researchers, engineers, and practitioners ask: where are the differences? It is still possible to improve [2, 3]?

Life is short, art long, opportunity fleeting, experience

it treacherous, judgement difficult.

Hippocrates of Kos, V Cent. b.C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Olympic.org -Official website of the Olympic movement (2014), http://www.sochi2014.com/en/alpine-skiing-ladiesdownhill

  2. G. Berthelot et al., The citius end: world records progression announces the completion of a brief ultra-physiological quest. PLoS One 3(2), e1552 (2008)

    Google Scholar 

  3. F. Radicchi, Universality, limits and predictability of gold-medal performances at the Olympic Games. PLoS One 7(7), e40503 (2012)

    Google Scholar 

  4. F.K. Fuss, A. Subic, S. Ujihashi, The Impact of Technology on Sport II (CRC Press, Boca Raton, 2007)

    Google Scholar 

  5. S. J. Haake, The impact of technology on sporting performance in Olympic sports. J. Sports Sci. 27(13), 1421–1431 (2009)

    Article  MathSciNet  Google Scholar 

  6. N. Balmer, P. Pleasence, A. Nevill, Evolution and revolution: gauging the impact of technological and technical innovation on Olympic performance. J. Sports Sci. 30(11), 1075–1083 (2012)

    Article  Google Scholar 

  7. L. Foster, D. James, S. Haake, Influence of full body swimsuits on competitive performance. Procedia Eng. 34, 712–717 (2012)

    Article  Google Scholar 

  8. A. Miah. Rethinking enhancement in sport. Ann. N. Y. Acad. Sci. 1093(1), 301–320 (2006)

    Article  Google Scholar 

  9. D. James, The ethics of using engineering to enhance athletic performance. Procedia Eng. 2(2), 3405–3410 (2010)

    Article  Google Scholar 

  10. W. Sands, J. McNeal, Predicting athlete preparation and performance: a theoretical perspective. J. Sport Behav. 23(3), 289–310 (2000)

    Google Scholar 

  11. M.A. Bunge, La Causalitá: il Posto del Principio Causale Nella Scienza Moderna (Bollati Boringhieri, Torino, 1970)

    Google Scholar 

  12. W.G. Hopkins, J.A. Hawley, L.M. Burke, Design and analysis of research on sport performance enhancement. Med. Sci. Sports Exerc. 31(3), 472–485 (1999)

    Article  Google Scholar 

  13. P.A. Federolf et al., Subjective evaluation of the performance of alpine skis and correlations with mechanical ski properties, in The Engineering of Sport 6 (Springer, New York, 2006), pp. 287–292

    Google Scholar 

  14. C. Fischer et al., What static and dynamic properties should slalom skis possess? Judgements by advanced and expert skiers. J. Sports Sci. 25(14), 1567–1576 (2007)

    Google Scholar 

  15. A. Subic, P. Clifton, J. Beneyto-Ferre, Identification of innovation opportunities for snowboard design through benchmarking. J. Sports Technol. 1(1), 65–75 (2008)

    Article  Google Scholar 

  16. A. Subic et al., Investigation of snowboard stiffness and camber characteristics for different riding styles. Sports Eng. 11(2), 93–101 (2009)

    Article  Google Scholar 

  17. P. Clifton, Investigation and customisation of snowboard performance characteristics for different riding styles. Ph.D. thesis, RMIT University, 2011

    Google Scholar 

  18. P. Clifton et al., Identification of performance requirements for user-centered design of running shoes, in 5th Asia-Pacific Congress on Sports Technology -Procedia Engineering, vol. 13, 2011, pp. 100–106

    Google Scholar 

  19. P. Federolf, B. Nigg, Skating performance in ice hockey when using a flared skate blade design. Cold Reg. Sci. Technol. 70, 12–18 (2012)

    Article  Google Scholar 

  20. F. Giubilato, N. Petrone, V. Franch, A method for the quantitative correlation between quality requirements and product characteristics of sport equipment. 6th Asia-Pacific Congress on Sports Technology (APCST). Elsevier, Procedia Engineering, vol. 60, 2013

    Google Scholar 

  21. P. Clifton et al., Effects of temperature change on snowboard stiffness and camber properties. Sports Technol. 2(3), 87–96 (2009)

    Article  Google Scholar 

  22. A. Berthoz, Le Sens Du Movement (Odile, Paris, 1997)

    Google Scholar 

  23. E. Moberg, The role of cutaneous afferents in position sense, kinaesthesia, and motor function of the hand. Brain 106(1), 1–19 (1983)

    Google Scholar 

  24. G. G. Simoneau et al., Changes in ankle joint proprioception resulting from strips of athletic tape applied over the skin. J. Athl. Train. 32(2), 141–147 (1997)

    Google Scholar 

  25. P. Schaff, W. Hauser, Ski boots versus the knee joint. What produces the forward leaning position of the ski boot? Sportverletz. Sportschaden 4(1), 1–13 (1990)

    Google Scholar 

  26. F. Noé, D. Amarantini, T. Paillard, How experienced alpine-skiers cope with restrictions of ankle degrees-of-freedom when wearing ski-boots in postural exercises. J. Electromyogr. Kinesiol. 19(2), 341–346 (2007)

    Article  Google Scholar 

  27. S. Perrey, Compression garments: evidence for their physiological effects, in The Engineering of Sport 7, ed. by M. Estivalet, P. Brisson, vol. 2 (Springer, Paris 2008), pp. 319–328

    Google Scholar 

  28. C. Hrysomallis, Balance ability and athletic performance. Sports Med. 41(3), 221–232 (2011)

    Article  Google Scholar 

  29. D.E. Lieberman, What we can learn about running from barefoot running: an evolutionary medical perspective. Exerc. Sport Sci. Rev. 40(2), 63–72 (2012)

    Article  MathSciNet  Google Scholar 

  30. B. Sperlich et al., Is leg compression beneficial for alpine skiers? BMC Sports Sci. Med. Rehabil. 5, 18 (2013)

    Google Scholar 

  31. A. Tversky, D. Kahneman, Belief in the law of small numbers. Psychol. Bull. 76(2), 105–110 (1971)

    Article  Google Scholar 

  32. A. Tversky, D. Kahneman, Judgment under uncertainty: heuristics and biases. Science 185(4157), 1124–1131 (1974)

    Google Scholar 

  33. R.K. Guy, The strong law of small numbers. Am. Math. Mon. 95(8), 614–617 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  34. M. Hughes, I. Franks, The Essentials of Performance Analysis: An Introduction (Routledge, New York, 2008)

    Google Scholar 

  35. S. Loland, The mechanics and meaning of alpine skiing: methodological and epistemological notes on the study of sport technique. J. Philos. Sport 19(1), 55–77 (1992)

    Article  Google Scholar 

  36. P. Federolf et al., Impact of skier actions on the gliding times in alpine skiing. Scand. J. Med. Sci. Sports 18(6), 790–797 (2008)

    Article  Google Scholar 

  37. J. Spörri et al., Turn characteristics of a top world class athlete in giant slalom: a case study assessing current performance prediction concepts. Int. J. Sports Sci. Coach. 7(4), 647–660 (2012)

    Article  Google Scholar 

  38. M.M. Morlock, V.M. Zatsiorsky, Factors influencing performance in bobsledding: influences of the bobsled crew and the environment. Int. J. Sport Biomech. 5, 208–211 (1989)

    Google Scholar 

  39. J.P.A. Ioannidis, Why most published research findings are false. PLoS Med. 2(8), e124 (2005)

    Google Scholar 

  40. Vv. Aa, Challenges in irreproducible research. Specials & supplements archive. Nature 456 (2013). http://www.nature.com/news/reproducibility-1.17552

  41. G. Atkinson, A.M. Nevill, Selected issues in the design and analysis of sport performance research. J. Sports Sci. 19(10), 811–827 (2001)

    Article  Google Scholar 

  42. M. Spencer et al., Variability and predictability of performance times of elite cross-country skiers. Int. J. Sports Physiol. Perform. 9, 5–11 (2014)

    Article  Google Scholar 

  43. R. Rodano, Critical issues in applied sport biomechanics research, in Proceedings of 20th International Symposium on Biomechanics in Sport, 2002

    Google Scholar 

  44. D.R. Mullineaux, R.M. Bartlett, S. Bennett, Research design and statistics in biomechanics and motor control. J. Sports Sci. 19(10), 739–760 (2001)

    Article  Google Scholar 

  45. K. Hébert-Losier, M. Supej, H.C. Holmberg, Biomechanical factors influencing the performance of elite alpine ski racers. Sports Med. 44(4), 519–533 (2013)

    Article  Google Scholar 

  46. G.P. Bruggemann, M. Morlock, V.M. Zatsiorsky, Analysis of the Bobsled and Men’s Luge Events at the XVII Olympic Winter Games in Lillehammer. J. Appl. Biomech. 13(1), 98–108 (1997)

    Google Scholar 

  47. M.A.D. Brodie, A. Walmsley, W. Page, Fusion motion capture: a prototype system using inertial measurement units and GPS for the biomechanical analysis of ski racing. Sports Technol. 1(1), 17–28 (2008)

    Article  Google Scholar 

  48. G. Taga, A model of the neuromusculoskeletal system for human locomotion. I. Emergence of basic gait. Biol. Cybern. 73, 97–111 (1995)

    MATH  Google Scholar 

  49. G. Taga, A model of the neuromusculoskeletal system for human locomotion. II. Real-time adaptability under various constraints. Biol. Cybern. 73, 113–121 (1995)

    MATH  Google Scholar 

  50. D.V. Knudson, C.S. Morrison, Qualitative Analysis of Human Movement (Human Kinetics, Champaign, 2002), pp. 73–189

    Google Scholar 

  51. E.A. Fleishman, M.K. Quaintance, L.A. Broedling, Taxonomies of Human Performance: The Description of Human Tasks (Academic Press INC, Orlando, 1984)

    Google Scholar 

  52. A. Dal Monte, M. Faina et al., Valutazione dell’atleta: analisi funzionale e biomeccanica della capacità di prestazione (UTET, Torino, 1999)

    Google Scholar 

  53. N.F. Troje, Decomposing biological motion: a framework for analysis and synthesis of human gait patterns. J. Vision 2, 371–387 (2002)

    Article  Google Scholar 

  54. M.D. Hughes, R.M. Bartlett, The use of performance indicators in performance analysis. J. Sports Sci. 20, 739–754 (2002)

    Article  Google Scholar 

  55. M. Hughes, Notational analysis -a mathematical perspective. Int. J. Perf. Anal. Sport 4(2), 97–139 (2004)

    Google Scholar 

  56. Y.L. Zhang, M. Hubbard, R.K. Huffman, Optimum control of bobsled steering. J. Optim. Theory Appl. 85(1), 1–19 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  57. K. Hosokawa, Y. Sato, T. Sakata, Study on modification of ski referring characteristic of ski-turn (change of width and shoe center), in The Engineering of Sport 6 (Springer, New York, 2006), pp. 213–218

    Google Scholar 

  58. W. Niessen et al., Structural dynamic analysis of alpine skis during turns, in Science and Skiing, ed. by E. Müller, H. Schwameder, E. Kornexl, C. Raschner (E & FN Spon, London, 1997), pp. 333–348

    Google Scholar 

  59. J.D. Barrow, Rowing and the same-sum problem have their moments. Am. J. Phys. 78, 728–732 (2010)

    Article  Google Scholar 

  60. D. Gordon et al., Research Methods in Biomechanics (Human Kinetics, Champaign, 2004)

    Google Scholar 

  61. C. Gratton, I. Jones, Research Methods for Sport Studies, 2nd edn. (Routledge, New York, 2010)

    Google Scholar 

  62. F. Danion, M.L. Latash, Motor Control. Theories, Experiments and Applications (Oxford University Press, Oxford, 2011)

    Google Scholar 

  63. J.R. Thomas, J.K. Nelson, S.J. Silverman, Research Methods in Physical Activity, 6th edn. (Human Kinetics, New York, 2011)

    Google Scholar 

  64. G. Atkinson, Sport performance: variable or construct? J. Sports Sci. 20(4), 291–292 (2002)

    Article  Google Scholar 

  65. A. Lees, Technique analysis in sports: a critical review. J. Sports 20, 813–828 (2002)

    Article  Google Scholar 

  66. M. Gorlin et al., Sliding friction and boundary lubrication of snow. J. Tribol. 109, 614–617 (1987)

    Article  Google Scholar 

  67. J.L. Giesbrecht, Polymers on snow. Towards skiing faster. Ph.D. thesis, ETH, Zurich, Switzerland, 2010

    Google Scholar 

  68. L. Poirier et al., Experimental analysis of ice friction in the sport of bobsleigh. Sports Eng. 14, 67–72 (2011)

    Article  Google Scholar 

  69. L. Poirier, E.P. Lozowski, R.I. Thompson, Ice hardness in winter sports. Cold Reg. Sci. Technol. 67(3), 129–134 (2011)

    Article  Google Scholar 

  70. N.A. Nordin, P. Styring, Superhydrophobic ski bases for reduced water adhesion. Procedia Eng. 72, 605–610 (2014)

    Article  Google Scholar 

  71. M. Jacobs, Design and recognition of tactile feedback patterns for snowboarding. Ph.D. thesis, RWTH Aachen University, 2008

    Google Scholar 

  72. A. Dal Monte, La valutazione funzionale dell’Atleta (Sansoni, Firenze, 1983)

    Google Scholar 

  73. E. Spring et al., Drag area of a cross country skier. Int. J. Sports Biomech. 4, 103–113 (1988)

    Google Scholar 

  74. M. Supej et al., Aerodynamic drag is not the major determinant of performance during giant slalom skiing at the elite level. Scand. J. Med. Sci. Sports 23(1), e38–e47 (2013)

    Article  Google Scholar 

  75. A.J. Ward-Smith, D. Clements, Experimental determination of aerodynamic characteristics of ski jumpers. Aeronaut. J. 86, 384–391 (1982)

    Google Scholar 

  76. K. Watanabe, I. Watanabe, Aerodynamics of ski-jumping: effect of ’Vstyle’ to distance, in XIVth Congress of the International Society of Biomechanics, 1993, pp. 1452–1453

    Google Scholar 

  77. W. Muller, D. Platzer, B. Schmolzer, Dynamics of human flight on skis: improvements in safety and fairness in ski-jumping. J. Biomech. 29, 1061–1068 (1996)

    Article  Google Scholar 

  78. E. Muller, H. Schwameder, Biomechanical aspects of new techniques in alpine skiing and ski-jumping. J. Sports Sci. 21, 679–692 (2003)

    Article  Google Scholar 

  79. P. Dabnichki, E. Avital, Influence of the position of crew members on aerodynamics performance of two-man bobsleigh. J. Biomech. 39, 2733–2742 (2006)

    Article  Google Scholar 

  80. O. Lewis, Aerodynamic analysis of a 2-man bobsleigh. MA thesis, TU Delft, 2006

    Google Scholar 

  81. G. Gibertini et al., Aerodynamic analysis of a two-man bobsleigh, in 6th World Congress of Biomechanics (Springer, Berlin/Heidelberg, 2010), pp. 228–231

    Google Scholar 

  82. A. Winkler, A. Pernpeintner, Automated aerodynamic optimization of the position and posture of a bobsleigh crew. Procedia Eng. 2(2), 2399–2405 (2010)

    Article  Google Scholar 

  83. A. Lüthi et al., Effect of bindings and plates on ski mechanical properties and carving performance, in The Engineering of Sport 6 (Springer, New York, 2006), pp. 299–304

    Google Scholar 

  84. N. Petrone, The use of an Edge Load Profile static bench for the qualification of alpine skis. Procedia Eng. 34, 385–390 (2012)

    Article  Google Scholar 

  85. C. Zanoletti et al., Relationship between push phase and final race time in skeleton performance. J. Strength Cond. Res. 20(3), 570–583 (2006)

    Google Scholar 

  86. N. Bullock et al., Characteristics of performance in skeleton World Cup races. J. Sports Sci. 27(4), 367–372 (2009)

    Article  Google Scholar 

  87. F. Braghin et al., A driver model of a two-man bobsleigh. Sports Eng. 13(4), 181–193 (2011)

    Article  Google Scholar 

  88. F. Braghin, F. Cheli, S. Melzi, E. Sabbioni, Experimental assessment of bobsleigh dynamics and ice-skate contact forces. In Topics in Modal Analysis II, Volume 6 (Springer, New York, 2012), pp. 487–498

    Google Scholar 

  89. M.L. Latash, F. Lestienne, Motor Control and Learning (Springer Science Media, Inc., New York, 2006)

    Book  Google Scholar 

  90. V.M. Zatsiorsky et al., Biomechanics in Sport. Performance Enhancement and Injury Prevention. An IOC Medical Commission Publication, vol. 9 (Blackwell Science Ltd., Oxford, 2000)

    Google Scholar 

  91. P.S. Glazier, M.T. Robins, Comment on ‘Use of deterministic models in sports and exercise biomechanics research’ by Chow and Knudson. Sports Biomech. 11(1), 120–122 (2012)

    Article  Google Scholar 

  92. F. Cignetti et al., A limit-cycle model of leg movements in cross-country skiing and its adjustments with fatigue. Hum. Mov. Sci. 19(4), 590–604 (2010)

    Article  Google Scholar 

  93. P. Komi, M. Virmavirta, Ski-jumping take-off performance: determining factors and methodological advances, in Science and Skiing, ed. by E. Müller, H. Schwameder, E. Kornexl, C. Raschner, (E & F Spon, London, 1997), pp. 3–26

    Google Scholar 

  94. P. Federolf et al., Deformation of snow during a carved ski turn. Cold Reg. Sci. Technol. 46(1), 69–77 (2006)

    Article  Google Scholar 

  95. T. Yoneyama et al., A ski robot system for qualitative modelling of the carved turn. Sports Eng. 11(3), 131–141 (2009)

    Article  Google Scholar 

  96. A.A. Renshaw, C.D. Mote, A model for turning snow ski. Int. J. Mech. Sci 31, 721–736 (1989)

    Article  Google Scholar 

  97. Y. Hirano, N. Tada, Mechanics of a turning snow ski. Int. J. Mech. Sci. 5(36), 421–429 (1994)

    Article  MATH  Google Scholar 

  98. Y. Hirano, Numerical simulation of a turning alpine ski during recreational skiing. Int. J. Med. Sci. Sports Exerc. 28(9), 1209–1213 (1996)

    Article  Google Scholar 

  99. B. Nemec, O. Kugovnik, M. Supej, Influence of the ski side cut on vibrations in alpine skiing, Science and Skiing II (Meyer & Meyer, Aachen, 2001)

    Google Scholar 

  100. D.A. Moldestad, Some aspects of ski base sliding friction and ski base structure. Engineering Thesis, Dep of Structural Engineering, Norwegian University of Science and Technology, Trondheim, 1999

    Google Scholar 

  101. Q. Wu et al., Lift mechanics of downhill skiing and snowboarding. Med. Sci. Sports Exerc. 38(6), 1132–1146 (2006)

    Article  Google Scholar 

  102. A. Koptyug et al., Cross-country ski vibrations and possible mechanisms of their influence on the free gliding. Procedia Eng. 34, 473–478 (2012)

    Article  Google Scholar 

  103. M. Supej, O. Kugovnik, B. Nemec, Advanced Analysis of Skiing Based on 3D Kinematic Measurements (Meyer & Meyer Sport, New York, 2005)

    Google Scholar 

  104. M. Supej, M. Cernigoj, Relations between different technical and tactical approaches and overall time at men’s world cup giant slalom races. Kinesiologia Slovenica 12(1), 63–69 (2006)

    Google Scholar 

  105. C.D.W. Canham, J. Cole, W.K. Lauenroth, Models in Ecosystem Science (Princeton University Press, Princeton, 2003)

    Google Scholar 

  106. N. Oreskes, K. Shrader-Frechette, K. Belitz, Verification, validation, and confirmation of numerical models in the earth. Sciences, New Series 263(5147), 641–646 (1994)

    Google Scholar 

  107. N. Oreskes, Why believe a computer? Models, measures, and meaning in the natural world. In The Earth Around Us: Maintaining a Livable Planet (W.H. Freeman & Company, New York, 2000), pp. 70–82

    Google Scholar 

  108. N. Oreskes, K. Belitz, Philosophical issues in model assessment, in Model Validation: Perspectives in Hydrological Science, Cap 3 (Wiley, New York, 2001), pp. 23–41

    Google Scholar 

  109. N. Oreskes, The Role of Quantitative Models in Science, ed. by C.D.W. Canham, J. Cole, W.K. Lauenroth (Princeton University Press, Princeton, 2003)

    Google Scholar 

  110. T. Gilovich, R. Vallone, A. Tversky, The hot hand in basketball: on the misperception of random sequences. Cogn. Psychol. 17(3), 295–314 (1985)

    Article  Google Scholar 

  111. M. Bar-Eli, S. Avugos, M. Raab, Twenty years of ‘hot hand’ research: review and critique. Psychol. Sport Exerc. 7(6), 525–553 (2006)

    Article  Google Scholar 

  112. P. Suppes, Conflicting intuitions about causality. Midwest Stud. Philos. 9(1), 151–168 (1984)

    Article  MathSciNet  Google Scholar 

  113. R.A. Matthews, Facts versus factions: the use and abuse of subjectivity in scientific research. ESEF Working Paper 2/98, The European Science and Environment Forum Cambridge (1998)

    Google Scholar 

  114. H.M. Marks, Rigorous uncertainty: why RA Fisher is important. Int. J. Epidemiol. 32, 932–937 (2003)

    Article  Google Scholar 

  115. A.V. Hill, The air-resistance to a runner. Proc. R. Soc. Lond. B: Biol. Sci., 102(718), 380–385 (1928)

    Article  Google Scholar 

  116. B.B. Lloyd, Theoretical effects of altitude on the equation of motion of a runner, in Exercise and Altitude, ed. by R. Margaria (Excerpta Medica Foundation, Amsterdam, 1967), pp. 65–72

    Google Scholar 

  117. S.C. Hollings, W.G. Hopkins, P.A. Hume, Environmental and venue-related factors affecting the performance of elite male track athletes. Eur. J. Sport Sci. 12(3), 201–206 (2012)

    Article  Google Scholar 

  118. J.J. De Koning, G. De Groot, G.J. van Ingen Schenau, Ice friction during speed skating. J. Biomech. 25(6), 565–571 (1992)

    Article  Google Scholar 

  119. A.M. Kietzig, S.G. Hatzikiriakos, P. Englezos, Ice friction: the effects of surface roughness, structure and hydrophobicity. J. Appl. Phys. 106(2) 024303 (2009)

    Google Scholar 

  120. S.C. Colbeck, L. Najarian, H.B. Smith, Sliding temperatures of ice skates. Am. J. Phys. 65(6), 488–492 (1997)

    Article  Google Scholar 

  121. M. Virmavirta, P. Komi, Takeoff analysis of a champion ski jumper. J. Coach. Sport Sci. 1, 23–27 (1994)

    Google Scholar 

  122. D. MacAuley, M.T. Best, Evidence-Based Sports Medicine (BMG Books, Johannesburg, 2002)

    Google Scholar 

  123. N.J. Balmer, A.M. Nevill, M. Williams, Home advantage in the Winter Olympics (1908–1998). J. Sports Sci. 19(2), 129–139 (2001)

    Article  Google Scholar 

  124. W.G. Hopkins et al., Mixed linear modelling: a very short introduction. Sportscience 17 (July 2013)

    Google Scholar 

  125. N.E. Breslow, D.G. Clayton, Approximate inference in generalized linear mixed models. J. Am. Stat. Assoc. 88(421), 9–25 (1993)

    MATH  Google Scholar 

  126. A.M. Nevill, R.L. Holder, Home advantage in sport: an overview of studies on the advantage of playing at home. Sports Med. 28(4), 221–236 (1999)

    Article  Google Scholar 

  127. T.B. Smith, W.G. Hopkins, Variability and predictability of finals times of elite rowers. Med. Sci. Sports Exerc. 43(11), 2155–2160 (2011)

    Article  Google Scholar 

  128. N. Bullock, W.G. Hopkins, Methods for tracking athletes’ competitive performance in skeleton. J. Sports Sci. 27(9), 973–940 (2009)

    Article  Google Scholar 

  129. G. Atkinson, A.M. Nevill, Statistical methods for assessing measurement error (reliability) variables relevant to sports medicine. Sports Med. 26(4), 217–238 (1998)

    Article  Google Scholar 

  130. W.G. Hopkins, Measures of reliability in sports. Medicine and science. Sports Med. 30(1), 1–15 (2000)

    Article  Google Scholar 

  131. S. Bray, A. Carron, The home advantage in alpine skiing. Aust. J. Sci. Med. Sport 25(4), 76–81 (1993)

    Google Scholar 

  132. R.H. Koning, Home advantage in speed skating: evidence from individual data. J. Sports Sci. 23(4), 417–427 (2005)

    Article  Google Scholar 

  133. SR Olympic Sports (2014), http://www.sports-reference.com/olympics/athletes/da/bjorn-daehlie-1.html

  134. J.D. Sterman et al., The meaning of models. Science, New Series 264(5157), 329–331 (1994)

    Google Scholar 

  135. L. Geymonat et al., Storia del Pensiero Filosofico e Scientifico. Vol IX, Il Novecento (Garzanti, Milano, 1972)

    Google Scholar 

  136. L. Von Bertalanffy, General System Theory: Foundations, Development, Applications (George Brazilier, Inc., New York, 1968)

    Google Scholar 

  137. N.A. Bernstein, The Coordination and Regulation of Movement (Pergamon Press, New York, 1967)

    Google Scholar 

  138. H. Hatze, Motion variability. Its definition, quantification and origin. J. Mot. Behav. 18, 5–16 (1986)

    Google Scholar 

  139. K.S. Lashley, Basic neural mechanisms in behavior. Psychol. Rev. 37, 1–24 (1930)

    Article  Google Scholar 

  140. J.S. Kelso, K.G. Holt, A.E. Flatt, The role of proprioception in the perception and control of human movement: toward a theoretical reassessment. Percept. Psychophys. 28(1), 45–52 (1980)

    Article  Google Scholar 

  141. C.D. Davlin, Dynamic balance in high level athletes. Percept. Mot. Skills 98(3c), 1171–1176 (2004)

    Article  Google Scholar 

  142. A. Natri et al., Alpine ski bindings and injuries. Sports Med. 28(1), 35–48 (1999)

    Article  Google Scholar 

  143. M. Burtscher et al., Effects of modern ski equipment on the overall injury rate and the pattern of injury location in Alpine skiing. Clin. J. Sport Med. 18(4), 355–357 (2008)

    Article  MathSciNet  Google Scholar 

  144. G. Bottoni et al., Effect of knee braces on balance ability wearing ski boots (a pilot study). Procedia Eng. 72, 327–331 (2014)

    Article  Google Scholar 

  145. J. Mester, Movement regulation in alpine skiing, in Science and Skiing, ed. by E. Müller, H. Schwameder, E. Kornexl, C. Raschner (E & FN Spon, London, 1996), pp. 333–348

    Google Scholar 

  146. O. Kugovnik, B. Nemec, Analyses of vibration and shocks during the parallel turn in alpine skiing, in Proceedings of ISBS’98 (UKV -Univesitatsverlag Konstanz, Konstanz, 1998), pp. 164–167

    Google Scholar 

  147. C. Haas, C. Simon, D. Schmidtbleicher, Simulation of vibrations in alpine skiing, in ISBS-Conference Proceedings Archive, vol. 1, Issue 1, 1998

    Google Scholar 

  148. G.C. Foss, B. Glenne, Reducing on-snow vibration of skis and snow-boards. Sound Vib. 12, 5 (2007)

    Google Scholar 

  149. R.L. Bratton et al., Effect of ionized wrist bracelets on musculoskeletal pain: a randomized, double-blind placebo-controlled trial. Mayo Clin. Proc. 77, 1164–1168 (2002)

    Article  Google Scholar 

  150. E. Bringman, C. Kimura, P. Scho, Effects of an ionic bracelet on physical, cognitive, and integrative tasks. Pac. Northwest J. Undergrad. Res. Creat. Act. 2 (2011). Article 4. http://commons.pacificu.edu/pnwestjurca/vol2/iss1/4

  151. J. Porcari, Can the Power Balance © bracelet improve balance, flexibility, strength and power? J. Sports Sci. Med. 10, 230–231 (2011)

    Google Scholar 

  152. C.T. Haas, S. Turbanski, D. Schmidtbleicher, Improved sensorimotor control is not connected with improved proprioception. Br. J Sports Med. 39(Suppl 1), 388 (2005)

    Google Scholar 

  153. D.F. Collins, A. Prochazka, Movement illusions evoked by ensemble cutaneous input from the dorsum of the human hand. Physiology 496(3), 857–871 (1996)

    Article  Google Scholar 

  154. D. Spelmezan et al., Tactile motion instructions for physical activities, in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (2009), pp. 2243–2252

    Google Scholar 

  155. J.J. Gibson, The Senses Considered as Perceptual Systems (Houghton Mifflin, Boston, 1966)

    Google Scholar 

  156. V. Ibegbuna et al., Effect of elastic compression stockings on venous hemodynamics during walking. J. Vasc. Surg. 37(2), 420–425 (2003)

    Article  Google Scholar 

  157. D.P. Born, B. Sperlich, H.C. Holmberg, Bringing light into the dark: effects of compression clothing on performance and recovery. Int. J. Sports Physiol. Perform. 8(1), 4–18 (2013)

    Google Scholar 

  158. F. Noé, T. Paillard, Is postural control affected by expertise in alpine skiing? Br. J. Sports Med. 39(11), 835–837 (2005)

    Article  Google Scholar 

  159. R. Llinás, The noncontinuous nature of movement execution, in Motor Control: Concepts and Issues, ed. by D.R. Humphrey, H.J. Freund (Wiley, New York, 1991), pp. 223–242

    Google Scholar 

  160. M.S. Redfern, L. Yardley, A.M. Bronstein, Visual influences on balance. J. Anxiety Disord. 15(1), 81–94 (2001)

    Article  Google Scholar 

  161. M. Cardinale, J. Lim, Electromyography activity of vastus lateralis muscle during whole-body vibrations of different frequencies. J. Strength Cond. Res. 17(3), 621–624 (2003)

    Google Scholar 

  162. D. Burke et al., The responses of human muscle spindle endings to vibration of non-contracting muscles. J. Physiol. 261(3), 673–693 (1976)

    Article  MathSciNet  Google Scholar 

  163. S.S. Maxwell, Labyrinth and equilibrium II. The mechanism of the dynamic functions of the labyrinth. J. Gen. Physiol. 2(4), 349–355 (1920)

    MathSciNet  Google Scholar 

  164. L.M. Nashner et al., Organization of posture controls: an analysis of sensory and mechanical constraints. Prog. Brain Res. 80, 411–418 (1989)

    Article  Google Scholar 

  165. G. Bottini, Modulation of conscious experience by peripheral sensory stimuli. Nature 376, 778–781 (2013)

    Article  Google Scholar 

  166. F. Lestienne, J. Soechting, A. Berthoz, Postural readjustments induced by linear motion of visual scenes. Exp. Brain Res. 28, 363–384 (1977)

    Google Scholar 

  167. B. Kerr, S.M. Condon, L.A. McDonald, Cognitive spatial processing and the regulation of posture. J. Exp. Psychol. Hum. Percept. Perform. 11(5), 617–622 (1985)

    Article  Google Scholar 

  168. G.J. Andersen, B.P. Dyre, Spatial orientation from optic flow in the central visual field. Percept. Psychophys. 45(5), 453–458 (1989)

    Article  Google Scholar 

  169. T. Poggio, E. Bizzi, Generalization in vision and motor control. Nature 431(7010), 768–774 (2004)

    Article  Google Scholar 

  170. A.O. Effenberg, H. Mechling, Bewegung hörbar machen -Warum? Psychologie und Sport 5(1), 28–38 (1998)

    Google Scholar 

  171. T. Pozzo, A. Berthoz, L. Lefort, Head stabilization during various locomotor tasks in humans. Exp. Brain Res. 82, 97–106 (1990)

    Article  Google Scholar 

  172. T. Pozzo, Y. Levik, A. Berthoz, Head and trunk movements in the frontal plane during complex dynamic equilibrium tasks in humans. Exp. Brain Res. 106, 327–338 (1995)

    Article  Google Scholar 

  173. B. Armstrong, P. McNair, D. Taylor, Head and neck position sense. Sports Med. 38(20), 101–117 (2008)

    Article  Google Scholar 

  174. R. Ajemian et al., Why professional athletes need a prolonged period of warm-up and other peculiarities of human motor learning. J. Mot. Behav. 42(6), 381–388 (2010)

    Article  Google Scholar 

  175. G. Atkinson, T. Reilly, Circadian variation in sports performance. Sports Med. 21(4), 92–293 (1996)

    Article  Google Scholar 

  176. B. Drust et al., Review: circadian rhythms in sports performance -an update. Chronobiol. Int. 22(1), 21–44 (2005)

    Article  Google Scholar 

  177. http://en.wikipedia.org/wiki/Equifinality (2014)

  178. B.T. Bates et al., An assessment of subject variability, subject-shoe interaction and the evaluation of running shoes using ground reaction force data. J. Biomech. 16(3), 181–191 (1983)

    Article  Google Scholar 

  179. B.M. Nigg, M.A. Nurse, D.J. Stefanyshyn, Shoe inserts and orthotics for sport and physical activities. Med. Sci. Sports Exerc. 31, S421–S428 (1999)

    Article  Google Scholar 

  180. J.G. Barton, A. Lees, Comparison of shoe insole materials by neural network analysis. Med. Biol. Eng. Comput. 34(6), 453–459 (1996)

    Article  Google Scholar 

  181. M.J. Rupérez et al., Artificial neural networks for predicting dorsal pressures on the foot surface while walking. Expert Syst. Appl. 39(5), 5349–5357 (2012)

    Article  Google Scholar 

  182. R. Baker, The history of gait analysis before the advent of modern computers. Gait Posture 26, 331–342 (2007)

    Article  Google Scholar 

  183. A. Lüthi et al., Determination of forces in carving using three independent methods, in Proceedings of 3rd International Congress on Science and Skiing, Aspen, CO, 2004

    Google Scholar 

  184. Y. Ohgi et al., Measurement of jumper’s body motion in ski jumping, in The Engineering of Sport 6 (Springer, New York, 2006), pp. 275–280

    Google Scholar 

  185. M.A.D. Brodie, Development of fusion motion capture for optimisation of performance in alpine ski racing. Ph.D. thesis, Massey University, Wellington, NZ, 2009

    Google Scholar 

  186. T. Bere et al., Mechanisms of anterior cruciate ligament injury in world cup alpine skiing. A systematic video analysis of 20 cases. Am. J. Sports Med. 39(7), 1421–1429 (2011)

    Google Scholar 

  187. F. Meyer, Biomechanical analysis of alpine skiers performing giant slalom turns. Ph.D. thesis, UNIL-University of Lausanne, 2012

    Google Scholar 

  188. M. Gilgien et al., Determination of external forces in alpine skiing using a differential global navigation satellite system. Sensors 13, 9821–9835 (2013)

    Article  Google Scholar 

  189. M. Gilgien, Characterisation of skiers’ mechanics, course setting and terrain geomorphology in World Cup Alpine Skiing using global navigation satellite systems: injury risk, performance and methodological aspects. Ph.D. dissertation from the Norwegian School of Sport Sciences, 2014

    Google Scholar 

  190. M. Kranz et al., The mobile fitness coach: towards individualized skill assessment using personalized mobile devices. Pervasive Mob. Comput. 9(2), 203–215 (2013)

    Article  Google Scholar 

  191. H.E. Berg, O. Eiken, Muscle control in elite alpine skiing. Med. Sci. Sports Exerc. 31(7), 1065–1067 (1999)

    Article  Google Scholar 

  192. P.A. Tesch, Aspects on muscle properties and use in competitive Alpine skiing. Med. Sci. Sports Exerc. 27(3), 310–314 (1995)

    Article  Google Scholar 

  193. N. Petrone, G. Marcolin, M. De Gobbi, M. Nicoli, C. Zampieri, Acquisition of EMG signals during slalom with different ski boots, in Science and Skiing IV (Meyer & Meyer Sport, Aachen, 2009), pp. 399–409

    Google Scholar 

  194. F. Panizzolo, N. Petrone, G. Marcolin, Comparative analysis of muscle activation patterns between skiing on slopes and on training devices, in 8th Conference of the International Sports Engineering Association (ISEA). Elsevier, Procedia Engineering, vol. 2 (2010), pp. 2537–2542

    Google Scholar 

  195. K.S. Lashley, The problem of cerebral organization in vision, in Biological Symposia, vol. VII Visual Mechanism (Jacques Cattel Press, New York, 1942), pp. 301–322

    Google Scholar 

  196. R. Schmidt, T. Lee, Motor Control and Learning. A Behavioral Emphasis, 5 edn. (Human Kinetics, Champaign, 2011)

    Google Scholar 

  197. J. McIntyre et al., Does the brain model Newton’s laws? Nat. Neurosci. 4, 693–694 (2001)

    Article  Google Scholar 

  198. A. Salo, P.N. Grimshaw, J.T. Viitasalo, Reliability of variables in kinematic analysis of spring hurdles. Med. Sci. Sports Exerc. 29(3), 383–389 (1997)

    Article  Google Scholar 

  199. P. Federolf et al., The application of principal component analysis to quantify technique in sports. Scand. J. Med Sci Sports. 24(3), 491–499 (2012)

    Article  Google Scholar 

  200. R. Tucker, M.I. Lambert, T.D. Noakes, An analysis of pacing strategies during men’s world-record performances in track athletics. Int. J. Sports Physiol. Perform. 1, 233–245 (2006)

    Google Scholar 

  201. T.D. Noakes, M. Lambert, R. Human, Which lap is the slowest? An analysis of 32 world record performances. Br. J. Sports Med. 43, 760–764 (2008)

    Article  Google Scholar 

  202. C.R. Abbiss, P.B. Laursen, Describing and understanding pacing strategies during athletic competition. Sports Med. 38(3), 239–252 (2008)

    Article  Google Scholar 

  203. T. Muehlbauer, S. Panzer, C. Schindler, Pacing pattern and speed skating performance in competitive long-distance events. J. Strength Cond. Res. 24(1), 114–119 (2010)

    Article  Google Scholar 

  204. J.J. De Koning et al., Regulation of pacing strategy during athletic competition. PloS One. 6(1), e15863 (2011)

    Google Scholar 

  205. B. Roelands et al., Neurophysiological determinants of theoretical concepts and mechanisms involved in pacing. Sports Med. 43(5), 301–311 (2013)

    Article  Google Scholar 

  206. I. Reade, W. Rodgers, N. Hall, Knowledge transfer: How do high performance coaches access the knowledge of sport scientists? Int. J. Sports Sci. Coach. 3, 319–334 (2008)

    Article  Google Scholar 

  207. I. Reade, W. Rodgers, K. Spriggs, New ideas for high performance coaches: a case study of knowledge transfer in sport science. Int. J. Sports Sci. Coach. 3, 335–354 (2008)

    Article  Google Scholar 

  208. J.W. Chow, D.V. Knudson, Use of deterministic models in sports and exercise biomechanics research. Sports Biomech. 10, 219–233 (2011)

    Article  Google Scholar 

  209. D.V. Knudson, J.W. Chow, Response to the comment on ‘Use of deterministic models in sports and exercise biomechanics research’. Sports Biomech. 11(1), 123–124 (2012)

    Article  Google Scholar 

  210. M. McNamee (ed.), Philosophy and the Sciences of Exercise, Health and Sport: Critical Perspectives on Research Methods (Routledge, London, 2004)

    Google Scholar 

  211. A. Dal Monte, Nuovi occhi per l’allenatore, in Scuola Dello Sport. Speciale Seminario, vol. 1 (1982), pp. 13–14

    Google Scholar 

  212. D. Dalla Vedova et al., Nuovi occhi per l’allenatore: 25 anni dopo. Scuola dello Sport 25(71), 3–11 (2007)

    Google Scholar 

  213. P.A. Federolf, Quantifying instantaneous performance in alpine ski racing. J. Sports Sci. 30(10), 1063–1068 (2012)

    Article  Google Scholar 

  214. S.L. Halson, Sleep in elite athletes and nutritional interventions to enhance sleep. Sports Med. 44(1), 13–23 (2014)

    Article  Google Scholar 

  215. M.A. Boutilier, L. San Giovanni, The Sporting Woman (Human Kinetics Publishers, Inc., Champaign, 1983)

    Google Scholar 

  216. B.L. Drinkwater, Women in Sport. The Encyclopaedia of Sports Medicine: An IOC Medical Commission Publication, vol. 8 (Wiley, New York, 2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Dalla Vedova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Editor

About this chapter

Cite this chapter

Dalla Vedova, D. (2016). Why Did We Lose? Towards an Integrated Approach to Winter Sports Science. In: Braghin, F., Cheli, F., Maldifassi, S., Melzi, S., Sabbioni, E. (eds) The Engineering Approach to Winter Sports. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3020-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3020-3_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3019-7

  • Online ISBN: 978-1-4939-3020-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics