Skip to main content

Fatigue and Fracture Resistance of Bone

  • Chapter

Abstract

In Chap. 7, we examined the mechanical properties of bone when it is fractured by a load sufficient to exceed the failure stress of the material. Structures may also fail more gradually. There are two principal ways in which this can happen: creep and fatigue. In both, a stress less than the ultimate stress is applied, and damage from this stress grows and accumulates until failure occurs.

Textbooks and Heaven only are ideal;

Solidity is an imperfect state.

Within the cracked and dislocated Real

Nonstochiometric Crystals dominate.

John Updike in “The Dance of the Solids”

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In a plane strain situation, the strains are all within a plane, i.e., deformations perpendicular to the plane may be assumed zero. Plane stress is similarly defined in terms of stress components perpendicular to the plane. Thanks to Poisson's ratio, the two situations are not the same.

  2. 2.

    Unpublished data by Schaffler and co-workers extend this to 45 million cycles.

References

  • Alto A, Pope MH. On the fracture toughness of equine metacarpi. J Biomech. 1979;12:415–21.

    Article  PubMed  CAS  Google Scholar 

  • Balazs EA, Gibbs DA. The rheological properties and biological function of hyaluronic acid. In: Balazs EA, editor. Chemistry and molecular biology of the intercellular matrix. New York, NY: Academic; 1970.

    Google Scholar 

  • Barth HD, Zimmermann EA, Schaible E, Tang SY, Alliston T, Ritchie RO. Characterization of the effects of x-ray irradiation on the hierarchical structure and mechanical properties of human cortical bone. Biomaterials. 2011;32:8892–904.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Behiri JC, Bonfield W. Fracture mechanics of bone—the effects of density, specimen thickness and crack velocity on longitudinal fracture. J Biomech. 1984;17:25–34.

    Article  PubMed  CAS  Google Scholar 

  • Bentolila V, Hillam RA, Skerry TM, Boyce TM, Fyhrie DP, Schaffler MB. Activation of intracortical remodeling in adult rat long bones by fatigue loading. Trans Orthop Res Soc. 1997;22:578.

    Google Scholar 

  • Bonfield W, Datta PK. Fracture toughness of compact bone. J Biomech. 1976;9:131–4.

    Article  PubMed  CAS  Google Scholar 

  • Boyce TM, Fyhrie DP, Glotkowski MC, et al. Damage type and strain mode associations in human compact bone bending fatigue. J Orthop Res. 1998;16:322–9.

    Article  PubMed  CAS  Google Scholar 

  • Boyde A. The real response of bone to exercise. J Anat. 2003;203:173–89.

    Article  PubMed Central  PubMed  Google Scholar 

  • Burr DB. Targeted and nontargeted remodeling. Bone. 2002;30:2–4.

    Article  PubMed  CAS  Google Scholar 

  • Burr DB. Why bones bend but don’t break. J Musculoskelet Neuronal Interact. 2011;11:270–85.

    PubMed  CAS  Google Scholar 

  • Burr DB, Martin RB. Calculating the probability that microcracks initiate resorption spaces. J Biomech. 1993;26:613–6.

    Article  PubMed  CAS  Google Scholar 

  • Burr DB, Milgrom C, editors. Musculoskeletal fatigue and stress fractures, CRC Series in exercise physiology. Boca Raton, FL: CRC Press; 2001.

    Google Scholar 

  • Burr DB, Stafford T. Validity of the bulk-staining technique to separate artifactual from in vivo bone microdamage. Clin Orthop Relat Res. 1990;260:305–8.

    PubMed  Google Scholar 

  • Burr DB, Turner CH. Biomechanical measurements in age-related bone loss. In: Rosen CJ, Glowacki J, Bilezikian JP, editors. The aging skeleton. London: Academic; 1999. p. 301–11. Chapter 20.

    Chapter  Google Scholar 

  • Burr DB, Martin RB, Schaffler MB, Radin EL. Bone remodeling in response to in vivo fatigue microdamage. J Biomech. 1985;18:189–200.

    Article  PubMed  CAS  Google Scholar 

  • Burstein AH, Reilly DT, Martens M. Aging of bone tissue: mechanical properties. J Bone Joint Surg. 1976;58A:82–6.

    Google Scholar 

  • Caler WE, Carter DR. Bone creep-fatigue damage accumulation. J Biomech. 1989;22:625–35.

    Article  PubMed  CAS  Google Scholar 

  • Cardoso L, Herman BC, Verborgt O, Laudier D, Majeska RJ, Schaffler MB. Osteocyte apoptosis controls activation of intracortical resorption in response to bone fatigue. J Bone Miner Res. 2009;24:597–605.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Carter DR, Caler WE. Cycle-dependent and time-dependent bone fracture with repeated loading. J Biomech Eng. 1983;105:166–70.

    Article  PubMed  CAS  Google Scholar 

  • Carter DR, Caler WE. A cumulative damage model for bone fracture. J Orthop Res. 1985;3:84–90.

    Article  PubMed  CAS  Google Scholar 

  • Carter DR, Hayes WC. Compact bone fatigue damage. I. Residual strength and stiffness. J Biomech. 1977a;10:325–37.

    Article  PubMed  CAS  Google Scholar 

  • Carter DR, Hayes WC. Compact bone fatigue damage: a microscopic examination. Clin Orthop Relat Res. 1977b;127:265–74.

    PubMed  Google Scholar 

  • Carter DR, Hayes WC, Schurman DJ. Fatigue life of compact bone. II. Effects of microstructure and density. J Biomech. 1976;9:211–8.

    Article  PubMed  CAS  Google Scholar 

  • Carter DR, Caler WE, Spengler DM, Frankel VH. Uniaxial fatigue of human cortical bone. The influence of tissue physical characteristics. J Biomech. 1981;14:461–70.

    Article  PubMed  CAS  Google Scholar 

  • Chamay A, Tschantz P. Mechanical influences in bone remodeling. Experimental research on Wolff’s law. J Biomech. 1972;5:173–80.

    Article  PubMed  CAS  Google Scholar 

  • Cohen J, Harris WH. The three-dimensional anatomy of haversian systems. J Bone Joint Surg. 1958;40A:419–34.

    Google Scholar 

  • Corondan G, Haworth WL. A fractographic study of human long bone. J Biomech. 1986;19:207–18.

    Article  PubMed  CAS  Google Scholar 

  • Cowin SC, Weinbaum S, Zeng Y. A case for bone canaliculi as the anatomic site of strain generated potentials. J Biomech. 1995;28:1281–97.

    Article  PubMed  CAS  Google Scholar 

  • Currey JD, Brear K, Zioupos P. The effects of ageing and changes in mineral content in degrading the toughness of human femora. J Biomech. 1996;29:257–60.

    Article  PubMed  CAS  Google Scholar 

  • Devas MB. Stress fractures. London: Churchill Livingstone; 1975.

    Google Scholar 

  • Diab T, Vashishth D. Effects of damage morphology on cortical bone fragility. Bone. 2005;37:96–102.

    Article  PubMed  CAS  Google Scholar 

  • Diab T, Condon KW, Burr DB, Vashishth D. Age-related change in the damage morphology of human cortical bone and its role in bone fragility. Bone. 2006;38:427–31.

    Article  PubMed  Google Scholar 

  • Donahue SW, Galley SA. Microdamage in bone: implications for fracture, repair, remodeling, and adaptation. Crit Rev Biomed Eng. 2006;34:215–71.

    Article  PubMed  Google Scholar 

  • Donahue SW, Sharkey NA, Modanlou KA, Sequeira LN, Martin RB. Bone strain and microcracks at stress fracture sites in human metatarsals. Bone. 2000;27:827–33.

    Article  PubMed  CAS  Google Scholar 

  • Evans FG, Riolo ML. Relations between the fatigue life and histology of adult human cortical bone. J Bone Joint Surg. 1970;52A:1579–86.

    Google Scholar 

  • Fazzalari NL, Forwood MR, Mathey BA, Smith K, Kolesik P. Three-dimensional confocal images of microdamage in cancellous bone. Bone. 1998;23:373–8.

    Article  PubMed  CAS  Google Scholar 

  • Finkel V. Portrait of a crack (translated from the Russian by Y. Nadler). Moscow: Mir Publications; 1985.

    Google Scholar 

  • Frasca P. Scanning electron microscopy studies of ground substance in the cement lines, resting lines, hypercalcified rings and reversal lines of human cortical bone. Acta Anat. 1981;109:115–21.

    Article  PubMed  CAS  Google Scholar 

  • Freund LB. Dynamic fracture mechanics. Cambridge: Cambridge University Press; 1990.

    Book  Google Scholar 

  • Frost HM. Presence of microscopic cracks in vivo in bone. Henry Ford Hosp Med Bull. 1960;8:25–35.

    Google Scholar 

  • Frost HM. Bone remodeling and its relationship to metabolic bone disease. Springfield: Thomas; 1973.

    Google Scholar 

  • Fyhrie DP, Milgrom C, Hoshaw SJ, Simkin A, Dar S, Drumb D, Burr DB. Effect of fatiguing exercise on longitudinal bone strain as related to stress fracture in humans. Ann Biomed Eng. 1998;26:660–5.

    Article  PubMed  CAS  Google Scholar 

  • Gaeta M, Minutoli F, Scribano ER, Ascenti G, Vince S, Bruschetta D, Magaudda L, Glandino A. CT and MR imaging findings in athletes with early tibial stress injuries. Comparison with bone scintigraphy findings and emphasis on cortical abnormalities. Radiology. 2005;235:553–61.

    Article  PubMed  Google Scholar 

  • Gibson VA, Stover SM, Martin RB, Gibeling JC, Willits NH, Gustafson MB, Griffin LV. Fatigue behavior of the equine third metacarpus: mechanical property analysis. J Orthop Res. 1996;13:861–8.

    Article  Google Scholar 

  • Gottesman T, Hashin Z. Analysis of viscoelastic behavior of bones on the basis of microstructure. J Biomech. 1980;13:89–96.

    Article  PubMed  CAS  Google Scholar 

  • Green JO, Wang J, Diab T, Vidakovic B, Guldberg RE. Age-related differences in the morphology of microdamage propagation in trabecular bone. J Biomech. 2011;44:2659–66.

    Article  PubMed Central  PubMed  Google Scholar 

  • Griffin LV, Gibeling JC, Martin RB, Gibson VA, Stover SM. A model of flexural fatigue damage accumulation for cortical bone. J Orthop Res. 1997;15:607–14.

    Article  PubMed  CAS  Google Scholar 

  • Griffith AA. The phenomenon of rupture and flow in solids. Philos Trans R Soc Lond. 1920;A221:163–98.

    Google Scholar 

  • Hasegawa K, Turner CH, Chen J, Burr DB. Effect of disc lesion on microdamage accumulation in lumbar vertebrae under cyclic compression loading. Clin Orthop. 1995;311:190–8.

    PubMed  Google Scholar 

  • Heaney RP. The natural history of vertebral osteoporosis. Is low bone mass an epiphenomenon? Bone. 1992;13 Suppl 2:S23–6.

    Article  PubMed  Google Scholar 

  • Herman BC, Cardoso L, Majeska RJ, Jepsen KJ, Schaffler MB. Activation of bone remodeling after fatigue: differential response to linear microcracks and diffuse damage. Bone. 2010;47:766–72.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hulkko A, Orava S. The role of age in the development of stress and fatigue fractures. In: Burr DB, Milgrom C, editors. Musculoskeletal Fatigue and Stress Fractures, CRC Series in exercise physiology. Boca Raton, FL: CRC Press; 2001. p. 35–54. Chapter 4.

    Google Scholar 

  • Irwin GR. Analysis of stresses and strains near the end of a crack traversing a plate. J Appl Mech. 1957;24:361–4.

    Google Scholar 

  • Johnson LC, Stradford HT, Geis RW, Dineen JR, Kerley E. Histogenesis of stress fractures. J Bone Joint Surg. 1963;45A:1542.

    Google Scholar 

  • Kendall K. Control of cracks by interfaces in composites. Proc R Soc Lond. 1975;341:409–28.

    Article  Google Scholar 

  • Kennedy OD, Herman BC, Laudier DM, Majeska RJ, Sun HB, Schaffler MB. Activation of resorption in fatigue-loaded bone involves both apoptosis and active pro-osteoclastogenic signaling by distinct osteocyte populations. Bone. 2012;50:1115–22.

    Article  PubMed Central  PubMed  Google Scholar 

  • King AI, Evans FG. Analysis of fatigue strength of human compact bone by the Weibull method. In: Jacobson B, editor. Digest of the 7th international conference on medical and biological engineering. The Royal Academy of Engineering Sciences, Stockholm; 1967.

    Google Scholar 

  • Krajcinovic D, Trafimow J, Sumarac D. Simple constitutive model for cortical bone. J Biomech. 1987;20:779–84.

    Article  PubMed  CAS  Google Scholar 

  • Lakes R, Saha S. Cement line motion in bone. Science. 1979;204:501–3.

    Article  PubMed  CAS  Google Scholar 

  • Lanyon LE, Baggott DG. Mechanical function as an influence on the structure and form of bone. J Bone Joint Surg. 1976;58B:436–43.

    Google Scholar 

  • Lanyon LE, Bourn S. The influence of mechanical function on the development and remodeling of the tibia. J Bone Joint Surg. 1979;62A:263–73.

    Google Scholar 

  • Launey ME, Buehler MJ, Ritchie RO. On the mechanistic origins of toughness in bone. Annu Rev Mater Res. 2010;40:25–53.

    Article  CAS  Google Scholar 

  • Martin RB. A mathematical model for fatigue damage repair and stress fracture in osteonal bone. J Orthop Res. 1995;13:309–16.

    Article  PubMed  CAS  Google Scholar 

  • Martin RB. Is all cortical bone remodeling initiated by microdamage? Bone. 2002;30:8–13.

    Article  PubMed  CAS  Google Scholar 

  • Martin RB, Burr DB. A hypothetical mechanism for the stimulation of osteonal remodeling by fatigue damage. J Biomech. 1982;15:137–9.

    Article  PubMed  CAS  Google Scholar 

  • Melvin JW, Evans FG. Crack propagation in bone. In: Fung YC, Brighton JA, editors. Biomaterials symposium, AMD2. New York, NY: ASME; 1973.

    Google Scholar 

  • Milgrom C, Radeva-Petrova DR, Finestone A, Nyska M, Mendelson S, Benjuya N, Simkin A, Burr D. The effect of muscle fatigue on in vivo tibial bone strains. J Biomech. 2007;40:845–50.

    Article  PubMed  Google Scholar 

  • Mori S, Burr DB. Increased intracortical remodeling following fatigue damage. Bone (New York). 1993;14:103–9.

    CAS  Google Scholar 

  • Mori S, Harruff R, Ambrosius W, Burr DB. Trabecular bone volume and microdamage accumulation in the femoral heads of women with and without femoral neck fractures. Bone (New York). 1997;21:521–6.

    CAS  Google Scholar 

  • Moyle DD, Bowden RW. Fracture of human femoral bone. J Biomech. 1984;17:203–13.

    Article  PubMed  CAS  Google Scholar 

  • Moyle DD, Welborn JW, Cooke FW. Work to fracture of canine femoral bone. J Biomech. 1978;11:435–40.

    Article  PubMed  CAS  Google Scholar 

  • Mulcahy LE, Taylor D, Lee TC, Duffy GP. RankL and OPG activity is regulated by injury size in networks of osteocyte-like cells. Bone. 2011;48:182–8.

    Article  PubMed  CAS  Google Scholar 

  • Nakashima T, Hayashi M, Fukunaga T, et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med. 2011;17:1231–4.

    Article  PubMed  CAS  Google Scholar 

  • Nalla RK, Kinney JH, Ritchie RO. Mechanistic fracture criteria for the failure of human cortical bone. Nat Mat. 2003;2:164–8.

    Article  CAS  Google Scholar 

  • Nash CD. Fatigue of a self-healing structure: a generalized theory of fatigue failure. ASME Publication #66-WA/BHF-3, American Society of Mechanical Engineers, New York; 1966.

    Google Scholar 

  • Norman TL, Wang Z. Microdamage of human cortical bone: incidence and morphology in long bones. Bone (New York). 1997;20:375–9.

    CAS  Google Scholar 

  • Norman TL, Vashishth D, Burr DB. Effect of groove on bone fracture toughness. J Biomech. 1992;25:1489–92.

    Article  PubMed  CAS  Google Scholar 

  • Norman TL, Vashishth D, Burr DB. Fracture toughness of human bone under tension. J Biomech. 1995;28:309–20.

    Article  PubMed  CAS  Google Scholar 

  • Nyman JS, Reyes M, Wang XD. Effect of ultrastructural changes on the toughness of bone. Micron. 2005;36:566–82.

    Article  PubMed  CAS  Google Scholar 

  • Owan I, Burr DB, Turner CH, Qui J, Tu Y, Onyia JE, Duncan RL. Mechanotransduction in bone: osteoblasts are more responsive to fluid forces than mechanical strain. Am J Physiol. 1997;273:C810–5.

    PubMed  CAS  Google Scholar 

  • Parfitt AM. The physiologic and clinical significance of bone histomorphometric data. In: Recker RR, editor. Bone histomorphometry techniques and interpretation. Boca Raton, FL: CRC Press; 1983. p. 143–223.

    Google Scholar 

  • Parfitt AM. Targeted and nontargeted bone remodeling: relationship to basic multicellular unit origination and progression. Bone. 2002;30:5–7.

    Article  PubMed  CAS  Google Scholar 

  • Paris PC. The fracture mechanics approach to fatigue. In: Fatigue—an interdisciplinary approach. Proceedings, tenth Sagamore army materials research conference. Syracuse University Press, Syracuse, NY; 1964.

    Google Scholar 

  • Park HC, Lakes RS. Cosserat micromechanics of human bone: strain redistribution by a hydration sensitive constituent. J Biomech. 1986;19:385–97.

    Article  PubMed  CAS  Google Scholar 

  • Parsamian GP, Norman TL. Diffuse damage accumulation in the fracture process zone of human cortical bone specimens and its influence on fracture toughness. J Mat Sci Mat Med. 2001;12:779–83.

    Article  CAS  Google Scholar 

  • Pattin CA, Caler WE, Carter DR. Cyclic mechanical property degradation during fatigue loading of cortical bone. J Biomech. 1996;29:69–80.

    Article  PubMed  CAS  Google Scholar 

  • Piekarski K. Fracture of bone. J Appl Phys. 1970;41:215–23.

    Article  Google Scholar 

  • Pilkey WD. Formulas for stress, strain, and structural matrices. New York, NY: Wiley; 1994.

    Google Scholar 

  • Pope MH, Murphy MC. Fracture energy of bone in a shear mode. Med Biol Eng. 1974;12:763–7.

    Article  PubMed  CAS  Google Scholar 

  • Prendergast PJ, Taylor D. Prediction of bone adaptation using damage accumulation. J Biomech. 1994;27:1067–76.

    Article  PubMed  CAS  Google Scholar 

  • Rahn BA, Gallinaro P, Schenck RK. Compression interfragmentaire et surcharge locale de l’os. In: Boitzy A, editor. Interarthrite de l’Epaule. Osteogenese et Compression. Bern: Huber; 1972.

    Google Scholar 

  • Reifsnider KL. Damage and damage mechanics. In: Reifsnider KL, editor. Fatigue of composite materials. New York, NY: Elsevier; 1990. p. 11–77.

    Google Scholar 

  • Ritchie RO. The conflicts between strength and toughness. Nat Mater. 2011;10:817–22.

    Article  PubMed  CAS  Google Scholar 

  • Rubin CT, Lanyon LE. Regulation of bone formation by applied dynamic loads. J Bone Joint Surg. 1984;66A:397–402.

    Google Scholar 

  • Russell NA, Pelletier MH, Bruce WJ, Walsh WR. The effect of gamma irradiation on the anisotropy of bovine cortical bone. Med Engng Phys. 2012;34:1117–22.

    Article  Google Scholar 

  • Rutishauser E, Majno G. Lesions osseuses par sur charge dans le squelette normal et pathologique. Bulletin Schweizerischen Akademie der Medizinischen Wissenschaften. 1950;6:333–41.

    CAS  Google Scholar 

  • Saha S. Longitudinal shear properties of human compact bone and its constituents, and the associated failure mechanisms. J Mater Sci. 1977;12:1798–806.

    Article  CAS  Google Scholar 

  • Schaffler MB. Stiffness and fatigue of compact bone at physiological strains and strain rates. Doctoral dissertation, West Virginia University, Morgantown, WV; 1985.

    Google Scholar 

  • Schaffler MB, Burr DB. Primate cortical bone microstructure: relationship to locomotion. Am J Phys Anthropol. 1984;65:191–7.

    Article  PubMed  CAS  Google Scholar 

  • Schaffler MB, Kennedy OD. Osteocyte signaling in bone. Curr Osteop Rep. 2012;10:118–25.

    Article  Google Scholar 

  • Schaffler MB, Choi K, Milgrom C. Aging and matrix microdamage accumulation in human compact bone. Bone (New York). 1995;17:521–5.

    CAS  Google Scholar 

  • Scully TJ, Besterman G. Stress fracture—a preventable training injury. Mil Med. 1982;147:285–7.

    PubMed  CAS  Google Scholar 

  • Seref-Ferlengez Z, Kennedy O, Schaffler MB. Diffuse microdamage induced in cortical bone in vivo decreases with time in the absence of bone remodeling. 34th Annual meeting of the American society for bone and mineral research, 2012.

    Google Scholar 

  • Shane E, Burr DB, Ebeling P, Abrahamsen B, Adler RA, Brown TD, et al. Atypical subtrochanteric and diaphyseal femoral fractures: report of a task force of the American society for bone and mineral research. J Bone Miner Res. 2010;25:1–28.

    Article  Google Scholar 

  • Sharkey NA, Smith TS, Lundmark DC. Freeze clamping musculo-tendinous junctions for in-vitro simulation of joint mechanics. J Biomech. 1995;28(5):631–5.

    Article  PubMed  CAS  Google Scholar 

  • Simkin A, Robin G. Fracture formation in differing collagen fiber pattern of compact bone. J Biomech. 1974;7:183–8.

    Article  PubMed  CAS  Google Scholar 

  • Taylor D, Lee TC. Measuring the shape and size of microcracks in bone. J Biomech. 1998;31:1177–80.

    Article  PubMed  CAS  Google Scholar 

  • Tschantz P, Rutishauser E. La surcharge mechanique de l’os vivant. Annales d’Anatomie Pathologique. 1967;12:223–48.

    PubMed  CAS  Google Scholar 

  • Turner CH, Forwood M, Rho J-Y, Yoshikawa T. Mechanical loading thresholds for lamellar and woven bone formation. J Bone Miner Res. 1993;9:87–97.

    Article  Google Scholar 

  • Uhthoff HK, Jaworski ZFG. Periosteal stress-induced reactions resembling stress fractures. Clin Orthop Relat Res. 1985;199:284–91.

    PubMed  Google Scholar 

  • Vashishth D, Behiri JC, et al. Crack growth resistance in cortical bone: concept of microcrack toughening. J Biomech. 1997;30:763–9.

    Article  PubMed  CAS  Google Scholar 

  • Vashishth D, Koontz J, Qiu SJ, Lundin-Cannon D, Yeni YN, Schaffler MB, Fyhrie DP. In vivo diffuse damage in human vertebral trabecular bone. Bone. 2000;26:147–52.

    Article  PubMed  CAS  Google Scholar 

  • Verborgt O, Gibson GJ, Schaffler MB. Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. J Bone Miner Res. 2000;15:60–7.

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Shen X, Li X, et al. Age-related changes in the collagen network and toughness of bone. Bone. 2002;31:1–7.

    Article  PubMed  Google Scholar 

  • Warden SJ, Burr DB, Brukner PD. Repetitive stress pathology: bone. In: Magee DJ, Zachazewski JE, Quillen WS, editors. Pathology and intervention in musculoskeletal rehabilitation. St. Louis: Elsevier; 2009. p. 685–705.

    Google Scholar 

  • Wasserman N, Yerramshetty J, Akkus O. Microcracks colocalize within highly mineralized regions of cortical bone. Eur J Morphol. 2005;42:43–51.

    Article  PubMed  Google Scholar 

  • Weinbaum S, Cowin SC, Zeng Y. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J Biomech. 1994;27:339–60.

    Article  PubMed  CAS  Google Scholar 

  • Wenzel TE, Schaffler MB, Fyhrie DP. In vivo trabecular microcracks in human vertebral bone. Bone (New York). 1996;19:89–95.

    CAS  Google Scholar 

  • Xiong J, Onal M, Jilka RL, et al. Matrix-embedded cells control osteoclast formation. Nat Med. 2011;17:1235–41.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yeni YN, Hou FJ, Ciarelli T, et al. Trabecular shear stresses predict in vivo linear microcrack density but not diffuse damage in human vertebral cancellous bone. Ann Biomed Engng. 2003;31:726–32.

    Article  Google Scholar 

  • Yoshikawa T, Mori S, Santiesteban AJ, Sun TC, Hofstad E, Chen J, Burr DB. The effects of muscle fatigue on bone strain. J Exp Biol. 1994;188:217–33.

    PubMed  CAS  Google Scholar 

  • Zimmerman EA, Barth HD, Ritchie RO. The multiscale origins of fracture resistance in human bone and its biological degradation. JOM. 2012;64:486–93.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Martin, R.B., Burr, D.B., Sharkey, N.A., Fyhrie, D.P. (2015). Fatigue and Fracture Resistance of Bone. In: Skeletal Tissue Mechanics. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3002-9_8

Download citation

Publish with us

Policies and ethics