Skip to main content

Mechanical Adaptability of the Skeleton

  • Chapter

Abstract

Bone is exquisitely sensitive to its mechanical environment. The mechanisms by which this occurs from the biochemical to the organ level are explored in this chapter. Various models used to explain mechanical adaptation are also described. Cartilage is less adaptive, but several models have been proposed to explain how cartilage develops and adapts to loads.

Every change in the form and function of … bone[s] or of their function alone is followed by certain definite changes in their internal architecture, and equally definite secondary alterations in their external conformation, in accordance with mathematical laws. J. Wolff as quoted by Keith (1918).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Some sources have placed this encounter at a scientific meeting, and others have said the femur was actually a metatarsal.

  2. 2.

    This book has been translated into English by Maquet and Furlong. They translated the German word “transformation” as “remodeling,” although Wolff was speaking about growth and what we now term modeling.

  3. 3.

    Deer antlers are made of bone. Cow horns, on the other hand, are keratinous tissue, as are fingernails.

  4. 4.

    A group of three gauges oriented at 45° to one another.

  5. 5.

    This is not universally true, however. An example would be in the palatomaxillary segment of some lizards, where tensile strains exceed compressive strains (Smith and Hylander 1985).

  6. 6.

    The cited reference is a compendium of Pauwels’ research papers. The actual work discussed here was published in the 1960s.

  7. 7.

    All stress states have three independent measures of their magnitude: two of these are the hydrostatic or dilatational component, which produces a volume change but does not distort, and a shearing component, which distorts shape. The third magnitude measure doesn’t have a simple mechanical interpretation and hasn’t been used to develop theories of cartilage development. There are also three principal directions associated with stresses, but these also are not used in most cartilage theories.

  8. 8.

    This problem is adapted from an example given in Weinans et al. (1992).

References

  • Ahlborg HG, Johnell O, Turner CH, Rannevik G, Karlsson MK. Bone loss and bone size after menopause. N Engl J Med. 2003;349:327–34.

    Article  PubMed  Google Scholar 

  • Ashby MF. Materials selection in mechanical design. Oxford: Butterworth Heinemann; 2004.

    Google Scholar 

  • Bab I, Gazit D, Massarawa A, Sela J. Removal of the tibial marrow induces increased formation of bone and cartilage in rat mandibular condyle. Calcif Tissue Int. 1985;37:551–5.

    Article  CAS  PubMed  Google Scholar 

  • Bakker AD, Soejima K, Klein-Nulemnd J, et al. The production of nitric oxide and prostaglandin E2 by primary bone cells is shear stress dependent. J Biomech. 2001;34:671–7.

    Article  CAS  PubMed  Google Scholar 

  • Barnes GRG, Pinder DN. In vivo tension and bone strain measurement and correlation. J Biomech. 1974;7:35–42.

    Article  CAS  PubMed  Google Scholar 

  • Bateson G. The role of somatic change in evolution. Evolution. 1963;17:529–39.

    Article  Google Scholar 

  • Bateson G. Steps to an ecology of mind. Northvale, NJ: Jason Aronson; 1987.

    Google Scholar 

  • Beaupre GS, Orr TE, Carter DR. An approach for time-dependent bone modeling and remodeling—theoretical development. J Orthop Res. 1990a;8:651–61.

    Article  CAS  PubMed  Google Scholar 

  • Beaupre GS, Orr TE, Carter DR. An approach for time-dependent bone modeling and remodeling—application: a preliminary remodeling simulation. J Orthop Res. 1990b;8:662–70.

    Article  CAS  PubMed  Google Scholar 

  • Beck TJ, Ruff CB, Bissessur K. Age-related changes in female femoral neck geometry: implications for bone strength. Calcif Tissue Int. 1993;53:S41–6.

    Article  PubMed  Google Scholar 

  • Bell C. Animal mechanics, or proofs of design in the animal frame. Cambridge, MA: Morrill Wyman; 1827.

    Google Scholar 

  • Bertram JE, Swartz SM. The ‘Law of Bone Transformation’: a case of crying Wolff? Biol Rev 1991;66:245–73.

    Article  CAS  PubMed  Google Scholar 

  • Biewener AA, Thomason J, Goodship A, Lanyon LE. Bone stress in the horse forelimb during locomotion at different gaits: a comparison of two experimental methods. J Biomech. 1983;16:565–76.

    Article  CAS  PubMed  Google Scholar 

  • Bonewald LF. The amazing osteocyte. J Bone Miner Res. 2011;26:229–38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bourgery JM. Traite Complet de l’Anatomie de l’Homme. Paris: I. Osteologie; 1832.

    Google Scholar 

  • Burr DB, Schaffler MB, Yang KH, Wu DD, Lukoschek M, Kandzari D, Sivaneri N, Blaha JD, Radin EL. The effects of altered strain environment on bone tissue kinetics. Bone. 1989a;10:215–21.

    Article  CAS  PubMed  Google Scholar 

  • Burr DB, Schaffler MB, Yang KH, Lukoschek M, Sivaneri N, Blaha JD, Radin EL. Skeletal change in response to altered strain environments: is woven bone a response to elevated strain? Bone. 1989b;10:223–33.

    Article  CAS  PubMed  Google Scholar 

  • Burr DB, Milgrom C, Fyhrie D, Forwood M, Nyska M, Finestone A, Hoshaw S, Saiag E, Simkin A. In vivo measurement of human tibial strains during vigorous activity. Bone. 1996;18:405–10.

    Article  CAS  PubMed  Google Scholar 

  • Cardoso L, Herman BC, Verborgt O, Laudier D, Majeska RJ, Schaffler MB. Osteocyte apoptosis controls activation of intracortical resorption in response to bone fatigue. J Bone Miner Res. 2009;24:597–605.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carter DR. Mechanical loading history and skeletal biology. J Biomech. 1987;20:1095–109.

    Article  CAS  PubMed  Google Scholar 

  • Carter DR, Wong M. Mechanical stresses and endochondral ossification in the chondroepiphysis. J Orthop Res. 1988;6:148–54.

    Article  CAS  PubMed  Google Scholar 

  • Carter DR, Fyhrie DP, Whalen RT. Trabecular bone density and loading history: regulation of connective tissue biology by mechanical energy. J Biomech. 1987a;20:785–94.

    Article  CAS  PubMed  Google Scholar 

  • Carter DR, Orr TE, Fyhrie DP, Schurman DJ. Influences of mechanical stress on prenatal and postnatal skeletal development. Clin Orthop Relat Res. 1987b;219:237–50.

    PubMed  Google Scholar 

  • Carter DR, Blenman PR, Beaupre GS. Correlations between mechanical stress history and tissue differentiation in initial fracture healing. J Orthop Res. 1988;6:736–48.

    Article  CAS  PubMed  Google Scholar 

  • Carter DR, Orr TE, Fyhrie DP. Relationships between loading history and femoral cancellous bone architecture. J Biomech. 1989;22:231–44.

    Article  CAS  PubMed  Google Scholar 

  • Chen CS, Ingber DE. Tensegrity and mechanoregulation: from skeleton to cytoskeleton. Osteoarthr Cart. 1999;7:81–94.

    Article  CAS  Google Scholar 

  • Cochran GBV. Implantation of strain gages on bone in vivo. J Biomech. 1972;5:119–23.

    Article  CAS  PubMed  Google Scholar 

  • Cochran GBV. A method for direct recording of electromechanical data from skeletal bone in living animals. J Biomech. 1974;7:563–5.

    Article  PubMed  Google Scholar 

  • Cohen J, Harris WH. The three-dimensional anatomy of haversian systems. J Bone Joint Surg. 1958;40A:419–34.

    Google Scholar 

  • Cooney CA, Dave AA, Wolff GL. Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J Nutr. 2002;132(8 Suppl):2393S–400.

    CAS  PubMed  Google Scholar 

  • Cowin SC. The relationship between the elasticity tensor and the fabric tensor. Mech Mater. 1985;4:137–47.

    Article  Google Scholar 

  • Cowin SC. Wolff’s law of trabecular architecture at remodeling equilibrium. J Biomech Eng. 1986;108:83–8.

    Article  CAS  PubMed  Google Scholar 

  • Cowin SC. The false premise of Wolff’s law. Forma. 1997;12:247–62.

    Google Scholar 

  • Cowin SC, Hegedus DH. Bone remodeling. I: a theory of adaptive elasticity. J Elast. 1976;6:313–25.

    Article  Google Scholar 

  • Cowin SC, Nachlinger RR. Bone remodeling. III: uniqueness and stability in adaptive elasticity theory. J Elast. 1978;8:285–95.

    Article  Google Scholar 

  • Cowin SC, Van Buskirk WC. Internal bone remodeling induced by a medullary pin. J Biomech. 1978;11:269–75.

    Article  CAS  PubMed  Google Scholar 

  • Cowin SC, Hart RT, Balser JR, Kohn DH. Functional adaptation in long bones: establishing in vivo values for surface remodeling rate coefficients. J Biomech. 1985;18(9):665–84.

    Article  CAS  PubMed  Google Scholar 

  • Crummett LT, Sears BF, Lafon DC, et al. Parthenogenetic populations of the freshwater snail Campeloma limum occupy habitats with fewer environmental stressors than their sexual counterparts. Freshw Biol. 2013;58:655–63.

    Article  Google Scholar 

  • Cruz-Coke R. A genetic description of high-altitude populations. In: Baker PT, editor. The biology of high altitude peoples. Cambridge: Cambridge University Press; 1978. p. 47–63.

    Google Scholar 

  • Cumming DC. Exercise-associated amenorrhea, low bone density, and estrogen replacement therapy. Arch Intern Med. 1996;156:2193–5.

    Article  CAS  PubMed  Google Scholar 

  • Currey JD. What is bone for? Property-function relationships in bone. In: Cowin SC, editor. Mechanical properties of bone. New York: American Society of Mechanical Engineers; 1981. p. 13–26.

    Google Scholar 

  • Currey JD. The mechanical adaptations of bones. Princeton: University Press; 1984.

    Book  Google Scholar 

  • Currey JD. Incompatible mechanical properties in compact bone. J Theor Biol. 2004;231:569–80.

    Article  PubMed  Google Scholar 

  • Currey JD, Pitchford JW, Baxter PD. Variability of the mechanical properties of bone, and its evolutionary consequences. J R Soc Interface. 2007;4:127–35.

    Article  PubMed Central  PubMed  Google Scholar 

  • Deere K, Sayers A, Rittweger J, Tobias JH. Habitual levels of high, but not moderate or low, impact activity are positively related to hip BMD and geometry: results form a population-based study of adolescents. J Bone Miner Res. 2012;27:1887–95.

    Article  PubMed Central  PubMed  Google Scholar 

  • Dempster WT, Liddicoat RT. Compact bone as a non-isotropic material. Am J Anat. 1952;91:331–62.

    Article  CAS  PubMed  Google Scholar 

  • Divieti PP. Regulation of bone resorption and mineral hoemostasis by osteocytes. IBMS BoneKEy. 2009;6:63–70.

    Article  Google Scholar 

  • Dodge T, Wanis M, Ayoub R, et al. Mechanical loading, damping and load-driven bone formation in mouse tibiae. Bone. 2012;51:810–8.

    Article  PubMed Central  PubMed  Google Scholar 

  • Duncan RL, Turner CH. Mechanotransduction and the functional response of bone to mechanical strain. Calcif Tissue Int. 1995;57:344–58.

    Article  CAS  PubMed  Google Scholar 

  • Eckstein F, Hudelmaier M, Putz R. The effects of exercise on human articular cartilage. J Anat. 2006;208:491–512.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Elmentaser M, McMillan M, Smith K, Khanna S, Chantler D, Panarelli M, Ahmed SF. A comparison of the effect of two types of vibration exercise on the endocrine and musculoskeletal system. J Musculoskelet Neuronal Interact. 2012;12:144–54.

    Google Scholar 

  • Encyclopaedia Britannica. Encyclopaedia Britannica, Chicago; 1997.

    Google Scholar 

  • Eranen JK, Nilsen J, Zverev VE, et al. Mountain birch under multiple stressors—heavy metal-resistant populations co-resistant to biotic stress but maladapted to abiotic stress. J Evol Biol. 2009;22:840–51.

    Article  CAS  PubMed  Google Scholar 

  • Firoozbakhsh K, Cowin SC. Devolution of inhomogeneities in bone structure: predictions of adaptive elasticity theory. J Biomech Eng. 1980;102:287–93.

    Article  CAS  PubMed  Google Scholar 

  • Firoozbakhsh K, Cowin SC. An analytical model of Pauwel’s functional adaptation mechanism for bone. J Biomech Eng. 1981;103:246–52.

    Article  CAS  PubMed  Google Scholar 

  • Frost HM. Mathematical elements of lamellar bone remodelling. Springfield: Thomas; 1964.

    Google Scholar 

  • Frost HM. The pathomechanics of osteoporoses. Clin Orthop Relat Res. 1985;200:198–225.

    PubMed  Google Scholar 

  • Frost HM. Intermediary organization of the skeleton. Boca Raton: CRC Press; 1986.

    Google Scholar 

  • Frost HM. The mechanostat: a proposed pathogenic mechanism of osteoporoses and the bone mass effects of mechanical and nonmechanical agents. Bone Miner. 1987a;2:73–85.

    CAS  PubMed  Google Scholar 

  • Frost HM. Bone “mass” and the “mechanostat”: a proposal. Anat Rec. 1987b;219:1–9.

    Article  CAS  PubMed  Google Scholar 

  • Frost HM. Structural adaptations to mechanical usage (SATMU): 3. The hyaline cartilage modeling problem. Anat Rec. 1990;226:423–32.

    Article  CAS  PubMed  Google Scholar 

  • Frost HM. Perspectives: a vital biomechanical model of synovial joint design. Anat Rec. 1994;240:1–18.

    Article  CAS  PubMed  Google Scholar 

  • Fuchs RK, Bauer JJ, Snow CM. Jumping improves hip and lumbar spine bone mass in prepubescent children: a randomized controlled trial. J Bone Miner Res. 2001;16:148–56.

    Article  CAS  PubMed  Google Scholar 

  • Fyhrie DP, Carter DR. A unifying principle relating stress to trabecular bone morphology. J Orthop Res. 1986;4:304–17.

    Article  CAS  PubMed  Google Scholar 

  • Galileo G. Discorsi e dimonstrazioni matematiche, intorno a due nuove scienze attentanti alla meccanica ed a muovementi locali. Madison: University of Wisconsin Press; 1638.

    Google Scholar 

  • Garman R, Rubin C, Judex S. Small oscillatory accelerations, independent of matrix deformations, increase osteoblast activity and enhance bone morphology. PLoS One. 2007;2, e653.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Goodship AE, Lanyon LE, McFie H. Functional adaption of bone to increased stress. J Bone Joint Surg. 1979;61A:539–46.

    Google Scholar 

  • Goodwin KJ, Sharkey NA. Material properties of interstitial lamellae reflect local strain environments. J Orthop Res. 2002;20:600–6.

    Article  PubMed  Google Scholar 

  • Gould SJ. The panda’s thumb. New York: WW Norton and Co; 1980.

    Google Scholar 

  • Gould SJ, Lewontin RC. The Spandrels of San Marcos and the Panglossian paradigm: a critique of the adaptationist programme. Proc R Soc Lond B. 1979;205:581–98.

    Article  CAS  PubMed  Google Scholar 

  • Gross TS, Edwards JL, McLeod KJ, Rubin CT. Strain gradients correlate with sites of periosteal bone formation. J Bone Miner Res. 1997;12:982–8.

    Article  CAS  PubMed  Google Scholar 

  • Gross TS, Poliachik SL, Ausk BJ, Sanford DA, Becker BA, Srinivasan S. Why rest stimulates bone formation: a hypothesis based on complex adaptive phenomenon. Exerc Sport Sci Rev. 2004;32:9–13.

    Article  PubMed Central  PubMed  Google Scholar 

  • Grossniklaus U, Kelly B, Ferguson-Smith AC, et al. Transgenerational epigenetic inheritance: how important is it? Nat Rev Genet. 2013;14:228–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gunness M, Hock JM. Anabolic effect of parathyroid hormone on cancellous and cortical bone histology. Bone. 1993;14:277–81.

    Article  CAS  PubMed  Google Scholar 

  • Gusi N, Raimundo A, Leal A. Low-frequency vibratory exercise reduces the risk of bone fracture more than walking: a randomized controlled trial. BMC Musculoskelet Disord. 2006;7:1–8.

    Article  Google Scholar 

  • Harrigan TP, Hamilton JJ. Necessary and sufficient conditions for global stability and uniqueness in finite element simulations of adaptive bone remodeling. Int J Solids Struct. 1994;31:97–107.

    Article  Google Scholar 

  • Harrigan TP, Mann RW. Characterization of microstructural anisotropy in orthotropic materials using a 2nd rank tensor. J Mater Sci. 1984;19:761–7.

    Article  CAS  Google Scholar 

  • Harris SE, Gluhak-Heinrich J, Harris MA, et al. CMP1 and MEPE expression are elevated in osteocytes after mechanical loading in vivo: theoretical role in controlling mineral quality in the perilacunar matrix. J Musculoskelet Neuronal Interact. 2007;7:313–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hart RT, Davy DT. Theories of bone modeling and remodeling. In: Cowin SC, editor. Bone mechanics. Boca Raton: CRC Press; 1989. p. 253–77.

    Google Scholar 

  • Hart RT, Davy DT, Heiple KG. Mathematical modeling and numerical solutions for functionally dependent bone remodeling. Calcif Tissue Int. 1984a;36:S104–9.

    Article  PubMed  Google Scholar 

  • Hart RT, Davy DT, Heiple KG. A computational method for stress analysis of adaptive elastic materials with a view toward applications in strain-induced bone remodeling. J Biomech Eng. 1984b;106:342–50.

    Article  CAS  PubMed  Google Scholar 

  • Haut Donahue TL, Haut TR, Yellowley CE, et al. Mechanosensitivity of bone cells to oscillating fluid flow induced shear stress may be modulated by chemotransport. J Biomech. 2003;36:1363–71.

    Article  Google Scholar 

  • Hayes WC, Snyder B. Toward a quantitative formulation of Wolff’s law in trabecular bone. In: Cowin SC, editor. Mechanical properties of bone. New York: American Society of Mechanical Engineers; 1981. p. 43–68.

    Google Scholar 

  • Hegedus DH, Cowin SC. Bone remodeling II. Small strain adaptive elasticity. J Elast. 1976;6:337–52.

    Article  Google Scholar 

  • Hert J, LIskova M, Landrgot B. Influence of the long-term continuous bending on the bone. Folia Morphologica (Prague) 1969; 17:369–399.

    Google Scholar 

  • Hsieh Y-F, Robling AG, Ambrosius WT, Burr DB, Turner CH. Mechanical loading of diaphyseal bone in vivo: the strain threshold for an osteogenic response varies with location. J Bone Miner Res. 2001;16:2291–7.

    Article  CAS  PubMed  Google Scholar 

  • Huiskes R, Weinans H, Grootenboer HJ, Dalstra M, Fudala B, Sloof TJ. Adaptive bone remodeling theory applied to prosthetic-design analysis. J Biomech. 1987;20:1135–50.

    Article  CAS  PubMed  Google Scholar 

  • Hylander WL. The functional significance of primate mandibular form. J Morphol. 1979;160:223–40.

    Article  CAS  PubMed  Google Scholar 

  • Iwamoto J, Sato Y, Takeda T, Matsumoto H. Whole body vibration exercise improves body balance and walking velocity in postmenopausal osteoporotic women treated with alendronate: Galileo and Alendronate Intervention Trail [sic] (GAIT). J Musculoskelet Neuronal Interact. 2012;12:136–43.

    CAS  PubMed  Google Scholar 

  • Jacobs CR. Numerical simulation of bone adaptation to mechanical loading. Doctoral dissertation. Palo Alto, CA: Stanford University; 1994.

    Google Scholar 

  • Jansen M, Stoks R, Coors A, et al. Collateral damage: rapid exposure-induced evolution of pesticide resistance leads to increased susceptibility to parasites. Evolution. 2011;65:2681–91.

    Article  PubMed  Google Scholar 

  • Jaworski ZFG, Uhthoff HK. Reversability of nontraumatic disuse osteoporosis during its active phase. Bone. 1986;7:431–9.

    Article  CAS  PubMed  Google Scholar 

  • Jaworski ZFG, Liskova-Kiar M, Uhthoff HK. Effect of long-term immobilization on the pattern of bone loss in older dogs. J Bone Joint Surg. 1980;62B:104–10.

    Google Scholar 

  • Jee WSS, Li XJ, Schaffler MB. Adaptation of diaphyseal structure with aging and increased mechanical usage in the adult rat: a histomorphometrical and biomechanical study. Anat Rec. 1991;230:332–8.

    Article  CAS  PubMed  Google Scholar 

  • Jepsen KJ, Andarawis-Puri N. The amount of periosteal apposition required to maintain bone strength during aging depends on adult bone morphology and tissue-modulus degradation rate. J Bone Miner Res. 2012;27:1916–26.

    Article  PubMed Central  PubMed  Google Scholar 

  • Johnson LC. Morphologic analysis in pathology: the kinetics of disease and general biology in bone. In: Frost HM, editor. Bone biodynamics. Boston: Little, Brown; 1964.

    Google Scholar 

  • Kato T, et al. Effect of low-repetition jump training on bone mineral density in young women. J Appl Physiol. 2006;100:839–43.

    Article  PubMed  Google Scholar 

  • Kennedy OD, Herman BC, Laudier DM, Majeska RJ, Sun HB, Schaffler MB. Activation of resorption in fatigue-loaded bone involves both apoptosis and active pro-osteoclastogenic signaling by distinct osteocyte populations. Bone. 2012;50:1115–22.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kim CH, Takai E, Zhou H, von Stecho D, Muller R, Dempster DW, Guo XE. Trabecular bone response to mechanical and parathyroid hormones stimulation: the role of mechanical microenvironment. J Bone Miner Res. 2003;18:2116–25.

    Article  CAS  PubMed  Google Scholar 

  • Klesges RC, Ward KD, Shelton ML, Applegate WB, Cantler ED, Palmieri GM, Harmon K, Davis J. Changes in bone mineral content in male athletes. Mechanisms of action and intervention effects. J Am Med Assoc. 1996;276:226–30.

    Article  CAS  Google Scholar 

  • Knothe-Tate ML, Knothe U, Niederer P. Experimental elucidation of mechanical load-induced fluid flow and its potential role in bone metabolism and functional adaptation. Am J Med Sci. 1998;316:189–95.

    Article  CAS  PubMed  Google Scholar 

  • Knothe-Tate ML, Steck R, Forwood MR, Niederer P. In vivo demonstration of load-induced fluid flow in the rat tibia and its potential implications for processes associated with functional adaptation. J Exp Biol. 2000;203:2737–45.

    CAS  PubMed  Google Scholar 

  • Koch JC. The laws of bone architecture. Am J Anat. 1917;21:177–293.

    Article  Google Scholar 

  • LaMothe JM, Zernicke RF. Rest insertion combined with high-frequency loading enhances osteogenesis. J Appl Physiol. 2004;96:1788–93.

    Article  PubMed  Google Scholar 

  • Lanyon LE. Strain in sheep lumbar vertebrae recorded during life. Acta Orthop Scand. 1971;42:102–12.

    Article  CAS  PubMed  Google Scholar 

  • Lanyon LE. In vivo bone strain recorded from thoracic vertebrae of sheep. J Biomech. 1972;5:277–81.

    Article  CAS  PubMed  Google Scholar 

  • Lanyon LE. Analysis of surface bone in the calcaneus of sheep during normal locomotion. J Biomech. 1973;6:41–9.

    Article  CAS  PubMed  Google Scholar 

  • Lanyon LE. Experimental support for the trajectorial theory of bone structure. J Bone Joint Surg. 1974;56B:160–6.

    Google Scholar 

  • Lanyon LE. Functional strain as a determinant of bone remodeling. Calcif Tissue Int. 1984;36:S56–61.

    Article  PubMed  Google Scholar 

  • Lanyon LE. The importance of mechanical adaptation in controlling bone architecture and averting bone fracture. In: Marcelli C, Sebert JL, editors. Architecture et Resistance Mecanique Osseuses. Paris: Masson; 1993. p. 58–67.

    Google Scholar 

  • Lanyon LE. Osteoporosis and mechanically related bone modeling. In: Menczel J, Robin GC, Makin M, Steinberg R, editors. Osteoporosis. Proceedings of the International Symposium, Jerusalem Osteoporosis Center. Chichester: Wiley; 1981.

    Google Scholar 

  • Lanyon LE, Bourn S. The influence of mechanical function on the development and remodeling of the tibia. J Bone Joint Surg. 1979;62A:263–73.

    Google Scholar 

  • Lanyon LE, Rubin CT. Static vs. dynamic loads as an influence on bone remodeling. J Biomech. 1984;17:897–905.

    Article  CAS  PubMed  Google Scholar 

  • Lanyon LE, Smith RN. Measurements of bone strain in the walking animal. Res Vet Sci. 1969;10:93–4.

    CAS  PubMed  Google Scholar 

  • Lanyon LE, Smith RN. Bone strain in the tibia during normal quadrupedal locomotion. Acta Orthop Scand. 1970;41:238–48.

    Article  CAS  PubMed  Google Scholar 

  • Lanyon LE, Hampson WGJ, Goodship AE, Shah JS. Bone deformation recorded in vivo from strain gauges attached to the human tibial shaft. Acta Orthop Scand. 1975;46:256–68.

    Article  CAS  PubMed  Google Scholar 

  • Lanyon LE, Goodship AE, Pye CJ, MacFie JH. Mechanically adaptive bone remodeling. J Biomech. 1982;15:141–54.

    Article  CAS  PubMed  Google Scholar 

  • Lanyon LE, Rubin CT, Baust G. Modulation of bone loss during calcium insufficiency by controlled dynamic loading. Calcif Tissue Int. 1986;38:209–16.

    Article  CAS  PubMed  Google Scholar 

  • Li J, Duncan RL, Burr DB, Gattone VH, Turner CH. Parathyroid hormone enhances mechanically induced bone formation, possibly involving L-type voltage-sensitive calcium channels. Endocrinology. 2003;144:1226–33.

    Article  CAS  PubMed  Google Scholar 

  • Martin RB. The effects of geometric feedback in the development of osteoporosis. J Biomech. 1972;4:447–55.

    Article  Google Scholar 

  • Martin RB. The usefulness of mathematical models for bone remodeling. Yearb Phys Anthropol. 1985;28:227–36.

    Article  Google Scholar 

  • Martin RB. A mathematical model for fatigue damage repair and stress fracture in osteonal bone. J Orthop Res. 1995;13:309–16.

    Article  CAS  PubMed  Google Scholar 

  • Martin RB, Atkinson PJ. Age and sex-related changes in the structure and strength of the human femoral shaft. J Biomech. 1977;10:223–31.

    Article  CAS  PubMed  Google Scholar 

  • Martin RB, Clark RN, Advani S. An electro-mechanical basis for osteonal mechanics. In: Brighton CT, Goldstein S, editors. Advances in bioengineering. New York: American Society of Mechanical Engineers; 1974.

    Google Scholar 

  • Martin RB, Pickett JC, Zinaich S. Studies of skeletal remodeling in aging men. Clin Orthop Relat Res. 1980;149:268–82.

    PubMed  Google Scholar 

  • McLeod KJ, Bain SD, Rubin CT. Dependence of bone adaptation on the frequency of induced dynamic strains. Trans Orthop Res Soc. 1990;15:103.

    Google Scholar 

  • Monro A. The anatomy of the human bones, nerves and lacteal sac and duct. (Published in Dublin.); 1976.

    Google Scholar 

  • Mori S, Harruff R, Ambrosius W, Burr DB. Trabecular bone volume and microdamage accumulation in the femoral heads of women with and without femoral neck fractures. Bone. 1997;21:521–6.

    Article  CAS  PubMed  Google Scholar 

  • Mosekilde L, Mosekilde L. Sex differences in age-related changes in vertebral body size, density and biomechanical competence in normal individuals. Bone. 1990;11:67–73.

    Article  CAS  PubMed  Google Scholar 

  • Mosley JR, Lanyon LE. Strain rate as a controlling influence on adaptive modeling in response to dynamic loading of the ulna in growing male rats. Bone. 1998;23:313–8.

    Article  CAS  PubMed  Google Scholar 

  • Moss ML. Studies on the acellular bone of teleost fish. II. Response to fractgure under normal and acalcemic conditions. Acta Anat. 1962;48:46–60.

    Article  CAS  PubMed  Google Scholar 

  • Moustafa A, Sugiyama T, Prasad J, Saman G, Gross TS, Lanyon LE, Price JS. Mechanical loading-related changes in osteocyte sclerostin expression in mice are more closely associated with the subsequent osteogenic response than the peak strains engendered. Osteoporos Int. 2012;23:1225–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mullender MG, Huiskes R, Weinans H. A physiologic approach to the simulation of bone remodeling as a self-organizational control process. J Biomech. 1994;27:1389–94.

    Article  CAS  PubMed  Google Scholar 

  • Nakashima T, Hayashi M, Fukunaga T, et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med. 2011;17:1231–4.

    Article  CAS  PubMed  Google Scholar 

  • Ng CYP, Choi VWY, Lam ACL, et al. The multiple stressor effect in zebrafish embryos from simultaneous exposure to ionising radiation and cadmium. J Radiol Prot. 2013;33:113–21.

    Article  CAS  PubMed  Google Scholar 

  • Noble BS, Stevens H, Loveridge N, Reeve J. Identification of apoptotic changes in osteocytes in normal and pathological human bone. Bone. 1997;20:273–82.

    Article  CAS  PubMed  Google Scholar 

  • Noble BS, Peet N, Stevens HY, et al. Mechanical loading: biphasic osteocyte survival and targeting of osteoclasts for bonbe destruction in rat cortical bone. Am J Physiol Cell Physiol. 2002;284:C934–43.

    Article  PubMed  Google Scholar 

  • Nowlan NC, Prendergast PJ. Evolution of mechanoregulation of bone growth will lead to non-optimal bone phenotypes. J Theor Biol. 2005;235:408–18.

    Article  PubMed  Google Scholar 

  • O’Connor JA, Lanyon LE, MacFie H. The influence of strain rate on adaptive bone remodeling. J Biomech. 1982;15:767–81.

    Article  PubMed  Google Scholar 

  • Oden ZM, Hart RT, Forwood MR, Burr DB. A priori prediction of functional adaptation in canine radii using a cell-based mechanistic model. Trans Orthop Res Soc. 1995;20:296.

    Google Scholar 

  • Odgaard A, Weinans H. Bone structure and remodeling. Singapore: World Scientific; 1995.

    Google Scholar 

  • Owan I, Burr DB, Turner CH, Qui J, Tu Y, Onyia JE, Duncan RL. Mechanotransduction in bone: osteoblasts are more responsive to fluid forces than mechanical strain. Am J Physiol. 1997;273:C810–5.

    CAS  PubMed  Google Scholar 

  • Ozcivici E, Garman R, Judex S. High frequency oscillatory motions enhance the simulated mechanical properties of non-weight bearing trabecular bone. J Biomech. 2007;40:3403–11.

    Article  Google Scholar 

  • Ozcivici E, Luu YK, Adler B, Qin Y-X, Rubin J, Judex S, Rubin CT. Mechanical signals as anabolic agents in bone. Nat Rev Rheuamtol. 2010;6:50–9.

    Article  CAS  Google Scholar 

  • Parenti LR. The phylogenetic significance of bone types in euteleost fishes. Zool J Linn Soc. 1986;87:37–51.

    Article  Google Scholar 

  • Pauwels F. Biomechanics of the locomotor apparatus: contributions on the functional anatomy of the locomotor apparatus. Berlin: Springer; 1980.

    Book  Google Scholar 

  • Pedersen P, editor. Optimal design with advanced materials. Amsterdam: Elsevier; 1993.

    Google Scholar 

  • Pembrey ME, Bygren LO, Kaati G, Edvinsson S, Northstone K, Sjöström M, Golding J. Sex-specific, male-line transgenerational responses in humans. Eur J Hum Genet. 2006;14(2):159–66.

    Article  PubMed  Google Scholar 

  • Peterman MM, Hamel AJ, Cavanagh PR, Piazza SJ, Sharkey NA. In vitro modeling of human tibial strains during exercise in micro-gravity. J Biomech. 2001;34(5):693–8.

    Article  CAS  PubMed  Google Scholar 

  • Peterson RE. Stress concentration factors. New York: Wiley; 1974.

    Google Scholar 

  • Poole KES, Mayhew PM, Rose CM, Brown JK, Bearcroft PJ, Loveridge N, Reeve J. Changing structure of the femoral neck across the adult female lifespan. J Bone Miner Res. 2010;25:482–91.

    Article  PubMed  Google Scholar 

  • Price C, Zhou X, Li W, Wang L. Real-time measurement of solute transport within the lacunar-canalicular system of mechanically loaded bone: direct evidence for load-induced fluid flow. J Bone Miner Res. 2011;26:277–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reiter TJ, Rammerstorfer FG. Simulation of natural adaptation of bone material and application in optimum composite design. In: Pedersen P, editor. Optimal design with advanced materials. Amsterdam: Elsevier; 1993. p. 25–36.

    Google Scholar 

  • Riddle RC, Donahue HJ. From streaming potentials to shear stress: 25 years of bone cell mechanotransduction. J Orthop Res. 2009;27:143–9.

    Article  PubMed  Google Scholar 

  • Riddle RC, Hippe KR, Donahue HJ. Chemotransport contributes to the effect of oscillatory fluid flow on human bone marrow stromal cell proliferation. J Orthop Res. 2008;26:918–24.

    Article  CAS  PubMed  Google Scholar 

  • Rittweger J, Schiesel H, Felsenberg D. Oxygen uptake during whole-body vibration exercise: comparison with squatting as a slow voluntary movement. Eur J Appl Physiol. 2001;86:169–73.

    Article  CAS  PubMed  Google Scholar 

  • Robling AG, Burr DB, Turner CH. Partitioning a daily mechanical stimulus into discrete loading bouts improves the osteogenic response to loading. J Bone Miner Res. 2000;15:1596–602.

    Article  CAS  PubMed  Google Scholar 

  • Robling AG, Burr DB, Turner CH. Skeletal loading in animals. J Musculoskelet Neuronal Interact. 2001a;1:249–62.

    CAS  PubMed  Google Scholar 

  • Robling AG, Burr DB, Turner CH. Recovery periods restore mechanosensitivity to dynamically loaded bone. J Exp Biol. 2001b;204:3389–99.

    CAS  PubMed  Google Scholar 

  • Robling AG, Duijvelaar KM, Geevers JV, Ohashi N, Turner CH. Modulation of appositional and longitudinal bone growth in the rat ulna by applied static and dynamic force. Bone. 2001c;29:105–13.

    Article  CAS  PubMed  Google Scholar 

  • Robling AG, Hinant FM, Burr DB, Turner CH. Improved bone structure and strength after long-term mechanical loading is greatest if loading is separated into short bouts. J Bone Miner Res. 2002;17:1545–54.

    Article  PubMed  Google Scholar 

  • Robling AG, Niziolek PJ, Baldridge LA, et al. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/Sclerostin. J Biol Chem. 2008;283:5866–75.

    Article  CAS  PubMed  Google Scholar 

  • Roesler H. Some historical remarks on the theory of cancellous bone structure (Wolff’s law). In: Cowin SC, editor. Mechanical properties of bone. New York: American Society of Mechanical Engineers; 1981. p. 27–42.

    Google Scholar 

  • Roesler H. The history of some fundamental concepts in bone biomechanics. J Biomech. 1987;20:1025–34.

    Article  CAS  PubMed  Google Scholar 

  • Roux W. Der zuchtende Kampf der Teile, oder die Teilauslese’ im Organismus (Theorie der ‘funktionellen Anpassung’). Leipzig: Wilhelm Engelmann; 1881.

    Google Scholar 

  • Rubin CT, Lanyon LE. Limb mechanics as a function of speed and gait: a study of functional strains in the radius and tibia of horse and dog. J Exp Biol. 1982;101:187–211.

    CAS  PubMed  Google Scholar 

  • Rubin CT, Lanyon LE. Regulation of bone formation by applied dynamic loads. J Bone Joint Surg. 1984;66A:397–402.

    Google Scholar 

  • Rubin CT, Lanyon LE. Regulation of bone mass by mechanical strain magnitude. Calcif Tissue Int. 1985;37:411–7.

    Article  CAS  PubMed  Google Scholar 

  • Rubin C, Gross T, Qin Y-X Fritton S, Guilak F, McLeod K. Differentiation of the bone-tissue remodeling response to axial and torsional loading in the turkey ulna. J Bone Joint Surg. 1996;78A:1523–34.

    Google Scholar 

  • Ruff CB, Hayes WC. Sex differences in age-related remodeling of the femur and tibia. J Orthop Res. 1988;6:886–96.

    Article  CAS  PubMed  Google Scholar 

  • Ryder KD, Duncan RL. Parathyroid hormone modulates the response of osteoblast-like cells to mechanical stimulation. Calcif Tissue Int. 2001;67:241–6.

    Article  Google Scholar 

  • Schaffler MB. Immobilization induced bone loss: quantitative histological studies of cortical bone resorption. Trans Orthop Res Soc. 1990;15:187.

    Google Scholar 

  • Sen B, Xie Z, Case N, Styner M, Rubin CT, Rubin J. Mechanical signal influence on mesenchymal stem cell fate is enhanced by incorporation of refractory periods into the loading regimen. J Biomech. 2011;44:593–9.

    Article  PubMed Central  PubMed  Google Scholar 

  • Shahar R, Dean MN. The enigmas of bone without osteocytes. BoneKEy Reports 2, Article 343; 2013.

    Google Scholar 

  • Skedros JG, Brand RA. Biographical Sketch: Georg Hermann von Meyer (1815–1892). Clin Orthop Relat Res. 2011;469:3072–6.

    Article  PubMed Central  PubMed  Google Scholar 

  • Smith KK, Hylander WL. Strain gauge measurement of mesokinetic movement in the lizard Varanus exanthematicus. J Exp Biol. 1985;114:53–70.

    CAS  PubMed  Google Scholar 

  • Smith TS, Martin RB, Hubbard M, Bay BK. Surface remodeling of trabecular bone using a tissue-level model. J Orthop Res. 1997;15:593–600.

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan S, Weimer DA, Agans SC, Bain SD, Gross TS. Low-magnitude mechanical loading becomes osteogenic when rest is inserted between each load cycle. J Bone Miner Res. 2002;17:1613–20.

    Article  PubMed Central  PubMed  Google Scholar 

  • Strang G, Kohn RV. Optimal design in elasticity and plasticity. Int J Numer Methods Eng. 1986;22:183–8.

    Article  Google Scholar 

  • Sugiyama T, Meakin LB, Browne WJ, Galea GL, Price JS, Lanyon LE. Bones’ adaptive response to mechanical loading is essentially linear between the low strains associated with disuse and the high strains associated with the lamellar/woven bone transition. J Bone Miner Res. 2012;27:1784–93.

    Article  PubMed Central  PubMed  Google Scholar 

  • Thompson DW. On growth and form. London: Cambridge University Press (1992 republication by Dover Publications, New York.); 1942.

    Google Scholar 

  • Timoshenko SP. History of strength of materials. New York: McGraw-Hill; 1953.

    Google Scholar 

  • Tomkinson A, Reeve J, Shaw RW, Noble BS. The death of osteocytes via apoptosis accompanies estrogen withdrawal in human bone. J Clin Endocrinol Metab. 1997;82:3128–35.

    CAS  PubMed  Google Scholar 

  • Tu X, Rhee Y, Condon KW, et al. Sost downregulation and local Wnt signaling are required for the osteogenic response to mechanical loading. Bone. 2012;50:209–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Turner CH. On Wolff’s law of trabecular architecture. J Biomech. 1992;25:1–9.

    Article  CAS  PubMed  Google Scholar 

  • Turner CH. Three rules for bone adaptation to mechanical stimuli. Bone. 1998;23:399–407.

    Article  CAS  PubMed  Google Scholar 

  • Turner AS, Mills EJ, Gabel AA. In vivo measurement of bone strain in horse. Am J Vet Res. 1975;36:1573–9.

    CAS  PubMed  Google Scholar 

  • Turner CH, Akhter MP, Raab DM, Kimmel DB, Recker RR. A non-invasive, in vivo model for studying strain adaptive bone modeling. Bone. 1991;12:73–9.

    Article  CAS  PubMed  Google Scholar 

  • Turner CH, Forwood M, Rho J-Y, Yoshikawa T. Mechanical loading thresholds for lamellar and woven bone formation. J Bone Miner Res. 1994a;9:87–97.

    Article  CAS  PubMed  Google Scholar 

  • Turner CH, Forwood MR, Otter MW. Mechanotransduction in bone: do bone cells act as sensors of fluid flow? FASEB J. 1994b;8:875–8.

    CAS  PubMed  Google Scholar 

  • Turner CH, Owan I, Takano Y. Mechanotransduction in bone: role of strain rate. Am J Physiol. 1995a;269:E438–42.

    Google Scholar 

  • Turner CH, Yoshikawa T, Forwood MR, Sun TC, Burr DB. High frequency components of bone strain in dogs measured during various activities. J Biomech. 1995b;28:39–44.

    Article  CAS  PubMed  Google Scholar 

  • Turner CH, Robling AG, Duncan RL, Burr DB. Do bone cells behave like a neuronal network? Calcif Tissue Int. 2002;70:435–42.

    Article  CAS  PubMed  Google Scholar 

  • Uhthoff HK, Jaworski ZFG. Bone loss in response to long-term immobilization. J Bone Joint Surg. 1978;60B:420–9.

    Google Scholar 

  • Umemura Y, Ishiko T, Yamauchi T, Kurono M, Mashiko S. Five jumps per day increase bone mass and breaking force in rats. J Bone Miner Res. 1997;12:1480–5.

    Article  CAS  PubMed  Google Scholar 

  • van der Meulen MCH, Carter DR. Developmental mechanics determine long bone allometry. J Theor Biol. 1995;172:323–7.

    Article  PubMed  Google Scholar 

  • van der Meulen MCH, Beaupre GS, Carter DR. Mechanobiological influences in long bone cross-sectional growth. Bone. 1993;14:635–42.

    Article  PubMed  Google Scholar 

  • van Oers RFM, Ruimerman R, Tanck E, Hilbers PA, Huiskes R. A unified theory for osteonal and hemi-osteonal remodeling. Bone. 2008;42:250–9.

    Article  PubMed  Google Scholar 

  • von Meyer GH. Die Architektur der Spongiosa. Archs Anat Physiol wiss Med. 1867;34:615–28. Trans by Amundson PK, Skedros J, Brand R. Clin Orthop Rel Res. 2011; 469: 3079–84.

    Google Scholar 

  • Wang N, Butler JP, Ingber DE. Mechanotransduction across the cell surface and through the cytoskeleton. Science. 1993;260:1124–7.

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Cowin SC, Weinbaum S, Fritton SP. Modeling tracer transport in an osteon under cyclic loading. Ann Biomed Eng. 2000;28:1200–9.

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Wang Y, Han Y, Henderson SC, Majeska RJ, Weinbaum S, Schaffler MB. In situ measurement of solute transport in the bone lacunar-canalicular system. Proc Natl Acad Sci USA. 2005;102:11911–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ward FO. Outlines of human osteology. Published in London, England; 1838.

    Google Scholar 

  • Weinans H, Huiskes R, Grootenboer HJ. The behavior of adaptive bone-remodeling simulation models. J Biomech. 1992;25:1425–41.

    Article  CAS  PubMed  Google Scholar 

  • Weinbaum S, Cowin SC, Zeng Y. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J Biomech. 1994;27:339–60.

    Article  CAS  PubMed  Google Scholar 

  • Whalen RT, Carter DR, Steele CR. Influence of physical activity on the regulation of bone density. J Biomech. 1988;21:825–37.

    Article  CAS  PubMed  Google Scholar 

  • Wolff J. Uber die bedeutung der architektur der spongiosa. Zentralblatt fur die Medizinische Wissenschaft.1869; VI. Jahrgang: S. 223–34.

    Google Scholar 

  • Wolff J. Uber die innere architektur der knochen und ihre bedeutung fur die frage vom knochenwachstum. Virchows Archiv fuer Pathologische Anatomie und Physiologie. 1870;50:389–453.

    Article  Google Scholar 

  • Wolff J. The law of bone remodeling. (Translation of Wolff’s Das Gesetz der Transformation der Knochen by Maquet P, Furlong R.) Berlin: Springer; 1892.

    Google Scholar 

  • Wolff J. On the inner architecture of bones and its importance for bone growth. Trans by Heller MO, Taylor WR, Aslanidis N, Duda GN. Clin Orthop Rel Res. 2010; 468: 1056–65.

    Google Scholar 

  • Wolff J. On the significance of the architecture of the spongy substance for the question of bone growth: a preliminary publication. Trans by Amundson PK, Skedros J, Brand R. Clin Orthop Rel Res. 2011; 469: 3077–78.

    Google Scholar 

  • Wong M, Carter DR. Mechanical stress and morphogenetic endochondral ossification of the sternum. J Bone Joint Surg. 1988;70A(7):992–1000.

    Google Scholar 

  • Woo SL, Kuei SC, Amiel D, Gomez MA, Hayes WC, White FC, Akeson WH. The effect of prolonged physical training on the properties of long bone: a study of Wolff’s law. J Bone Joint Surg. 1981;63A:780–7.

    Google Scholar 

  • Wysocki A, Butler M, Shamliyan T, Kane RL. Whole body vibration therapy for osteoporosis: state of the science. Ann Intern Med. 2011;155:680–6.

    Article  PubMed  Google Scholar 

  • Xiong J, Onal M, Jilka RL, et al. Matrix-embedded cells control osteoclast formation. Nat Med. 2011;17:1235–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang PF, Brüggermann GP, J R. What do we currently know from in vivo bone strain measurements in humans? J Musculoskelet Neuronal Interact. 2011;11:8–20.

    CAS  PubMed  Google Scholar 

  • You J, Yellowley CE, Donahue HJ, Zhang Y, Chemn Q, Jacobs CR. Substrate deformation levels associated with routine physical activity are less stimulatory to bone cells relative to loading-induced oscillatory fluid flow. J Biomech Eng. 2000;122:387–93.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Martin, R.B., Burr, D.B., Sharkey, N.A., Fyhrie, D.P. (2015). Mechanical Adaptability of the Skeleton. In: Skeletal Tissue Mechanics. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3002-9_6

Download citation

Publish with us

Policies and ethics