Skip to main content

Mechanical Properties of Ligament and Tendon

  • Chapter
Skeletal Tissue Mechanics

Abstract

In Chap. 2 we explored the architecture and composition of ligaments and tendons, non-calcified but nonetheless extremely tough skeletal tissues responsible for binding bones together, transmitting forces from muscles and constraining motion within normal limits. To briefly review, ligaments and tendons are composed of linearly arranged collagen molecules assembled in a hierarchal fashion into subfibrils, fibrils and fibers. Collagen fibers within ligaments are architecturally orientated to effectively control and constrain joint motion; in tendon they are grouped into distinct but parallel fascicles.

The movement of animals is like that of automatic puppets…For they have functioning parts that are of the same kind: the sinews and bones. The latter are like the pegs and the iron in our example, the sinews like the cables.

Aristotle (384–322 B.C.), De Motu Animalium

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander RM. Animal mechanics. Seattle, WA: University of Washington Press; 1968.

    Google Scholar 

  • Andarawis-Puri N, Kuntz AF, Kim SY, Soslowsky LJ. Effect of anterior supraspinatus tendon partial-thickness tears on infraspinatus tendon strainthrough a range of joint rotation angles. J Shoulder Elbow Surg. 2010;19(4):617–23.

    Article  PubMed Central  PubMed  Google Scholar 

  • Arampatzis A, Peper A, Bierbaum S, Albracht K. Plasticity of human Achilles tendon mechanical and morphological properties in response to cyclic strain. J Biomech. 2010;43(16):3073–9.

    Article  PubMed  Google Scholar 

  • Azizi E, Roberts TJ. Biaxial strain and variable stiffness in aponeuroses. J Physiol. 2009;587(17):4309–18.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barad S, Cabaud HE, Rodrigo JJ. Effects of storage at −80°C as compared to 4°C on the strength of rhesus monkey anteriocruciate ligaments. Trans Orthop Res Soc. 1982;7:378.

    Google Scholar 

  • Bay BK, Sharkey NA, Szabo RM. Biomechanical behavior of the median nerve in and about the carpal tunnel. J Hand Surg. 1997;22A:621–7.

    Article  Google Scholar 

  • Benjamin M, Toumi H, Ralphs JR, Bydder G, Best TM, Milz S. Where tendons and ligaments meet bone: attachment sites (‘entheses’) in relation to exercise and/or mechanical load. J Anat. 2006;208(4):471–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Benjamin M, Kaiswr E, Milz S. Structure-function relationships in tendons: a review. J Anat. 2008;212(3):211–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bey MJ, Song HK, Wehrli FW, Soslowsky LJ. A noncontact, nondestructive method for quantifying intratissue deformations and strains. J Biomech Eng. 2002;124(2):253–8.

    Article  CAS  PubMed  Google Scholar 

  • Bowser JE, Elder SH, Rashmir-Raven AM, Swiderski CE. A cryogenic clamping technique that facilitates ultimate tensile strength determinations in tendons and ligaments. Vet Comp Orthop Traumatol. 2011;24(5):370–3.

    Article  CAS  PubMed  Google Scholar 

  • Butler DL, Sheh MY, Stouffer DC, Samaranayake VA, Levy MS. Surface strain variation in human patellar tendon and knee cruciate ligaments. J Biomech Eng. 1990;112(1):38–45.

    Article  CAS  PubMed  Google Scholar 

  • Chimich D, Shrive N, Frank C, Marchuk L, Bray R. Water content alters viscoelastic behavior of the normal adolescent rabbit medial collateral ligament. J Biomech. 1992;25:831–7.

    Article  CAS  PubMed  Google Scholar 

  • Clancy WG, Narechania RG, Rosenberg TD. Anterior and posterior cruciate ligament reconstruction in rhesus monkeys: a histological, microangiographic, and biomechanical analysis. J Bone Joint Surg. 1981;63A:1270–84.

    Google Scholar 

  • Cook JL, Purdam CR. Is tendon pathology a continuum? A pathology model to explain the clinical presentation of load-induced tendinopathy. Br J Sports Med. 2009;43(6):409–16.

    Article  CAS  PubMed  Google Scholar 

  • Davis FM, De Vita R. A nonlinear constitutive model for stress relaxation in ligaments and tendons. Ann Biomed Eng. 2012;40(12):2541–50.

    Article  PubMed  Google Scholar 

  • Davison PF. The contribution of labile crosslinks to the tensile behavior of tendons. Connect Tissue Res. 1989;18:293–305.

    Article  CAS  PubMed  Google Scholar 

  • Dawson TJ, Taylor CR. Energetic cost of locomotion in kangaroos. Nature (London). 1973;246:313–4.

    Article  Google Scholar 

  • Doehring TC, Kahelin M, Vesely I. Direct measurement of nonuniform large deformations in soft tissues during uniaxial extension. J Biomech Eng. 2009;131(6):061001.

    Article  PubMed  Google Scholar 

  • Donkelaar CCV, Willems PJB, Muijtjens AMM, Drost MR. Skeletal muscle transverse strain during isometric contraction at different lengths. J Biomech. 1999;32:755–62.

    Article  PubMed  Google Scholar 

  • Duenwald SE, Vanderby R, Lakes RS. Stress relaxation and recovery in tendon and ligament: experiment and modeling. Biorheology. 2010;47:1–14.

    PubMed  Google Scholar 

  • Ellis DG. Cross-sectional area measurements for tendon specimens: a comparison of several methods. J Biomech. 1969;2:175–86.

    Article  CAS  PubMed  Google Scholar 

  • Finni T, Komi PV, Lukkariniemi J. Achilles tendon loading during walking: application of a novel optic technique. Eur J Appl Physiol. 1998;77:289–91.

    Article  CAS  Google Scholar 

  • Finni T, Komi PV, Lukkariniema J. In vivo human triceps surae and quadriceps femoris muscle function in a squat jump and counter movement jump. Eur J Appl Physiol. 2000;83:416–26.

    Article  CAS  PubMed  Google Scholar 

  • Flugge W. Viscoelasticity. Waltham, MA: Blaisdell; 1967.

    Google Scholar 

  • Freehan LM, Beauchene JG. Early tensile properties of healing chicken flexor tendons: early controlled passive motion versus postoperative immobilization. J Hand Surg. 1990;15:63–8.

    Article  Google Scholar 

  • Fukashiro S, Komi PV, JaÈrvinen M, Miyashita M. In vivo achilles tendon loading during jumping in humans. Eur J Appl Physiol. 1995;71:453–8.

    Article  CAS  Google Scholar 

  • Fung YCB. Stress-strain-history relations of soft tissues in simple elongation. In: Fung YCB, Perrone N, Anliker M, editors. Biomechanics: its foundations and objectives. Englewood Cliffs: Prentice-Hall; 1972.

    Google Scholar 

  • Gellhorn AC, Carlson MJ. Inter-rater, intra-rater, and inter-machine reliability of quantitative ultrasound measurements of the patellar tendon. Ultrasound Med Biol. 2013;39(5):791–6.

    Article  PubMed  Google Scholar 

  • Gillis C, Sharkey NA, Stover SM, Pool RR, Meagher DM. The effect of maturation and aging on the material and ultrasonographic properties of equine superficial digital flexor tendon. Am J Vet Res. 1995;56:1345–50.

    CAS  PubMed  Google Scholar 

  • Giori NJ, Beaupre GS, Carter DR. Cellular shape and pressure may mediate mechanical control of tissue composition in tendons. J Orthop Res. 1993;11:581–91.

    Article  CAS  PubMed  Google Scholar 

  • Gregor RJ, Komi PV, JaÈrvinen M. Achilles tendon forces during cycling. Int J Sports Med. 1987;8:9–14.

    Article  PubMed  Google Scholar 

  • Haut RC. Age-dependent influence of strain rate on the tensile failure of rat-tail tendon. J Biomech Eng. 1983;105:296–9.

    Article  CAS  PubMed  Google Scholar 

  • Haut TL, Haut RC. The state of tissue hydration determines the strain rate sensitive stiffness of human patellar tendon. J Biomech. 1997;30:79–81.

    Article  CAS  PubMed  Google Scholar 

  • Haut RC, Little RW. A constitutive equation for collagen. J Biomech. 1972;5:423–30.

    Article  CAS  PubMed  Google Scholar 

  • Hingorani RV, Provenzano PP, Lakes RS, Escarcega A, Vanderby R. Nonlinear viscoelasticity in rabbit medial collateral ligament. Ann Biomed Eng. 2004;32:306–12.

    Article  PubMed  Google Scholar 

  • Hoffman AH, Robichaud DR, Duquette JJ, Grigg P. Determining the effect of hydration upon the properties of ligaments using pseudo Gaussian stress stimuli. J Biomech. 2005;38(8):1636–42.

    Article  PubMed  Google Scholar 

  • Hofmann CL, Okita N, Sharkey NA. Experimental evidence supporting isometric functioning of the extrinsic toe flexors during gait. Clin Biomech. 2013;28:686–91.

    Article  Google Scholar 

  • Holmes G, Sharkey NA, Syftestad G, Reiser K. Changes in collagen crosslinks, fibril diameter, and mechanical strength in aging chicken tendons. Trans Orthop Res Soc. 1991;16:620.

    Google Scholar 

  • Howe JG, Wertheimer C, Johnson RJ, Nichols CE, Pope MH, Beynnon B. Arthroscopic strain gauge measurement of the normal anterior cruciate ligament. Arthroscopy. 1990;6:198–204.

    Article  CAS  PubMed  Google Scholar 

  • Jenkins RB, Little RW. A constitutive equation for parallel-fibered elastic tissue. J Biomech. 1974;7:397–402.

    Article  CAS  PubMed  Google Scholar 

  • Jung HJ, Vangipuram G, Fisher MB, Yang G, Hsu S, Bianchi J, Ronholdt C, Woo SL. The effects of multiple freeze-thaw cycles on the biomechanical properties of the human bone-patellar tendon-bone allograft. J Orthop Res. 2011;29(8):1193–8.

    Article  PubMed Central  PubMed  Google Scholar 

  • Karamanidis K, Arampatzis A. Mechanical and morphological properties of different muscle-tendon units in the lower extremity and running mechanics: effect of aging and physical activity. J Exp Biol. 2005;208(Pt 20):3907–23.

    Article  PubMed  Google Scholar 

  • Kastelic J, Baer E. Deformation in tendon and collagen. In: Vincent JFV, Currey JD, editors. The mechanical properties of biological materials. Cambridge: Cambridge University Press; 1980. p. 397–435.

    Google Scholar 

  • Kim YS, Kim JM, Bigliani LU, Kim HJ, Jung HW. In vivo strain analysis of the intact supraspinatus tendon by ultrasound speckles tracking imaging. J Orthop Res. 2011;29(12):1931–7.

    Article  PubMed  Google Scholar 

  • Kirane YM, Michdelson JD, Sharkey NA. Evidence of isometric function of the flexor hallucis longus muscle in normal gait. J Biomech. 2008;41:1919–28.

    Article  CAS  PubMed  Google Scholar 

  • Knapik DM, Harris JD, Pangrazzi G, Griesser MJ, Siston RA, Agarwal S, Flanigan DC. The basic science of continuous passive motion in promoting knee health: a systematic review of studies in a rabbit model. Arthroscopy. 2013;29(10):1722–31.

    Article  PubMed  Google Scholar 

  • Komi PV, Fukashiro S, JaÈrvinen M. Biomechanical loading of Achilles tendon during normal locomotion. Clin Sports Med. 1992;11:521–31.

    CAS  PubMed  Google Scholar 

  • Komi PV, Belli A, Huttunen V, Bonnefoy R, Geyssant A, Lacour JR. Optic as a transducer of tendomuscular forces. Eur J Appl Physiol. 1996;72:278–80.

    Article  CAS  Google Scholar 

  • Kubo K, Ohgo K, Takeishi R, Yoshinaga K, Tsunoda N, Kanehisa H, Fukunaga T. Effects of isometric training at different knee angles on the muscle-tendon complex in vivo. Scand J Med Sci Sports. 2005;16(3):159–67.

    Article  Google Scholar 

  • Kubo K, Morimoto M, Komuro T, Yata H, Tsunoda N, Kanehisa H, Fukunaga T. Effects of plyometric and weight training on muscle-tendon complex and jump performance. Med Sci Sports Exerc. 2007;39(10):1801–10.

    Article  PubMed  Google Scholar 

  • Laros GS, Tipton CM, Cooper RR. Influence of physical activity on ligament insertions in the knees of dogs. J Bone Joint Surg. 1971;53A:275–86.

    Google Scholar 

  • Leonard F, Moscovitz P, Hodge JW, Adams JP. Age-related Ca-Mg content and strength in turkey tendon. Calcif Tissue Res. 1976;19:331–6.

    Article  CAS  PubMed  Google Scholar 

  • Lieber RL, Leonard ME, Brown CG, Trestik CL. Frog semitendinosus tendon load-strain and stress-strain properties during passive loading. Am J Physiol. 1991;261:C86–92.

    CAS  PubMed  Google Scholar 

  • Lieber RL, Brown CG, Trestik CL. Model of muscle-tendon interaction during frog semitendinosus fixed-end contractions. J Biomech. 1992;25:421–8.

    Article  CAS  PubMed  Google Scholar 

  • Maganaris CN. Tensile properties of in-vivo human tendinous tissue. J Biomech. 2002;35(8):1019–27.

    Article  PubMed  Google Scholar 

  • Maganaris CN. Tendon conditioning: artefact or property? Proc Biol Sci. 2003;270 Suppl 1:S39–42.

    Article  PubMed Central  PubMed  Google Scholar 

  • Maganaris CN, Paul JP. Tensile properties of the in vivo human gastrocnemius tendon. J Biomech. 2002;35(12):1639–46.

    Article  PubMed  Google Scholar 

  • Maganaris DN, Kawakami Y, Fukunaga T. Changes in aponeurotic dimensions upon muscle shortening: in vivo observations in man. J Anat. 2001;199(Pt 4):449–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maganaris CN, Reeves ND, Rittweger J, Sargeant AJ, Jones DA, Gerrits K, De Haan A. Adaptive response of human tendon to paralysis. Muscle Nerve. 2006;33:85–92.

    Article  PubMed  Google Scholar 

  • Malliaras P, Kamal B, Nowell A, Farley T, Dhamu H, Simpson V, Morrissey D, Langberg H, Maffulli N, Reeves ND. Patellar tendon adaptation in relation to load-intensity and contraction type. J Biomech. 2013;46(11):1893–9.

    Article  PubMed  Google Scholar 

  • Matthews GL, Keegan KG, Graham HL. Effects of tendon grip technique (frozen versus unfrozen) on in vitro surface strain measurements of the equine deep digital flexor tendon. Am J Vet Res. 1996;57(1):111–5.

    CAS  PubMed  Google Scholar 

  • Matyas JR, Anton MG, Shrive NG, Frank CB. Stress governs tissue phenotype at the femoral insertion of the rabbit MCL. J Biomech. 1995;28:147–57.

    Article  CAS  PubMed  Google Scholar 

  • Moon DK, Abramowitch SD, Woo SL. The development and validation of a charge-coupled device laser reflectance system to measure the complex cross-sectional shape and area of soft tissues. J Biomech. 2006;39(16):3071–5.

    Article  PubMed  Google Scholar 

  • Nachemson AL, Evans JH. Some mechanical properties of the third human lumbar interlaminar ligament (ligamentum flavum). J Biomech. 1968;1:211–20.

    Article  CAS  PubMed  Google Scholar 

  • Neumann P, Ekstrom LA, Kellar TS, Perry L, Hansson TH. Aging, vertebral density, and disk degeneration alter the stress-strain characteristics of the human anterior longitudinal ligament. J Orthop Res. 1994;12:103–12.

    Article  CAS  PubMed  Google Scholar 

  • Noyes FR. Functional properties of knee ligaments and alterations induced by immobilization. A correlative biomechanical and histological study in primates. Clin Orthop Rel Res. 1977;123:210–42.

    Google Scholar 

  • Noyes FR, Grood ES. The strength of the anterior cruciate ligament in humans and rhesus monkeys. Age-related and species-related changes. J Bone Joint Surg. 1976;58:1074–82.

    CAS  PubMed  Google Scholar 

  • Noyes FR, Delucas JL, Torvik PJ. Biomechanics of anterior cruciate ligament failure: an analysis of strain-rate sensitivity and mechanisms of failure in primates. J Bone Joint Surg. 1974;56:236–53.

    CAS  PubMed  Google Scholar 

  • Noyes FR, Butler DL, Grood ES, Zernicke RF, Hefzy MS. Biomechanical analysis of human ligament grafts used in knee-ligamant repairs and reconstructions. J Bone Joint Surg. 1984;66:344–52.

    CAS  PubMed  Google Scholar 

  • Onambele GL, Narici MV, Maganaris CN. Calf muscle-tendon properties and postural balance in old age. J Appl Physiol 1985. 2006;100(6):2048–56.

    Article  PubMed  Google Scholar 

  • Pokhai GG, Oliver ML, Gordon KD. A new laser reflectance system capable of measuring changing cross-sectional area of soft tissues during tensile testing. J Biomech Eng. 2009;131(9):094504.

    Article  PubMed  Google Scholar 

  • Reeves ND, Narici MV, Maganaris CN. Strength training alters the viscoelastic properties of tendons in elderly humans. Muscle Nerve. 2003;28:74–81.

    Article  PubMed  Google Scholar 

  • Reeves ND, Maganaris CN, Narici MV. Plasticity of dynamic muscle performance with strength training in elderly humans. Muscle Nerve. 2005;31:355–64.

    Article  PubMed  Google Scholar 

  • Riemersma DJ, Schamhardt HC. The cryo-jaw, a clamp designed for in vitro rheology studies of horse digital flexor tendons. J Biomech. 1982;15:619–20.

    Article  Google Scholar 

  • Roberts CS. Cummings JF, Grood ES, Noyes FR. In-vivo measurement of human anterior cruciate ligament forces during knee extension exercises. 40th Annual meeting, orthopaedic research society, New Orleans, LA; 1994. p. 84.

    Google Scholar 

  • Salter RB, Simmonds DF, Malcolm BW, Rumble EJ, MacMichael D, Clements ND. The biological effect of continuous passive motion on the healing of full-thickness defects in articular cartilage. An experimental investigation in the rabbit. J Bone Joint Surg Am. 1980;62(8):1232–51.

    CAS  PubMed  Google Scholar 

  • Scott SH, Loeb GE. Mechanical properties of aponeurosis and tendon of the cat soleus muscle during whole muscle isometric contractions. J Morphol. 1995;224:73–86.

    Article  CAS  PubMed  Google Scholar 

  • Shadwick RE. Elastic energy storage in tendons: mechanical differences related to function and age. J Appl Physiol. 1990;68:1033–40.

    Article  CAS  PubMed  Google Scholar 

  • Sharkey NA, Smith TS, Lundmark DC. Freeze clamping musculo-tendinous junctions for in-vitro simulation of joint mechanics. J Biomech. 1995;28(5):631–5.

    Article  CAS  PubMed  Google Scholar 

  • Stenroth L, Peltonen J, Cronin NJ, Sipilä S, Finni T. Age-related differences in Achilles tendon properties and triceps surae muscle architecture in vivo. J Appl Physiol. 2012;113(10):1537–44.

    Article  PubMed  Google Scholar 

  • Stouffer DC, Butler DL, Hosney D. The relationship between crimp pattern and mechanical response of human patellar tendon-bone units. J Biomech Eng. 1985;107:158–65.

    Article  CAS  PubMed  Google Scholar 

  • Takai S, Woo SL, Horibe S, Tung DK, Gelberman RH. The effects of frequency and duration of controlled passive mobilization on tendon healing. J Orthop Res. 1991;9:705–13.

    Article  CAS  PubMed  Google Scholar 

  • Thornton GM, Shrive NG, Frank CB. Altering ligament water content affects ligament pre-stress and creep behavior. J Orthop Res. 2001;19:845–51.

    Article  CAS  PubMed  Google Scholar 

  • Tidball JG. The geometry of actin filament-membrane associations can modify adhesive strenth of the myotendinosis junction. Cell Motility. 1983;3:439–47.

    Article  CAS  PubMed  Google Scholar 

  • Tidball JG, Daniel TL. Myotendinous junctions of tonic muscle cells: structure and loading. Cell Tissue Res. 1986;245:315–22.

    Article  CAS  PubMed  Google Scholar 

  • Tidball JG, Salem G, Zernicke R. Site and mechanical conditions for failure of skeletal muscle in experimental strain injuries. J Appl Physiol. 1993;74:1280–6.

    CAS  PubMed  Google Scholar 

  • Tipton CM, Schild RJ, Tomanek RJ. Influence of physical activity on the strength of knee ligaments in rats. Am J Physiol. 1967;212:783–7.

    CAS  PubMed  Google Scholar 

  • Tipton CM, Matthes RD, Martin RK. Influence of age and sex on the strength of bone-ligament junctions in knee joints of rats. J Bone Joint Surg. 1978;60A:230–4.

    Google Scholar 

  • Trotter JA, Corbett K, Avner BP. Structure and function of the murine muscle-tendon junction. Anat Rec. 1981;201:293–302.

    Article  CAS  PubMed  Google Scholar 

  • Vailas AC, Tipton CM, Mattes RD, Gart M. Physical activity and its influence on the repair process of medial collateral ligaments. Connect Tissue Res. 1981;9:25–31.

    Article  CAS  PubMed  Google Scholar 

  • van Doesburg MH, Yoshii Y, Henderson J, Villarraga HR, Moran SL, Amadio PC. Speckle-tracking sonographic assessment of longitudinal motion of the flexor tendon and subsynovial tissue in carpal tunnel syndrome. J Ultrasound Med. 2012;31(7):1091–8.

    PubMed Central  PubMed  Google Scholar 

  • Wang JHC. Mechanobiology of tendon. J Biomech. 2006;39:1563–82.

    Article  PubMed  Google Scholar 

  • Wertheim MG. Memoirs sur l’elasticite et la cohesion des principaux tissues des corps humain. Anales de Quimica y Physica. 1847;21:385–414.

    Google Scholar 

  • Wilson AM, Goodship AE. Exercise-induced hyperthermia as a possible mechanism for tendon degeneration. J Biomech. 1994;27:899–905.

    Article  CAS  PubMed  Google Scholar 

  • Woo SL-Y. Mechanical properties of tendons and ligaments: quasistatic and nonlinear properties. Biorheology. 1982;19:385–96.

    CAS  PubMed  Google Scholar 

  • Woo SL-Y, Buckwalter JA. Injury and repair of the musculoskeletal soft tissues. Park Ridge, IL: American Academy of Orthopaedic Surgeons; 1988. p. 1988.

    Google Scholar 

  • Woo SL-Y, Ritter MA, Amiel D, Sanders TM, Gomez MA, Kuei SC, Garfin SR, Akeson WH. The biomechanical and biochemical properties of swine tendons—long term effects of exercise on the digital extensors. Connect Tissue Res. 1980;7(3):177–83.

    Article  CAS  PubMed  Google Scholar 

  • Woo SLY, Gomez MA, Seguchi Y, Endo CM, Akeson WA. Measurement of mechanical properties of ligament substance from a bone-ligament-bone preparation. J Orthop Res. 1983;1:22–9.

    Article  CAS  PubMed  Google Scholar 

  • Woo SLY, Orlando CA, Gomez MA, Frank CB, Akeson WH. Tensile properties of the medial collateral ligament as a function of age. J Orthop Res. 1986;4:133–41.

    Article  CAS  PubMed  Google Scholar 

  • Woo SL, Gomez MA, Sites TJ, Newton PO, Orlando CA, Akeson WH. The biomechanical and morphological changes in the medial collateral ligament of the rabbit after immobilization and remobilization. J Bone Joint Surg. 1987;69A:1200–11.

    Google Scholar 

  • Woo SLY, Peterson RH, Ohland KJ, Sites TJ, Danto MI. The effects of strain rate on the properties of the medial collateral ligament in skeletally immature and mature rabbits: a biomechanical and histological study. J Orthop Res. 1990;8:712–21.

    Article  CAS  PubMed  Google Scholar 

  • Woo SL-Y, An K-N, Arnoczky SP, Wayne JS, Fithian DC, Myers BS. Anatomy, biology, and biomechanics of tendon, ligaments, and meniscus. In: Simon SR, editor. Orthopaedic basic science. Park Ridge, IL: American Academy of Orthopaedic Surgeons; 1994. p. 45–87.

    Google Scholar 

  • Yang G, Rothrauff BB, Tuan RS. Tendon and ligament regeneration and repair: clinical relevance and developmental paradigm. Birth Defects Res C Embryo Today. 2013;99(3):203–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zajac FE. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng. 1989;17:359–411.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Martin, R.B., Burr, D.B., Sharkey, N.A., Fyhrie, D.P. (2015). Mechanical Properties of Ligament and Tendon. In: Skeletal Tissue Mechanics. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3002-9_4

Download citation

Publish with us

Policies and ethics