Skip to main content

Singing Fish in an Ocean of Noise: Effects of Boat Noise on the Plainfin Midshipman (Porichthys notatus) in a Natural Ecosystem

  • Conference paper
The Effects of Noise on Aquatic Life II

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 875))

Abstract

When it comes to hearing and vocal communication in fishes, the plainfin midshipman (Porichthys notatus) is perhaps best understood. However, distinctly lacking are studies investigating communication of P. notatus in its natural ecosystems and the effects of noise on wild fish populations. Here, an exploratory look into both is discussed. By monitoring a population of wild P. notatus off British Columbia, Canada, call patterns were distinguished, the function of communicative sounds was identified, and midshipman vocalizations in agonistic encounters with natural predators were evaluated. A preliminary investigation into the effects of boat noise on wild midshipman is also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alderks PW, Sisneros JA (2011) Ontogeny of auditory saccular sensitivity in the plainfin midshipman fish, Porichthys notatus. J Comp Physiol A 197:387–398

    Article  Google Scholar 

  • Allesina S, Tang S (2012) Stability criteria for complex ecosystems. Nature 483:205–208

    Article  CAS  PubMed  Google Scholar 

  • Amoser S, Ladich F (2003) Diversity in noise-induced temporary hearing loss in otophysine fishes. J Acoust Soc Am 113:2170–2179

    Article  PubMed  Google Scholar 

  • Anderson PA, Berzins IK, Fogarty F, Hamlin HJ, Guillette LJ (2011) Sound, stress, and seahorses: the consequences of a noisy environment to animal health. Aquaculture 311:129–138

    Article  Google Scholar 

  • André M, Solé M, Lenoir M, Durfort M, Quero C, Mas A, Lombarte A, van der Schaar M, López-Bejar M, Morell M, Zaugg S, Houégnigan L (2011) Low-frequency sounds induce acoustic trauma in cephalopods. Front Ecol Environ 9:489–493

    Article  Google Scholar 

  • Arora HL (1948) Observations on the habits and early life history of the batrachoid fish, Porichthys notatus Girard. Copeia 1948:89–93

    Article  Google Scholar 

  • Ban NC, Alidina HM, Ardron JA (2010) Cumulative impact mapping: advances, relevance and limitations to marine management and conservation, using Canada’s Pacific waters as a case study. Mar Policy 34:876–886

    Article  Google Scholar 

  • Barrett-Lennard LG, Ford JKB, Heise KA (1996) The mixed blessing of echolocation: differences in sonar use by fish-eating and mammal-eating killer whales. Anim Behav 51:553–565

    Article  Google Scholar 

  • Bass AH (1996) Shaping brain sexuality. Am Sci 84:352–363

    Google Scholar 

  • Bass AH, Bodnar D, Marchaterre M (1999) Complementary explanations for existing phenotypes in an acoustic communication system. In: Hauser MD, Konishi M (eds) The design of animal communication. MIT Press, Cambridge, MA, pp 493–514

    Google Scholar 

  • Bass AH, Ladich F (2008) Vocal–acoustic communication: from neurons to behavior. In: Webb JF, Fay RR, Popper AN (eds) Fish bioacoustics. Springer Science + Business Media, LLC, New York, pp 253–278

    Chapter  Google Scholar 

  • Bass AH, McKibben JR (2003) Neural mechanisms and behaviors for acoustic communication in teleost fish. Prog Neurobiol 69:1–26

    Article  PubMed  Google Scholar 

  • Brantley RK, Bass AH (1994) Alternative male spawning tactics and acoustic signals in the plainfin midshipman fish Porichthys notatus Girard (Teleostei, Batrachoididae). Ethology 232:213–232

    Google Scholar 

  • Chan AAYH, Giraldo-Perez P, Smith S, Blumstein DT (2010) Anthropogenic noise affects risk assessment and attention: the distracted prey hypothesis. Biol Lett 6:458–461

    Article  PubMed Central  PubMed  Google Scholar 

  • DeMartini EE (1988) Spawning success of the male plainfin midshipman. I. Influences of male body size and area of spawning site. J Exp Mar Bio Ecol 121:177–192

    Article  Google Scholar 

  • Department of Fisheries and Oceans Canada (DFO) (2004) Potential impacts of seismic energy on snow crab. Habitat status report 2004/003, DFO Canadian Science Advisory Secretariat

    Google Scholar 

  • Elliott KH, Struik CL, Elliott JE (2004) Bald eagles, Haliaeetus leucocephalus, feeding on spawning plainfin midshipman, Porichthys notatus, at Crescent Beach, British Columbia. Can Field Nat 117:601–604

    Google Scholar 

  • Ellison WT, Southall BL, Clark CW, Frankel AS (2012) A new context-based approach to assess marine mammal behavioral responses to anthropogenic sounds. Conserv Biol 26:21–28

    Article  CAS  PubMed  Google Scholar 

  • Ford JKB, Ellis GM, Balcomb KC (2000) Killer whales: the natural history and genealogy of Orcinus orca in British Columbia and Washington State, 2nd edn. University of British Columbia Press, Vancouver

    Google Scholar 

  • Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Micheli F, D'Agrosa C, Bruno JF, Casey KS, Ebert C, Fox HE, Fujita R, Heinemann D, Lenihan HS, Madin EMP, Perry MT, Selig ER, Spalding M, Steneck R, Watson R (2008) A global map of human impact on marine ecosystems. Science 319:948–952

    Article  CAS  PubMed  Google Scholar 

  • Handegard NO, Boswell KM, Ioannou CC, Leblanc SP, Tjøstheim DB, Couzin ID (2012) The dynamics of coordinated group hunting and collective information transfer among schooling prey. Curr Biol 22:1213–1217

    Article  CAS  PubMed  Google Scholar 

  • Heise K, Alidina HM (2012) Summary report: ocean noise in Canada’s Pacific workshop. World Wildlife Fund (WWF)-Canada, Vancouver, 31 January–1 February 2012

    Google Scholar 

  • Holles S, Simpson SD, Radford AN, Berten L, Lecchini D (2013) Boat noise disrupts orientation behaviour in a coral reef fish. Mar Ecol Prog Ser 485:295–300

    Article  Google Scholar 

  • Kastak D, Southall BL, Schusterman RJ, Kastak CR (2005) Underwater temporary threshold shift in pinnipeds: effects of noise level and duration. J Acoust Soc Am 118:3154–3163

    Article  PubMed  Google Scholar 

  • Kasumyan AO (2009) Acoustic signaling in fish. J Ichthyol 49:963–1020

    Article  Google Scholar 

  • Lee JSF, Bass AH (2006) Dimorphic male midshipman fish: reduced sexual selection or sexual selection for reduced characters? Behav Ecol 17:670–675

    Article  Google Scholar 

  • Lima SL (2002) Putting predators back into behavioral predator–prey interactions. Trends Ecol Evol 17:70–75

    Article  Google Scholar 

  • Love MS (2011) Certainly more than you want to know about the fishes of the Pacific Coast: a postmodern experience. Really Big Press, Santa Barbara

    Google Scholar 

  • Maruska KP, Mensinger AF (2009) Acoustic characteristics and variations in grunt vocalizations in the oyster toadfish Opsanus tau. Environ Biol Fish 84:325–337

    Article  Google Scholar 

  • McCauley RD, Fewtrell J, Popper AN (2003) High intensity anthropogenic sound damages fish ears. J Acoust Soc Am 113:638–642

    Article  PubMed  Google Scholar 

  • McKibben JR, Bass AH (1998) Behavioral assessment of acoustic parameters relevant to signal recognition and preference in a vocal fish. J Acoust Soc Am 104:3520–3533

    Article  CAS  PubMed  Google Scholar 

  • Mulsow J, Reichmuth C, Gulland F, Rosen DAS, Finneran JJ (2011) Aerial audiograms of several California sea lions (Zalophus californianus) and Steller sea lions (Eumetopias jubatus) measured using single and multiple simultaneous auditory steady-state response methods. J Exp Biol 214:1138–1147

    Article  PubMed  Google Scholar 

  • Myrberg AA Jr, Spires JY (1972) Sound discrimination by the bicolor damselfish, Eupomacentrus partitus. J Exp Biol 57:727–735

    Google Scholar 

  • Pearson WH, Skalski JR, Malme CI (1992) Effects of sounds from a geophysical survey device on behavior of captive rockfish (Sebastes spp.). Can J Fish Aquat Sci 49:1343–1356

    Article  Google Scholar 

  • Picciulin M, Sebastianutto L, Codarin A, Farina A, Ferrero EA (2010) In situ behavioural responses to boat noise exposure of Gobius cruentatus (Gmelin, 1789; fam. Gobiidae) and Chromis chromis (Linnaeus, 1758; fam. Pomacentridae) living in a marine protected area. J Exp Mar Biol Ecol 386:125–132

    Article  Google Scholar 

  • Popper AN (2003) Effects of anthropogenic sounds on fishes. Fisheries 28:24–31

    Article  Google Scholar 

  • Popper AN, Hastings MC (2009a) The effects of anthropogenic sources of sound on fishes. J Fish Biol 75:455–489

    Article  CAS  PubMed  Google Scholar 

  • Popper AN, Hastings MC (2009b) The effects of human-generated sound on fish. Integr Zool 4:43–52

    Article  PubMed  Google Scholar 

  • Purser J, Radford AN (2011) Acoustic noise induces attention shifts and reduces foraging performance in three-spined sticklebacks (Gasterosteus aculeatus). PLoS ONE 6:e17478

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Radford CA, Stanley JA, Simpson SD, Jeffs AG (2011) Juvenile coral reef fish use sound to locate habitats. Coral Reefs 30:295–305

    Article  Google Scholar 

  • Remage-Healey L, Nowacek DP, Bass AH (2006) Dolphin foraging sounds suppress calling and elevate stress hormone levels in a prey species, the Gulf toadfish. J Exp Biol 209:4444–4451

    Article  CAS  PubMed  Google Scholar 

  • Rice AN, Land BR, Bass AH (2011) Nonlinear acoustic complexity in a fish ‘two-voice’ system. Proc R Soc B Biol Sci 278:3762–3768

    Article  Google Scholar 

  • Rountree RA, Gilmore RG, Goudey CA, Hawkins AD, Luczkovich JJ, Mann DA (2006) Listening to fish: applications of passive acoustics to fisheries science. Fisheries 31:433–446

    Article  Google Scholar 

  • Rubow TK, Bass AH (2009) Reproductive and diurnal rhythms regulate vocal motor plasticity in a teleost fish. J Exp Biol 212:3252–3262

    Article  PubMed Central  PubMed  Google Scholar 

  • Sarà G, Dean JM, D’Amato D, Buscaino G, Oliveri A, Genovese S, Ferro S, Buffa G, Martire ML, Mazzola S (2007) Effect of boat noise on the behaviour of bluefin tuna Thunnus thynnus in the Mediterranean Sea. Mar Ecol Prog Ser 331:243–253

    Article  Google Scholar 

  • Simpson SD, Meekan M, McCauley RD, Jeffs A (2004) Attraction of settlement-stage coral reef fishes to reef noise. Mar Ecol Prog Ser 276:263–268

    Article  Google Scholar 

  • Simpson SD, Radford AN, Tickle EJ, Meekan MG, Jeffs AG (2011) Adaptive avoidance of reef noise. PLoS ONE 6:e16625

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sisneros JA (2009a) Adaptive hearing in the vocal plainfin midshipman fish: getting in tune for the breeding season and implications for acoustic communication. Integr Zool 4:33–42

    Article  PubMed  Google Scholar 

  • Sisneros JA (2009b) Seasonal plasticity of auditory saccular sensitivity in the vocal plainfin midshipman fish, Porichthys notatus. J Neurophysiol 102:1121–1131

    Article  PubMed  Google Scholar 

  • Sisneros JA (2012) Adaptive auditory plasticity for social communication in the plainfin midshipman fish (Porichthys notatus). Bioacoustics 21:21–23

    Article  Google Scholar 

  • Sisneros JA, Bass AH (2003) Seasonal plasticity of peripheral auditory frequency sensitivity. J Neurosci 23:1049–1058

    CAS  PubMed  Google Scholar 

  • Sisneros JA, Bass AH (2005) Ontogenetic changes in the response properties of individual primary auditory afferents in the vocal plainfin midshipman fish Porichthys notatus Girard. J Exp Biol 208:3121–3131

    Article  PubMed  Google Scholar 

  • Slabbekoorn H, Bouton N, van Opzeeland I, Coers A, ten Cate C, Popper AN (2010) A noisy spring: the impact of globally rising underwater sound levels on fish. Trends Ecol Evol 25:419–427

    Article  PubMed  Google Scholar 

  • Slotte A, Hansen K, Dalen J, Ona E (2004) Acoustic mapping of pelagic fish distribution and abundance in relation to a seismic shooting area off the Norwegian west coast. Fish Res 67:143–150

    Article  Google Scholar 

  • Suk HY, Neff BD, Fitzpatrick JL, Balshine S (2009) Isolation and characterization of polymorphic microsatellite loci in plainfin midshipman fish. Hereditas 146:204–207

    Article  PubMed  Google Scholar 

  • Vasconcelos RO, Amorim MCP, Ladich F (2007) Effects of ship noise on the detectability of communication signals in the Lusitanian toadfish. J Exp Biol 210:2104–2112

    Article  PubMed  Google Scholar 

  • Vermeij MJA, Marhaver KL, Huijbers CM, Nagelkerken I, Simpson SD (2010) Coral larvae move toward reef sounds. PLoS ONE 5:e10660

    Article  PubMed Central  PubMed  Google Scholar 

  • Wale MA, Simpson SD, Radford AN (2013) Size-dependent physiological responses of shore crabs to single and repeated playback of ship noise. Biol Lett 9:20121194

    Article  PubMed Central  PubMed  Google Scholar 

  • Wardle CS, Carter TJ, Urquhart GG, Johnstone ADF (2001) Effects of seismic air guns on marine fish. Cont Shelf Res 21:1005–1027

    Article  Google Scholar 

  • Weeg MS, Fay RR, Bass AH (2002) Directionality and frequency tuning of primary saccular afferents of a vocal fish, the plainfin midshipman (Porichthys notatus). J Comp Physiol 188:631–641

    Article  CAS  Google Scholar 

  • Wright KJ, Higgs DM, Belanger AJ, Leis JM (2008) Auditory and olfactory abilities of larvae of the Indo-Pacific coral trout Plectropomus leopardus (Lacepde) at settlement. J Fish Biol 72:2543–2556

    Article  Google Scholar 

  • Zeddies DG, Fay RR, Alderks PW, Shaub KS, Sisneros JA (2010) Sound source localization by the plainfin midshipman fish, Porichthys notatus. J Acoust Soc Am 127:3104–3113

    Article  PubMed  Google Scholar 

  • Zeddies DG, Fay RR, Gray MD, Alderks PW, Acob A, Sisneros JA (2012) Local acoustic particle motion guides sound-source localization behavior in the plainfin midshipman fish, Porichthys notatus. J Exp Biol 215:152–160

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded in part by a National Sciences and Engineering Research Council of Canada grant and a research grant from World Wildlife Fund (WWF)-Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarika Cullis-Suzuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this paper

Cite this paper

Cullis-Suzuki, S. (2016). Singing Fish in an Ocean of Noise: Effects of Boat Noise on the Plainfin Midshipman (Porichthys notatus) in a Natural Ecosystem. In: Popper, A., Hawkins, A. (eds) The Effects of Noise on Aquatic Life II. Advances in Experimental Medicine and Biology, vol 875. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2981-8_20

Download citation

Publish with us

Policies and ethics