Skip to main content

The Central Pattern Generator for Rhythmic Whisking

  • Chapter
  • First Online:
Sensorimotor Integration in the Whisker System

Abstract

Whisking and sniffing are predominant aspects of exploratory behavior in rodents. We review evidence that these motor rhythms are coordinated by the respiratory patterning circuitry in the ventral medulla. A region in the intermediate reticular zone, dorsomedial to the preBötzinger inspiratory complex, provides rhythmic input to the facial motoneurons that drive protraction of the vibrissae. Neuronal output from this region is reset at each inspiration by direct input from the preBötzinger complex. High frequency breathing, or sniffing, has a one-to-one coordination with whisking while basal respiration is accompanied by intervening whisks that occur between breaths. We conjecture that the preBötzinger complex, which projects to neighboring premotor regions for the control of other orofacial muscles, functions as a master clock to coordinate orofacial behaviors with breathing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Welker WI (1964) Analysis of sniffing of the albino rat. Behaviour 12:223–244

    Article  Google Scholar 

  2. Moore* JD, Deschênes* M, Furuta T, Huber D, Smear MC, Demers M, Kleinfeld D (2013) Hierarchy of orofacial rhythms revealed through whisking and breathing. Nature 469:53–57

    Google Scholar 

  3. Kleinfeld D, Deschênes M (2011) Neuronal basis for object location in the vibrissa scanning sensorimotor system. Neuron 72:455–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nguyen Q-T, Kleinfeld D (2005) Positive feedback in a brainstem tactile sensorimotor loop. Neuron 45:447–457

    Article  CAS  PubMed  Google Scholar 

  5. Deschênes M, Moore JD, Kleinfeld D (2012) Sniffing and whisking in rodents. Curr Opin Neurobiol 22:243–250

    Article  PubMed  Google Scholar 

  6. Mitchinson B, Martin CJ, Grant RA, Prescott TJ (2007) Feedback control in active sensing: Rat exploratory whisking is modulated by environmental contact. Proc Royal Soc Lond Biol Sci 274:1035–1041

    Article  Google Scholar 

  7. Towal RB, Hartmann MJ (2006) Right-left asymmetries in the whisking behavior of rats anticipate movements. J Neurosci 26:8838–8846

    Article  CAS  PubMed  Google Scholar 

  8. Berg RW, Kleinfeld D (2003) Rhythmic whisking by rat: Retraction as well as protraction of the vibrissae is under active muscular control. J Neurophysiol 89:104–117

    Article  PubMed  Google Scholar 

  9. Hill DN, Bermejo R, Zeigler HP, Kleinfeld D (2008) Biomechanics of the vibrissa motor plant in rat: Rhythmic whisking consists of triphasic neuromuscular activity. J Neurosci 28:3438–3455

    Article  CAS  PubMed  Google Scholar 

  10. Pietr MD, Knutsen PM, Shore DI, Ahissar E, Vogel Z (2010) Cannabinoids reveal separate controls for whisking amplitude and timing in rats. J Neurophysiol 104:2532–2542

    Article  PubMed  Google Scholar 

  11. Hill DN, Curtis JC, Moore JD, Kleinfeld D (2011) Primary motor cortex reports efferent control of vibrissa position on multiple time scales. Neuron 72:344–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ranade S, Hangya B, Kepecs A (2013) Multiple modes of phase locking between sniffing and whisking during active exploration. J Neurosci 33:8250–8256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lawson EE, Richter DW, Czyzyk-Krzeska MF, Bischoff A, Rudesill RC (1991) Respiratory neuronal activity during apnea and other breathing patterns induced by laryngeal stimulation. J Appl Ohysiol 70:2742–2749

    CAS  Google Scholar 

  14. Smith JC, Ellenberger HH, Ballanyi K, Richter DW, Feldman JL (1991) Pre-Botzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science 254:726–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Feldman JL, Del Negro CA, Gray PA (2013) Understanding the rhythm of breathing: so near, yet so far. Annu Rev Physiol 75:423–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Garcia AJ, Zanella S, Koch H, Doi A, Ramirez JM (2011) Networks within networks: the neuronal control of breathing. Prog Brain Res 188:31–50

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gao P, Bermejo R, Zeigler HP (2001) Vibrissa deaffentation and rodent whisking patterns: behavioral evidence for a central pattern generator. J Neurosci 21:5374–5380

    CAS  PubMed  Google Scholar 

  18. Lovick TA (1972) The behavioural repertoire of precollicular decerebrate rats. J Physiol 226:4P–6P

    CAS  PubMed  Google Scholar 

  19. Smith JC, Abdala APL, Rybak IA, Paton JFR (2009) Structural and functional architecture of respiratory networks in the mammalian brainstem. Philos Trans Royal Soc Lond B 364:2577–2587

    Article  Google Scholar 

  20. Sherrey JH, Megirian D (1977) State dependence of upper airway respiratory motoneurons: functions of the cricothyroid and nasolabial muscles of the unanesthetized rat. Electroencephalogr Clin Neurophysiol 43:218–228

    Article  CAS  PubMed  Google Scholar 

  21. Haidarliu S, Golomb D, Kleinfeld D, Ahissar E (2012) Dorsorostral snout muscles in the rat subserve coordinated movement for whisking and sniffing. Anat Rec 295:1181–1191

    Article  Google Scholar 

  22. Nakamura Y, Katakura N (1995) Generation of masticatory rhythm in the brainstem. Neurosci Res 23:1–19

    Article  CAS  PubMed  Google Scholar 

  23. Bieger D, Hopkins DA (1987) Viscerotopic representation of the upper alimentary tract in the medulla oblongata in the rat: the nucleus ambiguus. J Comp Neurol 262:546–562

    Article  CAS  PubMed  Google Scholar 

  24. Travers JB, Dinardo LA, Karimnamazi H (1997) Motor and premotor mechanisms of licking. Neurosci Biobehav Rev 21:631–647

    Article  CAS  PubMed  Google Scholar 

  25. Tan W, Janczewski WA, Yang P, Shao XM, Callaway EM, Feldman JL (2008) Silencing preBötzinger complex somatostatin-expressing neurons induces persistent apnea in awake rat. Nat Neurosci 11:538–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Travers JB (1995) Oromotor nuclei In The rat nervous system - second edition. Paxinos G (ed) 239–255, Academic Press

    Google Scholar 

  27. Takatoh J, Nelson A, Zhou X, Bolton MM, Ehlers MD, Arenkiel BR, Mooney R, Wang F (2013) New modules are added to vibrissal premotor circuitry with the emergence of exploratory whisking. Neuron 77:346–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Isokawa-Akesson M, Komisaruk BR (1987) Difference in projections to the lateral and medial facial nucleus: anatomically separate pathways for rhythmical vibrissa movement in rats. Exp Brain Res 65:385–398

    Article  CAS  PubMed  Google Scholar 

  29. Gray PA, Hayes JA, Ling GY, Llona I, Tupal S, Picardo MC, Ross SE, Hirata T, Corbin JG, Eugenín J, Del Negro CA (2010) Developmental origin of preBötzinger complex respiratory neurons. J Neurosci 30:14883–148895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bouvier J, Thoby-Brisson MNR, Dubreuil V, Ericson J, Champagnat J, Pierani AAC, Fortin G (2010) Hindbrain interneurons and axon guidance signaling critical for breathing. Nat Neurosci 13:1066–1074

    Article  CAS  PubMed  Google Scholar 

  31. Welzl H, Bures J (1977) Lick-synchronized breathing in rats. Physiol Behav 18:751–753

    Article  CAS  PubMed  Google Scholar 

  32. Koizumi H, Wilson CG, Wong S, Yamanishi T, Koshiya N, Smith JC (2008) Functional imaging, spatial reconstruction, and biophysical analysis of a respiratory motor circuit isolated in vitro. J Neurosci 28:2353–2365

    Article  CAS  PubMed  Google Scholar 

  33. Ono T, Ishiwata Y, Inaba N, Kuroda T, Nakamura Y (1998) Modulation of the inspiratory-related activity of hypoglossal premotor neurons during ingestion and rejection in the decerebrate cat. J Neurophysiol 80:48–58

    CAS  PubMed  Google Scholar 

  34. Travers JB, DiNardo LA, Karimnamazi H (2000) Medullary reticular formation activity during ingestion and rejection in the awake rat. Exp Brain Res 130:78–92

    Article  CAS  PubMed  Google Scholar 

  35. Chen Z, Travers SP, Travers JB (2001) Muscimol infusions in the brain stem reticular formation reversibly block ingestion in the awake rat. Am J Physiol Regul Intergr Comp Physiol 280:R1085–R1094

    CAS  Google Scholar 

  36. de Kock CP, Sakmann B (2009) Spiking in primary somatosensory cortex during natural whisking in awake head-restrained rats is cell-type specific. Proc Natl Acad Sci U S A 106:16446–16450

    Article  PubMed  PubMed Central  Google Scholar 

  37. Fee MS, Mitra PP, Kleinfeld D (1997) Central versus peripheral determinates of patterned spike activity in rat vibrissa cortex during whisking. J Neurophysiol 78:1144–1149

    CAS  PubMed  Google Scholar 

  38. Curtis JC, Kleinfeld D (2009) Phase-to-rate transformations encode touch in cortical neurons of a scanning sensorimotor system. Nat Neurosci 12:492–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Crochet S, Petersen CCH (2006) Correlating membrane potential with behaviour using whole-cell recordings from barrel cortex of awake mice. Nat Neurosci 9:608–609

    Article  CAS  PubMed  Google Scholar 

  40. Gentet LJ, Avermann M, Matyas F, Staiger JF, Petersen CCH (2010) Membrane potential dynamics of GABAergic neurons in the barrel cortex of behaving mice. Neuron 65:422–435

    Article  CAS  PubMed  Google Scholar 

  41. Shusterman R, Smear MC, Koulakov AA, Rinberg D (2011) Precise olfactory responses tile the sniff cycle. Nat Neurosci 14:1039–1044

    Article  CAS  PubMed  Google Scholar 

  42. Kleinfeld D, Deschênes M, Wang F, Moore JD (2014) More than a rhythm of life: breathing as a binder of orofacial sensation. Nat Neuroci 15:647–651

    Article  Google Scholar 

  43. Moore JD, Kleinfeld D, Wang F (2014) How the brainstem controls orofacial behaviors comprised of rhythmic actions. Trends Neurosci 27:370–380

    Article  Google Scholar 

  44. Berg RW, Whitmer D, Kleinfeld D (2006) Exploratory whisking by rat is not phase-locked to the hippocampal theta rhythm. J Neurosci 26:6518–6522

    Article  CAS  PubMed  Google Scholar 

  45. Lisman JE, Jensen O (2013) The q-g neural code. Neuron 77:1002–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fukuda Y, Honda Y (1982) Differences in respiratory neural activities between vagal (­superior laryngeal), hypoglossal, and phrenic nerves in the anesthetized rat. Jpn J Physiol 32:387–398

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our work was funded by the Canadian Institutes of Health Research (grant MT-5877), the United States National Institutes of Health (grants NS058668, NS066664 and NS047101), the United States National Science Foundation (grant PHY-1451026), and the US-Israeli Binational Science Foundation (grant 2003222).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Kleinfeld .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kleinfeld, D., Deschênes, M., Moore, J. (2015). The Central Pattern Generator for Rhythmic Whisking. In: Krieger, P., Groh, A. (eds) Sensorimotor Integration in the Whisker System. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2975-7_7

Download citation

Publish with us

Policies and ethics