Skip to main content

Synaptic Microcircuits in the Barrel Cortex

  • Chapter
  • First Online:

Abstract

An elementary feature of sensory cortices is thought to be their organisation into functional signal-processing units called ‘cortical columns’. These elementary units process sensory information arriving from peripheral receptors; they are vertically oriented throughout all cortical layers and contain several thousands of excitatory and inhibitory synaptic connections. To understand how sensory signals are transformed into electrical activity in the neocortex it is necessary to elucidate the spatial-temporal dynamics of cortical signal processing and the underlying neurons and synaptic ‘microcircuits’.

In the somatosensory barrel cortex there appears to be a structural correlate for the ‘functional’ cortical column. Therefore, it has become an attractive model system to study the synaptic microcircuitry in athe neocortex. Although many synaptic connections in whisker-related cortical ‘columns’ have been characterised over the past years our knowledge is far from complete, in particular with respect to inhibitory connections. In this chapter we will summarise recent data on different excitatory and inhibitory synaptic connections in a whisker-related ‘column’ of the somatosensory cortex and try to outline their function in the neuronal network. This requires an appreciation of the diverse types of excitatory and inhibitory neurons and their function within cortical columns and beyond. When necessary, we will also discuss the synaptic input from and to subcortical structures, in particular the thalamus. However, we will not provide a detailed description of the functional mechanisms of these connections; this is beyond the scope of this chapter.

This is a preview of subscription content, log in via an institution.

Abbreviations

5-HT3aR:

Serotonin 3a receptor

AP:

Action potential

BC:

Basket cell

BPC:

Bipolar cell

BTC:

Bitufted cell

CB:

Calbindin

CC:

Corticocortical

ChR2:

Channelrhodopsin 2

CR:

Calretinin

CT:

Corticothalamic

c.v.:

Coefficient of variation

DBC:

Double bouquet cell

ENGC:

Elongated neurogliaform cell

EPSP:

Excitatory postsynaptic potential

FS:

Fast spiking

IPSP:

Inhibitory postsynaptic potential

KCC2:

Potassium chloride co-transporter

LTS:

Low threshold spiking

MB:

Multipolar bursting

M1:

The primary motor cortex

NGFC:

Neurogliaform cell

NPY:

Neuropeptide Y

POm:

Posterior medial

PPR:

Paired pulse ratio

PV:

Parvalbumin

SBC:

Single bouquet cell

SOM:

Somatostatin

S1:

The primary somatosensory

S2:

The secondary somatosensory

TC:

Thalamocortical

VIP:

Vasoactive intestinal peptide

vM1:

The primary vibrissal motor cortex

VPM:

Ventroposterior medial

References

  1. Fox KD (2008) Barrel Cortex. 1st edition edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  2. Bosman LW, Houweling AR, Owens CB, Tanke N, Shevchouk OT, Rahmati N, Teunissen WH, Ju C, Gong W, Koekkoek SK, De Zeeuw CI (2011) Anatomical pathways involved in generating and sensing rhythmic whisker movements. Front Integr Neurosci 5:53. doi:10.3389/fnint.2011.00053

    Article  PubMed  PubMed Central  Google Scholar 

  3. Feldmeyer D, Brecht M, Helmchen F, Petersen CC, Poulet JF, Staiger JF, Luhmann HJ, Schwarz C (2013) Barrel cortex function. Prog Neurobiol 103:3–27. doi:10.1016/j.pneurobio.2012.11.002

    Article  PubMed  Google Scholar 

  4. Helmstaedter M, de Kock CP, Feldmeyer D, Bruno RM, Sakmann B (2007) Reconstruction of an average cortical column in silico. Brain Res Brain Res Rev 55(2):193–203. doi:10.1016/j.brainresrev.2007.07.011

    Article  CAS  Google Scholar 

  5. Douglas RJ, Martin KA (1991) A functional microcircuit for cat visual cortex. J Physiol 440:735–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Thomson AM, Morris OT (2002) Selectivity in the inter-laminar connections made by neocortical neurones. J Neurocytol 31(3–5):239–246

    Article  PubMed  Google Scholar 

  7. Douglas RJ, Martin KA (2004) Neuronal circuits of the neocortex. Annu Rev Neurosci 27:419–451

    Article  CAS  PubMed  Google Scholar 

  8. Lübke J, Feldmeyer D (2007) Excitatory signal flow and connectivity in a cortical column: focus on barrel cortex. Brain Struct Funct 212(1):3–17. doi:10.1007/s00429-007-0144-2

    Article  PubMed  Google Scholar 

  9. Aronoff R, Matyas F, Mateo C, Ciron C, Schneider B, Petersen CC (2010) Long-range connectivity of mouse primary somatosensory barrel cortex. Eur J Neurosci 31(12):2221–2233. doi:10.1111/j.1460-9568.2010.07264.x

    Article  PubMed  Google Scholar 

  10. Feldmeyer D (2012) Excitatory neuronal connectivity in the barrel cortex. Front Neuroanat 6:24. doi:10.3389/fnana.2012.00024

    Article  PubMed  PubMed Central  Google Scholar 

  11. Vitali I, Jabaudon D (2014) Synaptic biology of barrel cortex circuit assembly. Semin Cell Dev Biol. doi:10.1016/j.semcdb.2014.07.009

    Google Scholar 

  12. Constantinople CM, Bruno RM (2013) Deep cortical layers are activated directly by thalamus. Science 340(6140):1591–1594. doi:10.1126/science.1236425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Meyer HS, Wimmer VC, Hemberger M, Bruno RM, de Kock CP, Frick A, Sakmann B, Helmstaedter M (2010a) Cell type-specific thalamic innervation in a column of rat vibrissal cortex. Cereb Cortex 20(10):2287–2303. doi:10.1093/cercor/bhq069

    Article  PubMed  PubMed Central  Google Scholar 

  14. Oberlaender M, de Kock CP, Bruno RM, Ramirez A, Meyer HS, Dercksen VJ, Helmstaedter M, Sakmann B (2012) Cell type-specific three-dimensional structure of thalamocortical circuits in a column of rat vibrissal cortex. Cereb Cortex 22(10):2375–2391. doi:10.1093/cercor/bhr317

    Article  PubMed  PubMed Central  Google Scholar 

  15. Groh A, Meyer HS, Schmidt EF, Heintz N, Sakmann B, Krieger P (2010) Cell-type specific properties of pyramidal neurons in neocortex underlying a layout that is modifiable depending on the cortical area. Cereb Cortex 20(4):826–836. doi:10.1093/cercor/bhp152

    Article  PubMed  Google Scholar 

  16. Bernardo KL, Woolsey TA (1987) Axonal trajectories between mouse somatosensory thalamus and cortex. J Comp Neurol 258(4):542–564

    Article  CAS  PubMed  Google Scholar 

  17. Jensen KF, Killackey HP (1987) Terminal arbors of axons projecting to the somatosensory cortex of the adult rat. I. The normal morphology of specific thalamocortical afferents. J Neurosci 7(11):3529–3543

    CAS  PubMed  Google Scholar 

  18. Chmielowska J, Carvell GE, Simons DJ (1989) Spatial organization of thalamocortical and corticothalamic projection systems in the rat SmI barrel cortex. J Comp Neurol 285(3):325–338

    Article  CAS  PubMed  Google Scholar 

  19. Pierret T, Lavallée P, Deschênes M (2000) Parallel streams for the relay of vibrissal information through thalamic barreloids. J Neurosci 20(19):7455–7462

    CAS  PubMed  Google Scholar 

  20. White EL, Rock MP (1979) Distribution of thalamic input to different dendrites of a spiny stellate cell in mouse sensorimotor cortex. Neurosci Lett 15(2–3):115–119. doi:0304–3940(79)96099-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  21. White EL, Rock MP (1981) A comparison of thalamocortical and other synaptic inputs to dendrites of two non-spiny neurons in a single barrel of mouse SmI cortex. J Comp Neurol 195(2):265–277

    Article  CAS  PubMed  Google Scholar 

  22. White EL, Benshalom G, Hersch SM (1984) Thalamocortical and other synapses involving nonspiny multipolar cells of mouse SmI cortex. J Comp Neurol 229(3):311–320

    Article  CAS  PubMed  Google Scholar 

  23. White EL (2007) Reflections on the specificity of synaptic connections. Brain Res Brain Res Rev 55(2):422–429. doi:S0165-0173(06)00139-1 [pii] 10.1016/j.brainresrev.2006.12.004

    Article  Google Scholar 

  24. Lefort S, Tomm C, Floyd Sarria JC, Petersen CC (2009) The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex. Neuron 61(2):301–316. doi:10.1016/j.neuron.2008.12.020

    Article  CAS  PubMed  Google Scholar 

  25. Meyer HS, Schwarz D, Wimmer VC, Schmitt AC, Kerr JN, Sakmann B, Helmstaedter M (2011) Inhibitory interneurons in a cortical column form hot zones of inhibition in layers 2 and 5A. Proc Natl Acad Sci U S A 108(40):16807–16812. doi:10.1073/pnas.1113648108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brecht M, Sakmann B (2002) Dynamic representation of whisker deflection by synaptic potentials in spiny stellate and pyramidal cells in the barrels and septa of layer 4 rat somatosensory cortex. J Physiol 543(Pt 1):49–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bruno RM, Sakmann B (2006) Cortex is driven by weak but synchronously active thalamocortical synapses. Science 312(5780):1622–1627

    Article  CAS  PubMed  Google Scholar 

  28. Benshalom G, White EL (1986) Quantification of thalamocortical synapses with spiny stellate neurons in layer IV of mouse somatosensory cortex. J Comp Neurol 253(3):303–314

    Article  CAS  PubMed  Google Scholar 

  29. Brumberg JC, Pinto DJ, Simons DJ (1999) Cortical columnar processing in the rat whisker-to-barrel system. J Neurophysiol 82(4):1808–1817

    CAS  PubMed  Google Scholar 

  30. Miller KD, Pinto DJ, Simons DJ (2001) Processing in layer 4 of the neocortical circuit: new insights from visual and somatosensory cortex. Curr Opin Neurobiol 11(4):488–497

    Article  CAS  PubMed  Google Scholar 

  31. Jia H, Varga Z, Sakmann B, Konnerth A (2014) Linear integration of spine Ca2+ signals in layer 4 cortical neurons in vivo. Proc Natl Acad Sci USA 111(25):9277–9282. doi:10.1073/pnas.1408525111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schoonover CE, Tapia JC, Schilling VC, Wimmer V, Blazeski R, Zhang W, Mason CA, Bruno RM (2014) Comparative strength and dendritic organization of thalamocortical and corticocortical synapses onto excitatory layer 4 neurons. J Neurosci 34(20):6746–6758. doi:10.1523/JNEUROSCI.0305–14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shepherd GM, Stepanyants A, Bureau I, Chklovskii D, Svoboda K (2005) Geometric and functional organization of cortical circuits. Nat Neurosci 8(6):782–790

    Article  CAS  PubMed  Google Scholar 

  34. Bureau I, von Saint PF, Svoboda K (2006) Interdigitated paralemniscal and lemniscal pathways in the mouse barrel cortex. PLoS Biol 4(12):e382

    Article  PubMed  PubMed Central  Google Scholar 

  35. Alloway KD (2008) Information processing streams in rodent barrel cortex: the differential functions of barrel and septal circuits. Cereb Cortex 18(5):979–989. doi:10.1093/cercor/bhm138

    Article  PubMed  Google Scholar 

  36. Staiger JF, Bojak I, Miceli S, Schubert D (2014) A gradual depth-dependent change in connectivity features of supragranular pyramidal cells in rat barrel cortex. Brain Struct Funct. doi:10.1007/s00429-014-0726-8

    Google Scholar 

  37. Lübke J, Egger V, Sakmann B, Feldmeyer D (2000) Columnar organization of dendrites and axons of single and synaptically coupled excitatory spiny neurons in layer 4 of the rat barrel cortex. J Neurosci 20(14):5300–5311

    PubMed  Google Scholar 

  38. Egger V, Nevian T, Bruno RM (2008) Subcolumnar dendritic and axonal organization of spiny stellate and star pyramid neurons within a barrel in rat somatosensory cortex. Cereb Cortex 18(4):876–889. doi:10.1093/cercor/bhm126

    Article  PubMed  Google Scholar 

  39. Feldmeyer D, Egger V, Lübke J, Sakmann B (1999) Reliable synaptic connections between pairs of excitatory layer 4 neurones within a single ‘barrel’ of developing rat somatosensory cortex. J Physiol 521(Pt 1):169–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cowan AI, Stricker C (2004) Functional connectivity in layer IV local excitatory circuits of rat somatosensory cortex. J Neurophysiol 92(4):2137–2150

    Article  PubMed  Google Scholar 

  41. Staiger JF, Flagmeyer I, Schubert D, Zilles K, Kötter R, Luhmann HJ (2004) Functional diversity of layer IV spiny neurons in rat somatosensory cortex: quantitative morphology of electrophysiologically characterized and biocytin labeled cells. Cereb Cortex 14(6):690–701

    Article  PubMed  Google Scholar 

  42. Sarid L, Bruno R, Sakmann B, Segev I, Feldmeyer D (2007) Modeling a layer 4-to-layer 2/3 module of a single column in rat neocortex: interweaving in vitro and in vivo experimental observations. Proc Natl Acad Sci 104(41):16353–16358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Feldmeyer D, Radnikow G (2009) Developmental alterations in the functional properties of excitatory neocortical synapses. J Physiol 587(Pt 9):1889–1896. doi:jphysiol.2009.169458 [pii]10.1113/jphysiol.2009.169458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lübke J, Roth A, Feldmeyer D, Sakmann B (2003) Morphometric analysis of the columnar innervation domain of neurons connecting layer 4 and layer 2/3 of juvenile rat barrel cortex. Cereb Cortex 13(10):1051–1063

    Article  PubMed  Google Scholar 

  45. Feldmeyer D, Lübke J, Silver RA, Sakmann B (2002) Synaptic connections between layer 4 spiny neurone-layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column. J Physiol 538(3):803–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shepherd GM, Svoboda K (2005) Laminar and columnar organization of ascending excitatory projections to layer 2/3 pyramidal neurons in rat barrel cortex. J Neurosci 25(24):5670–5679

    Article  CAS  PubMed  Google Scholar 

  47. Silver RA, Lübke J, Sakmann B, Feldmeyer D (2003) High-probability uniquantal transmission at excitatory synapses in barrel cortex. Science 302(5652):1981–1984. doi:10.1126/Science.1087160

    Article  CAS  PubMed  Google Scholar 

  48. Feldmeyer D, Roth A, Sakmann B (2005) Monosynaptic connections between pairs of spiny stellate cells in layer 4 and pyramidal cells in layer 5A indicate that lemniscal and paralemniscal afferent pathways converge in the infragranular somatosensory cortex. J Neurosci 25(13):3423–3431

    Article  CAS  PubMed  Google Scholar 

  49. Qi G, Radnikow G, Feldmeyer D (2014) Electrophysiological and morphological characterization of neuronal microcircuits in acute brain slices using paired patch-clamp recordings. J Vis Exp :e52358. doi:10.3791/52358

    Google Scholar 

  50. Schubert D, Staiger JF, Cho N, Kötter R, Zilles K, Luhmann HJ (2001) Layer-specific intracolumnar and transcolumnar functional connectivity of layer V pyramidal cells in rat barrel cortex. J Neurosci 21(10):3580–3592

    CAS  PubMed  Google Scholar 

  51. Schubert D, Kötter R, Luhmann HJ, Staiger JF (2006) Morphology, electrophysiology and functional input connectivity of pyramidal neurons characterizes a genuine layer Va in the primary somatosensory cortex. Cereb Cortex 16(2):223–236

    Article  CAS  PubMed  Google Scholar 

  52. Petreanu L, Mao T, Sternson SM, Svoboda K (2009) The subcellular organization of neocortical excitatory connections. Nature 457(7233):1142–1145. doi:10.1038/nature07709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hooks BM, Hires SA, Zhang YX, Huber D, Petreanu L, Svoboda K, Shepherd GM (2011) Laminar analysis of excitatory local circuits in vibrissal motor and sensory cortical areas. PLoS Biol 9(1):e1000572. doi:10.1371/journal.pbio.1000572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Qi G, Feldmeyer D (2015) Dendritic target region-specific formation of synapses between excitatory layer 4 neurons and layer 6 pyramidal cells. Cereb Cortex. doi:10.1093/cercor/bhu334

    Google Scholar 

  55. Tanaka YR, Tanaka YH, Konno M, Fujiyama F, Sonomura T, Okamoto-Furuta K, Kameda H, Hioki H, Furuta T, Nakamura KC, Kaneko T (2011) Local connections of excitatory neurons to corticothalamic neurons in the rat barrel cortex. J Neurosci 31(50):18223–18236. doi:10.1523/JNEUROSCI.3139-11.2011

    Article  CAS  PubMed  Google Scholar 

  56. Zhang ZW, Deschênes M (1997) Intracortical axonal projections of lamina VI cells of the primary somatosensory cortex in the rat: a single-cell labeling study. J Neurosci 17(16):6365–6379

    CAS  PubMed  Google Scholar 

  57. Pichon F, Nikonenko I, Kraftsik R, Welker E (2012) Intracortical connectivity of layer VI pyramidal neurons in the somatosensory cortex of normal and barrelless mice. Eur J Neurosci 35(6):855–869. doi:10.1111/j.1460-9568.2012.08011.x

    Article  PubMed  Google Scholar 

  58. Stratford KJ, Tarczy-Hornoch K, Martin KA, Bannister NJ, Jack JJ (1996) Excitatory synaptic inputs to spiny stellate cells in cat visual cortex. Nature 382(6588):258–261. doi:10.1038/382258a0

    Article  CAS  PubMed  Google Scholar 

  59. Tarczy-Hornoch K, Martin KA, Stratford KJ, Jack JJ (1999) Intracortical excitation of spiny neurons in layer 4 of cat striate cortex in vitro. Cereb Cortex 9(8):833–843

    Article  CAS  PubMed  Google Scholar 

  60. Kim J, Matney CJ, Blankenship A, Hestrin S, Brown SP (2014) Layer 6 corticothalamic neurons activate a cortical output layer, layer 5a. J Neurosci 34(29):9656–9664. doi:10.1523/JNEUROSCI.1325-14.2014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Laaris N, Keller A (2002) Functional independence of layer IV barrels. J Neurophysiol 87(2):1028–1034

    PubMed  PubMed Central  Google Scholar 

  62. Arnold PB, Li CX, Waters RS (2001) Thalamocortical arbors extend beyond single cortical barrels: an in vivo intracellular tracing study in rat. Exp Brain Res 136(2):152–168

    Article  CAS  PubMed  Google Scholar 

  63. Ohno S, Kuramoto E, Furuta T, Hioki H, Tanaka YR, Fujiyama F, Sonomura T, Uemura M, Sugiyama K, Kaneko T (2012) A morphological analysis of thalamocortical axon fibers of rat posterior thalamic nuclei: a single neuron tracing study with viral vectors. Cereb Cortex 22(12):2840–2857. doi:10.1093/cercor/bhr356

    Article  PubMed  Google Scholar 

  64. Feldmeyer D, Lübke J, Sakmann B (2006) Efficacy and connectivity of intracolumnar pairs of layer 2/3 pyramidal cells in the barrel cortex of juvenile rats. J Physiol 575(Pt 2):583–602. doi:10.1113/jphysiol.2006.105106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. van Aerde KI, Qi G, Feldmeyer D (2013) Cell type-specific effects of adenosine on cortical neurons. Cereb Cortex. doi:10.1093/cercor/bht274

    Google Scholar 

  66. Larsen DD, Callaway EM (2006) Development of layer-specific axonal arborizations in mouse primary somatosensory cortex. J Comp Neurol 494(3):398–414

    Article  PubMed  PubMed Central  Google Scholar 

  67. Bruno RM, Hahn TT, Wallace DJ, de Kock CP, Sakmann B (2009) Sensory experience alters specific branches of individual corticocortical axons during development. J Neurosci 29(10):3172–3181. doi:10.1523/JNEUROSCI.5911-08.2009

    Article  CAS  PubMed  Google Scholar 

  68. Furuta T, Kaneko T, Deschênes M (2009) Septal neurons in barrel cortex derive their receptive field input from the lemniscal pathway. J Neurosci 29(13):4089–4095. doi:10.1523/JNEUROSCI.5393-08.2009

    Article  CAS  PubMed  Google Scholar 

  69. Koralek KA, Jensen KF, Killackey HP (1988) Evidence for two complementary patterns of thalamic input to the rat somatosensory cortex. Brain Res 463(2):346–351

    Article  CAS  PubMed  Google Scholar 

  70. Wimmer VC, Bruno RM, de Kock CP, Kuner T, Sakmann B (2010) Dimensions of a projection column and architecture of VPM and POm axons in rat vibrissal cortex. Cereb Cortex 20(10):2265–2276. doi:bhq068 [pii] 10.1093/cercor/bhq068

    Article  PubMed  PubMed Central  Google Scholar 

  71. Hoogland PV, Wouterlood FG, Welker E, van der Loos H (1991) Ultrastructure of giant and small thalamic terminals of cortical origin: a study of the projections from the barrel cortex in mice using Phaseolus vulgaris leuco-agglutinin (PHA-L). Exp Brain Res 87(1):159–172

    Article  CAS  PubMed  Google Scholar 

  72. Hoogland PV, Welker E, van der Loos H (1987) Organization of the projections from barrel cortex to thalamus in mice studied with Phaseolus vulgaris-leucoagglutinin and HRP. Exp Brain Res 68(1):73–87

    Article  CAS  PubMed  Google Scholar 

  73. Groh A, de Kock CP, Wimmer VC, Sakmann B, Kuner T (2008) Driver or coincidence detector: modal switch of a corticothalamic giant synapse controlled by spontaneous activity and short-term depression. J Neurosci 28(39):9652–9663. doi:10.1523/JNEUROSCI.1554-08.2008

    Article  CAS  PubMed  Google Scholar 

  74. Egger V, Feldmeyer D, Sakmann B (1999) Coincidence detection and changes of synaptic efficacy in spiny stellate neurons in rat barrel cortex. Nat Neurosci 2(12):1098–1105. doi:10.1038/16026

    Article  CAS  PubMed  Google Scholar 

  75. Holmgren C, Harkany T, Svennenfors B, Zilberter Y (2003) Pyramidal cell communication within local networks in layer 2/3 of rat neocortex. J Physiol 551(Pt 1):139–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Reyes A, Sakmann B (1999) Developmental switch in the short-term modification of unitary EPSPs evoked in layer 2/3 and layer 5 pyramidal neurons of rat neocortex. J Neurosci 19(10):3827–3835

    CAS  PubMed  Google Scholar 

  77. Hardingham NR, Read JC, Trevelyan AJ, Nelson JC, Jack JJ, Bannister NJ (2010) Quantal analysis reveals a functional correlation between presynaptic and postsynaptic efficacy in excitatory connections from rat neocortex. J Neurosci 30(4):1441–1451. doi:10.1523/JNEUROSCI.3244-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Avermann M, Tomm C, Mateo C, Gerstner W, Petersen CC (2012) Microcircuits of excitatory and inhibitory neurons in layer 2/3 of mouse barrel cortex. J Neurophysiol 107(11):3116–3134. doi:10.1152/jn.00917.2011

    Article  CAS  PubMed  Google Scholar 

  79. Adesnik H, Scanziani M (2010) Lateral competition for cortical space by layer-specific horizontal circuits. Nature 464(7292):1155–1160. doi:10.1038/nature08935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cheetham CE, Hammond MS, Edwards CE, Finnerty GT (2007) Sensory experience alters cortical connectivity and synaptic function site specifically. J Neurosci 27(13):3456–3465. doi:10.1523/JNEUROSCI.5143-06.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sarid L, Feldmeyer D, Gidon A, Sakmann B, Segev I (2013) Contribution of intracolumnar layer 2/3-to-layer 2/3 excitatory connections in shaping the response to whisker deflection in rat barrel cortex. Cereb Cortex. doi:10.1093/cercor/bht268

    Google Scholar 

  82. Kampa BM, Letzkus JJ, Stuart GJ (2006) Cortical feed-forward networks for binding different streams of sensory information. Nat Neurosci 9(12):1472–1473. doi:10.1038/nn1798

    Article  CAS  PubMed  Google Scholar 

  83. White EL, Czeiger D (1991) Synapses made by axons of callosal projection neurons in mouse somatosensory cortex: emphasis on intrinsic connections. J Comp Neurol 303(2):233–244. doi:10.1002/cne.903030206

    Article  CAS  PubMed  Google Scholar 

  84. Petreanu L, Huber D, Sobczyk A, Svoboda K (2007) Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nat Neurosci 10(5):663–668

    Article  CAS  PubMed  Google Scholar 

  85. Manns ID, Sakmann B, Brecht M (2004) Sub- and suprathreshold receptive field properties of pyramidal neurones in layers 5A and 5B of rat somatosensory barrel cortex. J Physiol 556(Pt 2):601–622. doi:10.1113/jphysiol.2003.053132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. de Kock CP, Sakmann B (2008) High frequency action potential bursts (> or = 100 Hz) in L2/3 and L5B thick tufted neurons in anaesthetized and awake rat primary somatosensory cortex. J Physiol 586(14):3353–3364. doi:10.1113/jphysiol.2008.155580

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Larsen DD, Wickersham IR, Callaway EM (2007) Retrograde tracing with recombinant rabies virus reveals correlations between projection targets and dendritic architecture in layer 5 of mouse barrel cortex. Front Neural Circuits 1:5. doi:10.3389/neuro.04.005.2007

    PubMed  PubMed Central  Google Scholar 

  88. Bé JV L, Silberberg G, Wang Y, Markram H (2007) Morphological, electrophysiological, and synaptic properties of corticocallosal pyramidal cells in the neonatal rat neocortex. Cereb Cortex 17(9):2204–2213. doi:10.1093/cercor/bhl127

    Article  PubMed  Google Scholar 

  89. Games KD, Winer JA (1988) Layer V in rat auditory cortex: projections to the inferior colliculus and contralateral cortex. Hear Res 34(1):1–25

    Article  CAS  PubMed  Google Scholar 

  90. Hübener M, Bolz J (1988) Morphology of identified projection neurons in layer 5 of rat visual cortex. Neurosci Lett 94(1–2):76–81

    Article  PubMed  Google Scholar 

  91. Hübener M, Schwarz C, Bolz J (1990) Morphological types of projection neurons in layer 5 of cat visual cortex. J Comp Neurol 301(4):655–674. doi:10.1002/cne.903010412

    Article  PubMed  Google Scholar 

  92. Koester SE, O’Leary DD (1992) Functional classes of cortical projection neurons develop dendritic distinctions by class-specific sculpting of an early common pattern. J Neurosci 12(4):1382–1393

    CAS  PubMed  Google Scholar 

  93. Oberlaender M, Boudewijns ZS, Kleele T, Mansvelder HD, Sakmann B, de Kock CP (2011) Three-dimensional axon morphologies of individual layer 5 neurons indicate cell type-specific intracortical pathways for whisker motion and touch. Proc Natl Acad Sci USA 108(10):4188–4193. doi:10.1073/pnas.1100647108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mao T, Kusefoglu D, Hooks BM, Huber D, Petreanu L, Svoboda K (2011) Long-range neuronal circuits underlying the interaction between sensory and motor cortex. Neuron 72(1):111–123. doi:10.1016/j.neuron.2011.07.029

    Article  CAS  PubMed  Google Scholar 

  95. Veinante P, Lavallée P, Deschênes M (2000) Corticothalamic projections from layer 5 of the vibrissal barrel cortex in the rat. J Comp Neurol 424(2):197–204

    Article  CAS  PubMed  Google Scholar 

  96. Kozloski J, Hamzei-Sichani F, Yuste R (2001) Stereotyped position of local synaptic targets in neocortex. Science 293(5531):868–872

    Article  CAS  PubMed  Google Scholar 

  97. Brown SP, Hestrin S (2009) Intracortical circuits of pyramidal neurons reflect their long-range axonal targets. Nature 457(7233):1133–1136. doi:10.1038/nature07658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hattox AM, Nelson SB (2007) Layer V neurons in mouse cortex projecting to different targets have distinct physiological properties. J Neurophysiol 98(6):3330–3340. doi:10.1152/jn.00397.2007

    Article  PubMed  Google Scholar 

  99. Frick A, Feldmeyer D, Helmstaedter M, Sakmann B (2008) Monosynaptic connections between pairs of L5A pyramidal neurons in columns of juvenile rat somatosensory cortex. Cereb Cortex 18(2):397–406

    Article  PubMed  Google Scholar 

  100. Markram H, Lübke J, Frotscher M, Roth A, Sakmann B (1997) Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. J Physiol 500(Pt 2):409–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Krieger P, Kuner T, Sakmann B (2007) Synaptic connections between layer 5B pyramidal neurons in mouse somatosensory Cortex are independent of apical dendrite bundling. J Neurosci 27(43):11473–11482. doi:10.1523/jneurosci.1182-07.2007

    Article  CAS  PubMed  Google Scholar 

  102. Perin R, Berger TK, Markram H (2011) A synaptic organizing principle for cortical neuronal groups. Proc Natl Acad Sci U S A 108(13):5419–5424. doi:10.1073/pnas.1016051108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Loebel A, Silberberg G, Helbig D, Markram H, Tsodyks M, Richardson MJ (2009) Multiquantal release underlies the distribution of synaptic efficacies in the neocortex. Front Comput Neurosci 3:27. doi:10.3389/neuro.10.027.2009

    Article  PubMed  PubMed Central  Google Scholar 

  104. Song S, Sjöström PJ, Reigl M, Nelson S, Chklovskii DB (2005) Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol 3(3):e68. doi:04-PLBI-RA-0489R2 [pii]10.1371/journal.pbio.0030068

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Morishima M, Kawaguchi Y (2006) Recurrent connection patterns of corticostriatal pyramidal cells in frontal cortex. J Neurosci 26(16):4394–4405. doi:26/16/4394 [pii] 10.1523/JNEUROSCI.0252-06.2006

    Article  CAS  PubMed  Google Scholar 

  106. Anderson CT, Sheets PL, Kiritani T, Shepherd GM (2010) Sublayer-specific microcircuits of corticospinal and corticostriatal neurons in motor cortex. Nat Neurosci 13(6):739–744. doi:10.1038/nn.2538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Morishima M, Morita K, Kubota Y, Kawaguchi Y (2011) Highly differentiated projection-specific cortical subnetworks. J Neurosci 31(28):10380–10391. doi:10.1523/JNEUROSCI.0772-11.2011

    Article  CAS  PubMed  Google Scholar 

  108. Otsuka T, Kawaguchi Y (2011) Cell diversity and connection specificity between callosal projection neurons in the frontal cortex. J Neurosci 31(10):3862–3870. doi:10.1523/JNEUROSCI.5795-10.2011

    Article  CAS  PubMed  Google Scholar 

  109. Peters A, Feldman ML (1976) The projection of the lateral geniculate nucleus to area 17 of the rat cerebral cortex. I. General description. J Neurocytol 5(1):63–84

    Article  CAS  PubMed  Google Scholar 

  110. Braitenberg V, Schüz A (1991) Anatomy of the Cortex. Statistics and Geometry (Studies of Brain Function), vol 18. Anatomy of the Cortex. Springer, Heidelberg

    Google Scholar 

  111. Peters A, Payne BR (1993) Numerical relationships between geniculocortical afferents and pyramidal cell modules in cat primary visual cortex. Cereb Cortex 3(1):69–78

    Article  CAS  PubMed  Google Scholar 

  112. Binzegger T, Douglas RJ, Martin KA (2004) A quantitative map of the circuit of cat primary visual cortex. J Neurosci 24(39):8441–8453

    Article  CAS  PubMed  Google Scholar 

  113. Lübke J, Markram H, Frotscher M, Sakmann B (1996) Frequency and dendritic distribution of autapses established by layer 5 pyramidal neurons in the developing rat neocortex: comparison with synaptic innervation of adjacent neurons of the same class. J Neurosci 16(10):3209–3218

    PubMed  Google Scholar 

  114. Curtis JC, Kleinfeld D (2009) Phase-to-rate transformations encode touch in cortical neurons of a scanning sensorimotor system. Nat Neurosci 12(4):492–501. doi:10.1038/nn.2283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. de Kock CP, Sakmann B (2009) Spiking in primary somatosensory cortex during natural whisking in awake head-restrained rats is cell-type specific. Proc Natl Acad Sci USA 106(38):16446–16450. doi:10.1073/pnas.0904143106

    Article  PubMed  PubMed Central  Google Scholar 

  116. de Kock CP, Bruno RM, Spors H, Sakmann B (2007) Layer- and cell-type-specific suprathreshold stimulus representation in rat primary somatosensory cortex. J Physiol 581(Pt 1):139–154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Yu C, Derdikman D, Haidarliu S, Ahissar E (2006) Parallel thalamic pathways for whisking and touch signals in the rat. PLoS Biol 4(5):e124. doi:05-PLBI-RA-0916R3 [pii] 10.1371/journal.pbio.0040124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Meyer HS, Wimmer VC, Oberlaender M, de Kock CP, Sakmann B, Helmstaedter M (2010b) Number and laminar distribution of neurons in a thalamocortical projection column of rat vibrissal cortex. Cereb Cortex 20(10):2277–2286. doi:10.1093/cercor/bhq067

    Article  PubMed  PubMed Central  Google Scholar 

  119. Bourassa J, Pinault D, Deschênes M (1995) Corticothalamic projections from the cortical barrel field to the somatosensory thalamus in rats: a single-fibre study using biocytin as an anterograde tracer. Eur J Neurosci 7(1):19–30

    Article  CAS  PubMed  Google Scholar 

  120. Liao CC, Chen RF, Lai WS, Lin RC, Yen CT (2010) Distribution of large terminal inputs from the primary and secondary somatosensory cortices to the dorsal thalamus in the rodent. J Comp Neurol 518(13):2592–2611. doi:10.1002/cne.22354

    PubMed  Google Scholar 

  121. Groh A, Bokor H, Mease RA, Plattner V, Hangya B, Stroh A, Dêschenes M, Acsády L (2013) Convergence of cortical and sensory driver inputs on single thalamocortical cells. Cereb Cortex. doi:10.1093/cercor/bht173

    Google Scholar 

  122. Killackey HP, Sherman SM (2003) Corticothalamic projections from the rat primary somatosensory cortex. J Neurosci 23(19):7381–7384

    CAS  PubMed  Google Scholar 

  123. Theyel BB, Llano DA, Sherman SM (2010) The corticothalamocortical circuit drives higher-order cortex in the mouse. Nat Neurosci 13(1):84–88. doi:10.1038/nn.2449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sherman SM, Guillery RW (2011) Distinct functions for direct and transthalamic corticocortical connections. J Neurophysiol 106(3):1068–1077. doi:10.1152/jn.00429.2011

    Article  PubMed  Google Scholar 

  125. Guillery RW, Sherman SM (2011) Branched thalamic afferents: what are the messages that they relay to the cortex? Brain Res Rev 66(1–2):205–219. doi:10.1016/j.brainresrev.2010.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Gentet LJ, Avermann M, Matyas F, Staiger JF, Petersen CC (2010) Membrane potential dynamics of GABAergic neurons in the barrel cortex of behaving mice. Neuron 65:422–435. doi:10.1016/j.neuron.2010.01.006

    Article  CAS  PubMed  Google Scholar 

  127. Chen CC, Abrams S, Pinhas A, Brumberg JC (2009) Morphological heterogeneity of layer VI neurons in mouse barrel cortex. J Comp Neurol 512(6):726–746. doi:10.1002/cne.21926

    Article  PubMed  PubMed Central  Google Scholar 

  128. Kumar P, Ohana O (2008) Inter- and intralaminar subcircuits of excitatory and inhibitory neurons in layer 6a of the rat barrel cortex. J Neurophysiol 100(4):1909–1922. doi:10.1152/jn.90684.2008

    Article  PubMed  Google Scholar 

  129. Mease RA, Krieger P, Groh A (2014) Cortical control of adaptation and sensory relay mode in the thalamus. Proc Natl Acad Sci USA. doi:10.1073/pnas.1318665111

    Google Scholar 

  130. Thomson AM (2010) Neocortical layer 6, a review. Front Neuroanat 4:13. doi:10.3389/fnana.2010.00013

    PubMed  PubMed Central  Google Scholar 

  131. Beierlein M, Connors BW (2002) Short-term dynamics of thalamocortical and intracortical synapses onto layer 6 neurons in neocortex. J Neurophysiol 88(4):1924–1932

    PubMed  Google Scholar 

  132. Cruikshank SJ, Urabe H, Nurmikko AV, Connors BW (2010) Pathway-specific feedforward circuits between thalamus and neocortex revealed by selective optical stimulation of axons. Neuron 65(2):230–245. doi:10.1016/j.neuron.2009.12.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Peters A, Jones EG (1984) Cellular components of the cerebral cortex, vol 1. Cerebral Cortex Plenum Press, New York

    Google Scholar 

  134. Deschênes M, Veinante P, Zhang ZW (1998) The organization of corticothalamic projections: reciprocity versus parity. Brain Res Brain Res Rev 28(3):286–308

    Article  PubMed  Google Scholar 

  135. Sherman SM (2005) Thalamic relays and cortical functioning. Prog Brain Research 149:107–126. doi:S0079-6123(05)49009-3 [pii] 10.1016/S0079-6123(05)49009-3

    Article  PubMed  Google Scholar 

  136. Jones EG (2009) Synchrony in the interconnected circuitry of the thalamus and cerebral cortex. Ann NY Acad Sci 1157(1):10–23. doi:10.1111/j.1749-6632.2009.04534.x

    Article  PubMed  Google Scholar 

  137. Mercer A, West DC, Morris OT, Kirchhecker S, Kerkhoff JE, Thomson AM (2005) Excitatory connections made by presynaptic cortico-cortical pyramidal cells in layer 6 of the neocortex. Cereb Cortex 15(10):1485–1496

    Article  PubMed  Google Scholar 

  138. Marín-Padilla M (1978) Dual origin of the mammalian neocortex and evolution of the cortical plate. Anat Embryol (Berl) 152(2):109–126

    Article  Google Scholar 

  139. Marx M, Feldmeyer D (2013) Morphology and physiology of excitatory neurons in layer 6b of the somatosensory rat barrel cortex. Cereb Cortex 23(12):2803–2817. doi:10.1093/cercor/bhs254

    Article  PubMed  PubMed Central  Google Scholar 

  140. Tömböl T, Hajdu F, Somogyi G (1975) Identification of the Golgi picture of the layer VI cortic-geniculate projection neurons. Exp Brain Res 24(1):107–110

    Article  PubMed  Google Scholar 

  141. Tömböl T (1984) Layer VI cells. In: Peters A, Jones EG (eds) Cerebral Cortex, vol 1. Plenum Press, New York, pp 479–519

    Google Scholar 

  142. Clancy B, Cauller LJ (1999) Widespread projections from subgriseal neurons (layer VII) to layer I in adult rat cortex. J Comp Neurol 407(2):275–286. doi:10.1002/(SICI)1096-9861(19990503)407:2<275::AID-CNE8>3.0.CO;2-0 [pii]

    Article  CAS  PubMed  Google Scholar 

  143. Gupta A, Wang Y, Markram H (2000) Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287(5451):273–278

    Article  CAS  PubMed  Google Scholar 

  144. Ascoli GA, Alonso-Nanclares L, Anderson SA, Barrionuevo G, Benavides-Piccione R, Burkhalter A, Buzsáki G, Cauli B, DeFelipe J, Fairén A, Feldmeyer D, Fishell G, Fregnac Y, Freund TF, Gardner D, Gardner EP, Goldberg JH, Helmstaedter M, Hestrin S, Karube F, Kisvárday ZF, Lambolez B, Lewis DA, Marín O, Markram H, Muñoz A, Packer A, Petersen CC, Rockland KS, Rossier J, Rudy B, Somogyi P, Staiger JF, Tamás G, Thomson AM, Toledo-Rodríguez M, Wang Y, West DC, Yuste R (2008) Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci 9(7):557–568. doi:10.1038/nrn2402

    Article  CAS  PubMed  Google Scholar 

  145. DeFelipe J, López-Cruz PL, Benavides-Piccione R, Bielza C, Larrañaga P, Anderson S, Burkhalter A, Cauli B, Fairén A, Feldmeyer D, Fishell G, Fitzpatrick D, Freund TF, González-Burgos G, Hestrin S, Hill S, Hof PR, Huang J, Jones EG, Kawaguchi Y, Kisvárday Z, Kubota Y, Lewis DA, Marín O, Markram H, McBain CJ, Meyer HS, Monyer H, Nelson SB, Rockland K, Rossier J, Rubenstein JL, Rudy B, Scanziani M, Shepherd GM, Sherwood CC, Staiger JF, Tamás G, Thomson A, Wang Y, Yuste R, Ascoli GA (2013) New insights into the classification and nomenclature of cortical GABAergic interneurons. Nat Rev Neurosci 14(3):202–216. doi:10.1038/nrn3444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Rudy B, Fishell G, Lee S, Hjerling-Leffler J (2011) Three groups of interneurons account for nearly 100 % of neocortical GABAergic neurons. Dev Neurobiol 71(1):45–61. doi:10.1002/dneu.20853

    Article  PubMed  PubMed Central  Google Scholar 

  147. Kepecs A, Fishell G (2014) Interneuron cell types are fit to function. Nature 505(7483):318–326. doi:10.1038/nature12983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Taniguchi H (2014) Genetic dissection of GABAergic neural circuits in mouse neocortex. Front Cell Neurosci 8:8. doi:10.3389/fncel.2014.00008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5(10):793–807

    Article  CAS  PubMed  Google Scholar 

  150. Kawaguchi Y, Kondo S (2002) Parvalbumin, somatostatin and cholecystokinin as chemical markers for specific GABAergic interneuron types in the rat frontal cortex. J Neurocytol 31(3–5):277–287

    Article  PubMed  Google Scholar 

  151. Gelman DM, Marín O (2010) Generation of interneuron diversity in the mouse cerebral cortex. Eur J Neurosci 31(12):2136–2141. doi:10.1111/j.1460-9568.2010.07267.x

    Article  PubMed  Google Scholar 

  152. Ma Y, Hu H, Berrebi AS, Mathers PH, Agmon A (2006) Distinct subtypes of somatostatin-containing neocortical interneurons revealed in transgenic mice. J Neurosci 26(19):5069–5082. doi:10.1523/JNEUROSCI.0661-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Lee S, Hjerling-Leffler J, Zagha E, Fishell G, Rudy B (2010) The largest group of superficial neocortical GABAergic interneurons expresses ionotropic serotonin receptors. J Neurosci 30(50):16796–16808. doi:10.1523/JNEUROSCI.1869-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Koelbl C, Helmstaedter M, Lübke J, Feldmeyer D (2013) A barrel-related interneuron in layer 4 of rat somatosensory cortex with a high intrabarrel connectivity. Cereb Cortex. doi:10.1093/cercor/bht263

    Google Scholar 

  155. Xu H, Jeong H-Y, Tremblay R, Rudy B (2013) Neocortical somatostatin-expressing GABAergic interneurons disinhibit thethalamorecipient layer 4. Neuron 77(1):155–167. doi:http://dx.doi.org/10.1016/j.neuron.2012.11.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Li P, Huntsman MM (2014) Two functional inhibitory circuits are comprised of a heterogeneous population of fast-spiking cortical interneurons. Neuroscience 265C:60–71. doi:10.1016/j.neuroscience.2014.01.033

    Article  CAS  Google Scholar 

  157. Porter JT, Johnson CK, Agmon A (2001) Diverse types of interneurons generate thalamus-evoked feedforward inhibition in the mouse barrel cortex. J Neurosci 21(8):2699–2710

    CAS  PubMed  Google Scholar 

  158. Cruikshank SJ, Lewis TJ, Connors BW (2007) Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex. Nat Neurosci 10(4):462–468. doi:10.1038/nn1861

    CAS  PubMed  Google Scholar 

  159. Cruikshank SJ, Ahmed OJ, Stevens TR, Patrick SL, Gonzalez AN, Elmaleh M, Connors BW (2012) Thalamic control of layer 1 circuits in prefrontal cortex. J Neurosci 32(49):17813–17823. doi:10.1523/JNEUROSCI.3231–12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Staiger JF, Zuschratter W, Luhmann HJ, Schubert D (2009) Local circuits targeting parvalbumin-containing interneurons in layer IV of rat barrel cortex. Brain Struct Funct 214(1):1–13. doi:10.1007/s00429-009-0225-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Hu H, Ma Y, Agmon A (2011) Submillisecond firing synchrony between different subtypes of cortical interneurons connected chemically but not electrically. J Neurosci 31(9):3351–3361. doi:10.1523/JNEUROSCI.4881-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Xu X, Roby KD, Callaway EM (2010) Immunochemical characterization of inhibitory mouse cortical neurons: three chemically distinct classes of inhibitory cells. J Comp Neurol 518(3):389–404. doi:10.1002/cne.22229

    Article  PubMed  PubMed Central  Google Scholar 

  163. Gibson JR, Beierlein M, Connors BW (1999) Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402(6757):75–79

    Article  CAS  PubMed  Google Scholar 

  164. Fanselow EE, Richardson KA, Connors BW (2008) Selective, state-dependent activation of somatostatin-expressing inhibitory interneurons in mouse neocortex. J Neurophysiol 100(5):2640–2652. doi:10.1152/jn.90691.2008

    Article  PubMed  PubMed Central  Google Scholar 

  165. Beierlein M, Gibson JR, Connors BW (2003) Two dynamically distinct inhibitory networks in layer 4 of the neocortex. J Neurophysiol 90(5):2987–3000

    Article  PubMed  Google Scholar 

  166. Oliva AA Jr, Jiang M, Lam T, Smith KL, Swann JW (2000) Novel hippocampal interneuronal subtypes identified using transgenic mice that express green fluorescent protein in GABAergic interneurons. J Neurosci 20(9):3354–3368

    CAS  PubMed  Google Scholar 

  167. Ma Y, Hu H, Agmon A (2012) Short-term plasticity of unitary inhibitory-to-inhibitory synapses depends on the presynaptic interneuron subtype. J Neurosci 32(3):983–988. doi:10.1523/JNEUROSCI.5007-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Tan Z, Hu H, Huang ZJ, Agmon A (2008) Robust but delayed thalamocortical activation of dendritic-targeting inhibitory interneurons. Proc Natl Acad Sci U S A 105(6):2187–2192. doi:0710628105 [pii]10.1073/pnas.0710628105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Chittajallu R, Pelkey KA, McBain CJ (2013) Neurogliaform cells dynamically regulate somatosensory integration via synapse-specific modulation. Nat Neurosci 16(1):13–15. doi:10.1038/nn.3284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Helmstaedter M, Staiger JF, Sakmann B, Feldmeyer D (2008) Efficient recruitment of layer 2/3 interneurons by layer 4 input in single columns of rat somatosensory cortex. J Neurosci 28(33):8273–8284. doi:10.1523/JNEUROSCI.5701-07.2008

    Article  CAS  PubMed  Google Scholar 

  171. Helmstaedter M, Sakmann B, Feldmeyer D (2009a) Neuronal correlates of local, lateral, and translaminar inhibition with reference to cortical columns. Cereb Cortex 19(4):926–937. doi:10.1093/cercor/bhn141

    Article  PubMed  Google Scholar 

  172. Helmstaedter M, Sakmann B, Feldmeyer D (2009b) The relation between dendritic geometry, electrical excitability, and axonal projections of L2/3 interneurons in rat barrel cortex. Cereb Cortex 19(4):938–950. doi:10.1093/cercor/bhn138

    Article  PubMed  Google Scholar 

  173. Helmstaedter M, Sakmann B, Feldmeyer D (2009c) L2/3 interneuron groups defined by multiparameter analysis of axonal projection, dendritic geometry, and electrical excitability. Cereb Cortex 19(4):951–962. doi:10.1093/cercor/bhn130

    Article  PubMed  Google Scholar 

  174. Fairén A, Valverde F (1980) A specialized type of neuron in the visual cortex of cat: a Golgi and electron microscope study of chandelier cells. J Comp Neurol 194(4):761–779. doi:10.1002/cne.901940405

    Article  PubMed  Google Scholar 

  175. Somogyi P, Freund TF, Cowey A (1982) The axo-axonic interneuron in the cerebral cortex of the rat, cat and monkey. Neuroscience 7(11):2577–2607

    Article  CAS  PubMed  Google Scholar 

  176. Reyes A, Lujan R, Rozov A, Burnashev N, Somogyi P, Sakmann B (1998) Target-cell-specific facilitation and depression in neocortical circuits. Nat Neurosci 1(4):279–285

    Article  CAS  PubMed  Google Scholar 

  177. Galarreta M, Hestrin S (1999) A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature 402(6757):72–75

    Article  CAS  PubMed  Google Scholar 

  178. Beierlein M, Gibson JR, Connors BW (2000) A network of electrically coupled interneurons drives synchronized inhibition in neocortex. Nat Neurosci 3(9):904–910

    Article  CAS  PubMed  Google Scholar 

  179. Amitai Y, Gibson JR, Beierlein M, Patrick SL, Ho AM, Connors BW, Golomb D (2002) The spatial dimensions of electrically coupled networks of interneurons in the neocortex. J Neurosci 22(10):4142–4152. doi:20026371

    CAS  PubMed  Google Scholar 

  180. Galarreta M, Hestrin S (2002) Electrical and chemical synapses among parvalbumin fast-spiking GABAergic interneurons in adult mouse neocortex. Proc Natl Acad Sci USA 99(19):12438–12443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Bittman K, Becker DL, Cicirata F, Parnavelas JG (2002) Connexin expression in homotypic and heterotypic cell coupling in the developing cerebral cortex. J Comp Neurol 443(3):201–212

    Article  CAS  PubMed  Google Scholar 

  182. Meyer AH, Katona I, Blatow M, Rozov A, Monyer H (2002) In vivo labeling of parvalbumin-positive interneurons and analysis of electrical coupling in identified neurons. J Neurosci 22(16):7055–7064

    CAS  PubMed  Google Scholar 

  183. Blatow M, Rozov A, Katona I, Hormuzdi SG, Meyer AH, Whittington MA, Caputi A, Monyer H (2003) A novel network of multipolar bursting interneurons generates theta frequency oscillations in neocortex. Neuron 38(5):805–817

    Article  CAS  PubMed  Google Scholar 

  184. Gentet LJ (2012) Functional diversity of supragranular GABAergic neurons in the barrel cortex. Front Neural Circuits 6:52. doi:10.3389/fncir.2012.00052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Kapfer C, Glickfeld LL, Atallah BV, Scanziani M (2007) Supralinear increase of recurrent inhibition during sparse activity in the somatosensory cortex. Nat Neurosci 10(6):743–753. doi: 10.1038/nn1909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Jiang X, Wang G, Lee AJ, Stornetta RL, Zhu JJ (2013) The organization of two new cortical interneuronal circuits. Nat Neurosci 16(2):210–218. doi:10.1038/nn.3305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Lee AJ, Wang G, Jiang X, Johnson SM, Hoang ET, Lante F, Stornetta RL, Beenhakker MP, Shen Y, Julius Zhu J (2014) Canonical Organization of Layer 1 Neuron-Led Cortical Inhibitory and Disinhibitory Interneuronal Circuits. Cereb Cortex. doi:10.1093/cercor/bhu020

    Google Scholar 

  188. Szabadics J, Varga C, Molnár G, Oláh S, Barzó P, Tamás G (2006) Excitatory effect of GABAergic axo-axonic cells in cortical microcircuits. Science 311(5758):233–235. doi:10.1126/science.1121325

    Article  CAS  PubMed  Google Scholar 

  189. Lee S, Kruglikov I, Huang ZJ, Fishell G, Rudy B (2013) A disinhibitory circuit mediates motor integration in the somatosensory cortex. Nat Neurosci. doi:10.1038/nn.3544

    Google Scholar 

  190. Spruston N (2008) Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 9(3):206–221. doi:10.1038/nrn2286

    Article  CAS  PubMed  Google Scholar 

  191. Major G, Larkum ME, Schiller J (2013) Active properties of neocortical pyramidal neuron dendrites. Annu Rev Neurosci 36:1–24. doi:10.1146/annurev-neuro-062111-150343

    Article  CAS  PubMed  Google Scholar 

  192. Larkum ME, Zhu JJ, Sakmann B (1999) A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 398(6725):338–341

    Article  CAS  PubMed  Google Scholar 

  193. Larkum ME, Zhu JJ (2002) Signaling of layer 1 and whisker-evoked Ca2+ and Na+ action potentials in distal and terminal dendrites of rat neocortical pyramidal neurons in vitro and in vivo. J Neurosci 22(16):6991–7005

    CAS  PubMed  Google Scholar 

  194. Larkum M (2013) A cellular mechanism for cortical associations: an organizing principle for the cerebral cortex. Trends Neurosci 36(3):141–151. doi:10.1016/j.tins.2012.11.006

    Article  CAS  PubMed  Google Scholar 

  195. Cauller L (1995) Layer I of primary sensory neocortex: where top-down converges upon bottom-up. Behav Brain Res 71(1–2):163–170

    Article  CAS  PubMed  Google Scholar 

  196. Mitchell BD, Cauller LJ (2001) Corticocortical and thalamocortical projections to layer I of the frontal neocortex in rats. Brain Res 921(1–2):68–77. doi:S0006-8993(01)03084-0 [pii]

    Article  CAS  PubMed  Google Scholar 

  197. Rubio-Garrido P, Pérez-de-Manzo F, Porrero C, Galazo MJ, Clascá F (2009) Thalamic input to distal apical dendrites in neocortical layer 1 is massive and highly convergent. Cereb Cortex 19(10):2380–2395. doi:10.1093/cercor/bhn259

    Article  PubMed  Google Scholar 

  198. Xu NL, Harnett MT, Williams SR, Huber D, O'Connor DH, Svoboda K, Magee JC (2012) Nonlinear dendritic integration of sensory and motor input during an active sensing task. Nature 492(7428):247–251. doi:10.1038/nature11601

    Article  CAS  PubMed  Google Scholar 

  199. Caputi A, Rozov A, Blatow M, Monyer H (2009) Two calretinin-positive GABAergic cell types in layer 2/3 of the mouse neocortex provide different forms of inhibition. Cereb Cortex 19(6):1345–1359. doi:10.1093/cercor/bhn175

    Article  PubMed  Google Scholar 

  200. Wang Y, Gupta A, Toledo-Rodriguez M, Wu CZ, Markram H (2002) Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex. Cereb Cortex 12(4):395–410

    Article  PubMed  Google Scholar 

  201. Zhou FM, Hablitz JJ (1996) Layer I neurons of the rat neocortex. II. Voltage-dependent outward currents. J Neurophysiol 76(2):668–682

    CAS  PubMed  Google Scholar 

  202. Chu Z, Galarreta M, Hestrin S (2003) Synaptic interactions of late-spiking neocortical neurons in layer 1. J Neurosci 23(1):96–102

    CAS  PubMed  Google Scholar 

  203. Wozny C, Williams SR (2011) Specificity of synaptic connectivity between layer 1 inhibitory interneurons and layer 2/3 pyramidal neurons in the rat neocortex. Cereb Cortex 21(8):1818–1826. doi:10.1093/cercor/bhq257

    Article  PubMed  PubMed Central  Google Scholar 

  204. Muralidhar S, Wang Y, Markram H (2013) Synaptic and cellular organization of layer 1 of the developing rat somatosensory cortex. Front Neuroanat 7:52. doi:10.3389/fnana.2013.00052

    PubMed  PubMed Central  Google Scholar 

  205. Tamás G, Lőrincz A, Simon A, Szabadics J (2003) Identified sources and targets of slow inhibition in the neocortex. Science 299(5614):1902–1905. doi:10.1126/science.1082053 299/5614/1902 [pii]

    Article  PubMed  CAS  Google Scholar 

  206. Silberberg G, Markram H (2007) Disynaptic inhibition between neocortical pyramidal cells mediated by Martinotti cells. Neuron 53(5):735–746

    Article  CAS  PubMed  Google Scholar 

  207. Berger TK, Silberberg G, Perin R, Markram H (2010) Brief bursts self-inhibit and correlate the pyramidal network. PLoS Biol 8(9). doi:10.1371/journal.pbio.1000473

    Google Scholar 

  208. Berger TK, Perin R, Silberberg G, Markram H (2009) Frequency-dependent disynaptic inhibition in the pyramidal network: a ubiquitous pathway in the developing rat neocortex. J Physiol 587(Pt 22):5411–5425. doi: 10.1113/jphysiol.2009.176552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Perrenoud Q, Rossier J, Geoffroy H, Vitalis T, Gallopin T (2013) Diversity of GABAergic interneurons in layer VIa and VIb of mouse barrel cortex. Cereb Cortex 23(2):423–441. doi:10.1093/cercor/bhs032

    Article  PubMed  Google Scholar 

  210. West DC, Mercer A, Kirchhecker S, Morris OT, Thomson AM (2006) Layer 6 cortico-thalamic pyramidal cells preferentially innervate interneurons and generate facilitating EPSPs. Cereb Cortex 16(2):200–211. doi:bhi098 [pii] 10.1093/cercor/bhi098

    Article  PubMed  Google Scholar 

  211. Bortone DS, Olsen SR, Scanziani M (2014) Translaminar inhibitory cells recruited by layer 6 corticothalamic neurons suppress visual cortex. Neuron. doi:10.1016/j.neuron.2014.02.021

    Google Scholar 

  212. Fino E, Yuste R (2011) Dense inhibitory connectivity in neocortex. Neuron 69(6):1188–1203. doi:10.1016/j.neuron.2011.02.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Packer AM, Yuste R (2011) Dense, unspecific connectivity of neocortical parvalbumin-positive interneurons: a canonical microcircuit for inhibition? J Neurosci 31(37):13260–13271. doi:10.1523/JNEUROSCI.3131-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Packer AM, McConnell DJ, Fino E, Yuste R (2013) Axo-dendritic overlap and laminar projection can explain interneuron connectivity to pyramidal cells. Cereb Cortex 23(12):2790–2802. doi:10.1093/cercor/bhs210

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Feldmeyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Radnikow, G., Qi, G., Feldmeyer, D. (2015). Synaptic Microcircuits in the Barrel Cortex. In: Krieger, P., Groh, A. (eds) Sensorimotor Integration in the Whisker System. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2975-7_4

Download citation

Publish with us

Policies and ethics