Skip to main content

The Whisker Thalamus

  • Chapter
  • First Online:
Sensorimotor Integration in the Whisker System

Abstract

Sensory information from the whiskers ascends through the trigeminal nuclei in the brainstem to the midbrain and forebrain where it reaches primarily the superior colliculus, the pretectal nuclei, the zona incerta, and the thalamus. The whisker thalamus is at the center of this network because it regulates passage to the barrel cortex as dictated by behavioral state. From barrel cortex, descending activity is fed back to the thalamus and to the other nuclei that process ascending information. Thalamocortical cells in the whisker thalamus receive sensory, cortical, inhibitory, and modulatory afferents. The physiological properties of this network and the functions that emerge from its activity are described here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Woolsey TA, Van der Loos H (1970) The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res 17:205–242

    Article  CAS  PubMed  Google Scholar 

  2. Van Der Loos H (1976) Barreloids in mouse somatosensory thalamus. NeurosciLett 2:1–6

    Google Scholar 

  3. Erzurumlu RS, Murakami Y, Rijli FM (2010) Mapping the face in the somatosensory brainstem. Nat Rev Neurosci 11:252–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Land PW, Buffer SA Jr, Yaskosky JD (1995) Barreloids in adult rat thalamus: three-dimensional architecture and relationship to somatosensory cortical barrels. J Comp Neurol 355:573–588

    Article  CAS  PubMed  Google Scholar 

  5. Saporta S, Kruger L (1977) The organization of thalamocortical relay neurons in the rat ventrobasal complex studied by the retrograde transport of horseradish peroxidase. J Comp Neurol 174:187–208

    Article  CAS  PubMed  Google Scholar 

  6. Pierret T, Lavallee P, Deschenes M (2000) Parallel streams for the relay of vibrissal information through thalamic barreloids. J Neurosci 20:7455–7462

    CAS  PubMed  Google Scholar 

  7. Steriade M, Jones EG, McCormick DA (1997) Thalamus. Elsevier, New York

    Google Scholar 

  8. Spacek J, Lieberman AR (1974) Ultrastructure and three-dimensional organization of synaptic glomeruli in rat somatosensory thalamus. J Anat 117:487–516

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Feldman SG, Kruger L (1980) An axonal transport study of the ascending projection of medial lemniscal neurons in the rat. J Comp Neurol 192:427–454

    Article  CAS  PubMed  Google Scholar 

  10. Chiaia NL, Rhoades RW, Bennett-Clarke CA, Fish SE, Killackey HP (1991) Thalamic processing of vibrissal information in the rat. I. Afferent input to the medial ventral posterior and posterior nuclei. J Comp Neurol 314:201–216

    Article  CAS  PubMed  Google Scholar 

  11. Williams MN, Zahm DS, Jacquin MF (1994b) Differential foci and synaptic organization of the principal and spinal trigeminal projections to the thalamus in the rat. Eur J Neurosci 6:429–453

    Article  CAS  PubMed  Google Scholar 

  12. Veinante P, Deschenes M (1999) Single- and multi-whisker channels in the ascending projections from the principal trigeminal nucleus in the rat. J Neurosci 19:5085–5095

    CAS  PubMed  Google Scholar 

  13. Veinante P, Jacquin MF, Deschenes M (2000) Thalamic projections from the whisker-sensitive regions of the spinal trigeminal complex in the rat. J Comp Neurol 420:233–243

    Article  CAS  PubMed  Google Scholar 

  14. Castro-Alamancos MA (2002c) Properties of primary sensory (lemniscal) synapses in the ventrobasal thalamus and the relay of high-frequency sensory inputs. J Neurophysiol 87:946–953

    PubMed  Google Scholar 

  15. Miyata M, Imoto K (2006) Different composition of glutamate receptors in corticothalamic and lemniscal synaptic responses and their roles in the firing responses of ventrobasal thalamic neurons in juvenile mice. J Physiol 575:161–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brecht M, Sakmann B (2002) Whisker maps of neuronal subclasses of the rat ventral posterior medial thalamus, identified by whole-cell voltage recording and morphological reconstruction. J Physiol 538:495–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Castro-Alamancos MA (2002b) Different temporal processing of sensory inputs in the rat thalamus during quiescent and information processing states in vivo. J Physiol 539:567–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Deschenes M, Timofeeva E, Lavallee P (2003) The relay of high-frequency sensory signals in the Whisker-to-barreloid pathway. J Neurosci 23:6778–6787

    CAS  PubMed  Google Scholar 

  19. De Biasi S, Amadeo A, Spreafico R, Rustioni A (1994) Enrichment of glutamate immunoreactivity in lemniscal terminals in the ventropostero lateral thalamic nucleus of the rat: an immunogold and WGA-HRP study. Anat Rec 240:131–140

    Article  PubMed  Google Scholar 

  20. Temereanca S, Simons DJ (2003) Local field potentials and the encoding of whisker deflections by population firing synchrony in thalamic barreloids. J Neurophysiol 89:2137–2145

    Article  PubMed  Google Scholar 

  21. Simons DJ, Carvell GE (1989) Thalamocortical response transformation in the rat vibrissa/barrel system. J Neurophysiol 61:311–330

    CAS  PubMed  Google Scholar 

  22. Armstrong-James M, Callahan CA (1991) Thalamo-cortical processing of vibrissal information in the rat. II. spatiotemporal convergence in the thalamic ventroposterior medial nucleus (VPm) and its relevance to generation of receptive fields of S1 cortical “barrel” neurones. J Comp Neurol 303:211–224

    Article  CAS  PubMed  Google Scholar 

  23. Diamond ME, Armstrong-James M, Ebner FF (1992) Somatic sensory responses in the rostral sector of the posterior group (POm) and in the ventral posterior medial nucleus (VPM) of the rat thalamus. J Comp Neurol 318:462–476

    Article  CAS  PubMed  Google Scholar 

  24. Ahissar E, Sosnik R, Haidarliu S (2000) Transformation from temporal to rate coding in a somatosensory thalamocortical pathway [see comments]. Nature 406:302–306

    Article  CAS  PubMed  Google Scholar 

  25. Minnery BS, Bruno RM, Simons DJ (2003) Response transformation and receptive field synthesis in the lemniscaltrigeminothalamic circuit. J Neurophysiol 90:1556–1570

    Article  PubMed  Google Scholar 

  26. Aguilar JR, Castro-Alamancos MA (2005) Spatiotemporal gating of sensory inputs in thalamus during quiescent and activated states. J Neurosci 25:10990–11002

    Article  CAS  PubMed  Google Scholar 

  27. Hirata A, Aguilar J, Castro-Alamancos MA (2009) Influence of subcortical inhibition on barrel cortex receptive fields. J Neurophysiol 102:437–450

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kim U, McCormick DA (1998) The functional influence of burst and tonic firing mode on synaptic interactions in the thalamus. J Neurosci 18:9500–9516

    CAS  PubMed  Google Scholar 

  29. Barbaresi P, Spreafico R, Frassoni C, Rustioni A (1986) GABAergic neurons are present in the dorsal column nuclei but not in the ventroposterior complex of rats. Brain Res 382:305–326

    Article  CAS  PubMed  Google Scholar 

  30. Harris RM, Hendrickson AE (1987) Local circuit neurons in the rat ventrobasal thalamus–a GABA immunocytochemical study. Neuroscience 21:229–236

    Article  CAS  PubMed  Google Scholar 

  31. Ohara PT, Lieberman AR (1993) Some aspects of the synaptic circuitry underlying inhibition in the ventrobasal thalamus. J Neurocytol 22:815–825

    Article  CAS  PubMed  Google Scholar 

  32. Castro-Alamancos MA (2004b) Dynamics of sensory thalamocortical synaptic networks during information processing states. Prog Neurobiol 74:213–247

    Article  PubMed  Google Scholar 

  33. Desilets-Roy B, Varga C, Lavallee P, Deschenes M (2002) Substrate for cross-talk inhibition between thalamic barreloids. J Neurosci 22:RC218

    PubMed  Google Scholar 

  34. Varga C, Sik A, Lavallee P, Deschenes M (2002) Dendroarchitecture of relay cells in thalamic barreloids: a substrate for cross-whisker modulation. J Neurosci 22:6186–6194

    CAS  PubMed  Google Scholar 

  35. Lavallee P, Deschenes M (2004) Dendroarchitecture and lateral inhibition in thalamic barreloids. J Neurosci 24:6098–6105

    Article  CAS  PubMed  Google Scholar 

  36. Landisman CE, Long MA, Beierlein M, Deans MR, Paul DL, Connors BW (2002) Electrical synapses in the thalamic reticular nucleus. J Neurosci 22:1002–1009

    CAS  PubMed  Google Scholar 

  37. Shu Y, McCormick DA (2002) Inhibitory interactions between ferret thalamic reticular neurons. J Neurophysiol 87:2571–2576

    CAS  PubMed  Google Scholar 

  38. Sohal VS, Huguenard JR (2003) Inhibitory interconnections control burst pattern and emergent network synchrony in reticular thalamus. J Neurosci 23:8978–8988

    CAS  PubMed  Google Scholar 

  39. Bokor H, Frere SG, Eyre MD, Slezia A, Ulbert I, Luthi A, Acsady L (2005) Selective GABAergic control of higher-order thalamic relays. Neuron 45:929–940

    Article  CAS  PubMed  Google Scholar 

  40. Bartho P, Freund TF, Acsady L (2002) Selective GABAergic innervation of thalamic nuclei from zonaincerta. Eur J Neurosci 16:999–1014

    Article  CAS  PubMed  Google Scholar 

  41. Trageser JC, Keller A (2004) Reducing the uncertainty: gating of peripheral inputs by zonaincerta. J Neurosci 24:8911–8915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lavallee P, Urbain N, Dufresne C, Bokor H, Acsady L, Deschenes M (2005) Feedforward inhibitory control of sensory information in higher-order thalamic nuclei. J Neurosci 25:7489–7498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bourassa J, Pinault D, Deschenes M (1995) Corticothalamic projections from the cortical barrel field to the somatosensory thalamus in rats: a single-fibre study using biocytin as an anterograde tracer. Eur J Neurosci 7:19–30

    Article  CAS  PubMed  Google Scholar 

  44. Deschenes M, Veinante P, Zhang ZW (1998) The organization of corticothalamic projections: reciprocity versus parity. Brain Res Brain Res Rev 28:286–308

    Article  CAS  PubMed  Google Scholar 

  45. Hoogland PV, Wouterlood FG, Welker E, Van der Loos H (1991) Ultrastructure of giant and small thalamic terminals of cortical origin: a study of the projections from the barrel cortex in mice using Phaseolus vulgaris leuco-agglutinin (PHA-L). Exp Brain Res 87:159–172

    Article  CAS  PubMed  Google Scholar 

  46. Golshani P, Liu XB, Jones EG (2001) Differences in quantal amplitude reflect GluR4- subunit number at corticothalamic synapses on two populations of thalamic neurons. Proc Natl Acad Sci U S A 98:4172–4177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Castro-Alamancos MA, Calcagnotto ME (1999) Presynaptic long-term potentiation in corticothalamic synapses. J Neurosci 19:9090–9097

    CAS  PubMed  Google Scholar 

  48. McCormick DA, von Krosigk M (1992) Corticothalamic activation modulates thalamic firing through glutamate “metabotropic” receptors. Proc Natl Acad Sci U S A 89:2774–2778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sherman SM, Guillery RW (1998) On the actions that one nerve cell can have on another: distinguishing “drivers” from “modulators”. Proc Natl Acad Sci U S A 95:7121–7126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Castro-Alamancos MA, Calcagnotto ME (2001) High-pass filtering of corticothalamic activity by neuromodulators released in the thalamus during arousal: in vitro and in vivo. J Neurophysiol 85:1489–1497

    CAS  PubMed  Google Scholar 

  51. Reichova I, Sherman SM (2004) Somatosensorycorticothalamic projections: distinguishing drivers from modulators. J Neurophysiol 92:2185–2197

    Article  PubMed  Google Scholar 

  52. Sherman SM, Guillery RW (1996) Functional organization of thalamocortical relays. J Neurophysiol 76:1367–1395

    CAS  PubMed  Google Scholar 

  53. Hobson JA, McCarley RW, Wyzinski PW (1975) Sleep cycle oscillation: reciprocal discharge by two brainstem neuronal groups. Science 189:55–58

    Article  CAS  PubMed  Google Scholar 

  54. Foote SL, Aston-Jones G, Bloom FE (1980) Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal. Proc Natl Acad Sci U S A 77:3033–3037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Aston-Jones G, Bloom FE (1981) Nonrepinephrine-containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli. J Neurosci 1:887–900

    CAS  PubMed  Google Scholar 

  56. Brown RE, Stevens DR, Haas HL (2001) The physiology of brain histamine. Prog Neurobiol 63:637–672

    Article  CAS  PubMed  Google Scholar 

  57. McGinty DJ, Harper RM (1976) Dorsal raphe neurons: depression of firing during sleep in cats. Brain Res 101:569–575

    Article  CAS  PubMed  Google Scholar 

  58. Trulson ME, Jacobs BL (1979) Raphe unit activity in freely moving cats: correlation with level of behavioral arousal. Brain Res 163:135–150

    Article  CAS  PubMed  Google Scholar 

  59. el Mansari M, Sakai K, Jouvet M (1989) Unitary characteristics of presumptive cholinergic tegmental neurons during the sleep-waking cycle in freely moving cats. Exp Brain Res 76:519–529

    Article  CAS  PubMed  Google Scholar 

  60. Williams JA, Comisarow J, Day J, Fibiger HC, Reiner PB (1994a) State-dependent release of acetylcholine in rat thalamus measured by in vivo microdialysis. J Neurosci 14:5236–5242

    CAS  PubMed  Google Scholar 

  61. Rigas P, Castro-Alamancos MA (2007) Thalamocortical Up states: differential effects of intrinsic and extrinsic cortical inputs on persistent activity. J Neurosci 27:4261–4272

    Article  CAS  PubMed  Google Scholar 

  62. Hughes SW, Cope DW, Blethyn KL, Crunelli V (2002) Cellular mechanisms of the slow (< 1 Hz) oscillation in thalamocortical neurons in vitro. Neuron 33:947–958

    Article  CAS  PubMed  Google Scholar 

  63. Crunelli V, Hughes SW (2010) The slow (< 1 Hz) rhythm of non-REM sleep: a dialogue between three cardinal oscillators. Nat Neurosci 13:9–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. McCormick DA, Bal T (1997) Sleep and arousal: thalamocortical mechanisms. Annu Rev Neurosci 20:185–215

    Article  CAS  PubMed  Google Scholar 

  65. Hirata A, Aguilar J, Castro-Alamancos MA (2006) Noradrenergic activation amplifies bottom-up and top-down signal-to-noise ratios in sensory thalamus. J Neurosci 26:4426–4436

    Article  CAS  PubMed  Google Scholar 

  66. Hirata A, Castro-Alamancos MA (2008) Cortical transformation of wide-field (multiwhisker) sensory responses. J Neurophysiol 100:358–370

    Article  PubMed  PubMed Central  Google Scholar 

  67. Cohen JD, Hirata A, Castro-Alamancos MA (2008) Vibrissa sensation in superior colliculus: wide-field sensitivity and state-dependent cortical feedback. J Neurosci 28:11205–11220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Castro-Alamancos MA (2004a) Absence of rapid sensory adaptation in neocortex during information processing states. Neuron 41:455–464

    Article  CAS  PubMed  Google Scholar 

  69. Moruzzi G, Magoun HW (1949) Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol 1:455–473

    Article  CAS  PubMed  Google Scholar 

  70. Castro-Alamancos MA, Oldford E (2002) Cortical sensory suppression during arousal is due to the activity- dependent depression of thalamocortical synapses. J Physiol 541:319–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Simons DJ (1985) Temporal and spatial integration in the rat SI vibrissa cortex. J Neurophysiol 54:615–635

    CAS  PubMed  Google Scholar 

  72. Hartings JA, Simons DJ (1998) Thalamic relay of afferent responses to 1- to 12-Hz whisker stimulation in the rat. J Neurophysiol 80:1016–1019

    CAS  PubMed  Google Scholar 

  73. McCormick DA (1992) Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Prog Neurobiol 39:337–388

    Article  CAS  PubMed  Google Scholar 

  74. Fanselow EE, Nicolelis MA (1999) Behavioral modulation of tactile responses in the rat somatosensory system. J Neurosci 19:7603–7616

    CAS  PubMed  Google Scholar 

  75. Lee S, Carvell GE, Simons DJ (2008) Motor modulation of afferent somatosensory circuits. Nat Neurosci 11:1430–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yu C, Derdikman D, Haidarliu S, Ahissar E (2006) Parallel thalamic pathways for whisking and touch signals in the rat. PLoS Biol 4:e124

    Article  PubMed  PubMed Central  Google Scholar 

  77. Cohen JD, Castro-Alamancos MA (2010b) Behavioral state dependency of neural activity and sensory (whisker) responses in superior colliculus. J Neurophysiol 104:1661–1672

    Article  PubMed  PubMed Central  Google Scholar 

  78. Cohen JD, Castro-Alamancos MA (2007) Early sensory pathways for detection of fearful conditioned stimuli: tectal and thalamic relays. J Neurosci 27:7762–7776

    Article  CAS  PubMed  Google Scholar 

  79. Cohen JD, Castro-Alamancos MA (2010a) Detection of low salience whisker stimuli requires synergy of tectal and thalamic sensory relays. J Neurosci 30:2245–2256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Castro-Alamancos MA (1999) Neocortical synchronized oscillations induced by thalamic disinhibition in vivo. J Neurosci 19:RC27

    CAS  PubMed  Google Scholar 

  81. Huntsman MM, Porcello DM, Homanics GE, DeLorey TM, Huguenard JR (1999) Reciprocal inhibitory connections and network synchrony in the mammalian thalamus. Science 283:541–543

    Article  CAS  PubMed  Google Scholar 

  82. Beenhakker MP, Huguenard JR (2009) Neurons that fire together also conspire together: is normal sleep circuitry hijacked to generate epilepsy? Neuron 62:612–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Favero M, Castro-Alamancos MA (2013) Synaptic cooperativity regulates persistent network activity in neocortex. J Neurosci 33:3151–3163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hirata A, Castro-Alamancos MA (2010) Neocortex network activation and deactivation states controlled by the thalamus. J Neurophysiol 103:1147–1157

    Article  PubMed  PubMed Central  Google Scholar 

  85. Castro-Alamancos MA (2002a) Role of thalamocortical sensory suppression during arousal: focusing sensory inputs in neocortex. J Neurosci 22:9651–9655

    CAS  PubMed  Google Scholar 

  86. Hirata A, Castro-Alamancos MA (2011) Effects of cortical activation on sensory responses in barrel cortex. J Neurophysiol 105:1495–1505

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel A. Castro-Alamancos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Castro-Alamancos, M. (2015). The Whisker Thalamus. In: Krieger, P., Groh, A. (eds) Sensorimotor Integration in the Whisker System. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2975-7_3

Download citation

Publish with us

Policies and ethics