Skip to main content

Part of the book series: Undergraduate Texts in Mathematics ((UTM))

  • 3516 Accesses

Abstract

A natural generalization of a 2-dimensional angle to higher dimensions is called a solid angle. Given a pointed cone \(\mathcal{K}\subset \mathbb{R}^{d}\), the solid angle at its apex is the proportion of space that the cone \(\mathcal{K}\) occupies. In slightly different words, if we pick a point \(\mathbf{x} \in \mathbb{R}^{d}\) “at random,” then the probability that \(\mathbf{x} \in \mathcal{K}\) is precisely the solid angle at the apex of \(\mathcal{K}\). Yet another view of solid angles is that they are in fact volumes of spherical polytopes: the region of intersection of a cone with a sphere. There is a theory, which we will develop in this chapter and which goes back to I.G. Macdonald, that parallels the Ehrhart theory of Chapters 3 and 4, with some genuinely new ideas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 39.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org, 2014.

  2. Maya Ahmed, Jesús A. De Loera, and Raymond Hemmecke, Polyhedral cones of magic cubes and squares, Discrete and Computational Geometry, Algorithms Combin., vol. 25, Springer, Berlin, 2003, pp. 25–41, arXiv:math.CO/0201108.

    Google Scholar 

  3. Maya Mohsin Ahmed, How many squares are there, Mr. Franklin? constructing and enumerating Franklin squares, Amer. Math. Monthly 111 (2004), no. 5, 394–410.

    Google Scholar 

  4. Iskander Aliev, Martin Henk, and Aicke Hinrichs, Expected Frobenius numbers, J. Combin. Theory Ser. A 118 (2011), no. 2, 525–531.

    Article  MathSciNet  MATH  Google Scholar 

  5. Iskander M. Aliev and Peter M. Gruber, An optimal lower bound for the Frobenius problem, J. Number Theory 123 (2007), no. 1, 71–79.

    Article  MathSciNet  MATH  Google Scholar 

  6. Harsh Anand, Vishwa Chander Dumir, and Hansraj Gupta, A combinatorial distribution problem, Duke Math. J. 33 (1966), 757–769.

    Article  MathSciNet  MATH  Google Scholar 

  7. W. S. Andrews, Magic Squares and Cubes, Dover Publications Inc., New York, 1960.

    MATH  Google Scholar 

  8. Tom M. Apostol, Generalized Dedekind sums and transformation formulae of certain Lambert series, Duke Math. J. 17 (1950), 147–157.

    Google Scholar 

  9. Tom M. Apostol and Thiennu H. Vu, Identities for sums of Dedekind type, J. Number Theory 14 (1982), no. 3, 391–396.

    Article  MathSciNet  MATH  Google Scholar 

  10. Federico Ardila, Federico Castillo, and Michael Henley, The arithmetic Tutte polynomials of the classical root systems, Int. Math. Res. Not. (to appear), arXiv:1305.6621.

    Google Scholar 

  11. Vladimir I. Arnold, Arnold’s problems, Springer-Verlag, Berlin, 2004, Translated and revised edition of the 2000 Russian original, with a preface by V. Philippov, A. Yakivchik, and M. Peters.

    Google Scholar 

  12. Christos A. Athanasiadis, h -vectors, Eulerian polynomials and stable polytopes of graphs, Electron. J. Combin. 11 (2004/06), no. 2, Research Paper 6, 13 pp.

    Google Scholar 

  13. W. S. Andrews, Ehrhart polynomials, simplicial polytopes, magic squares and a conjecture of Stanley, J. Reine Angew. Math. 583 (2005), 163–174, arXiv:math/0312031.

    Google Scholar 

  14. Velleda Baldoni, Nicole Berline, Matthias Köppe, and Michèle Vergne, Intermediate sums on polyhedra: computation and real Ehrhart theory, Mathematika 59 (2013), no. 1, 1–22, arXiv:math/1011.6002.

    Google Scholar 

  15. Velleda Baldoni, Nicole Berline, and Michèle Vergne, Local Euler–Maclaurin expansion of Barvinok valuations and Ehrhart coefficients of a rational polytope, Integer points in polyhedra—geometry, number theory, representation theory, algebra, optimization, statistics, Contemp. Math., vol. 452, Amer. Math. Soc., Providence, RI, 2008, pp. 15–33.

    Google Scholar 

  16. Velleda Baldoni and Michèle Vergne, Residue formulae for volumes and Ehrhart polynomials of convex polytopes, Preprint (arXiv:math.CO/0103097).

    Google Scholar 

  17. Philippe Barkan, Sur les sommes de Dedekind et les fractions continues finies, C. R. Acad. Sci. Paris Sér. A-B 284 (1977), no. 16, A923–A926.

    MathSciNet  MATH  Google Scholar 

  18. Peter Barlow, An Elementary Investigation of the Theory of Numbers, J. Johnson & Co., London, 1811.

    Google Scholar 

  19. Alexander Barvinok, Exponential integrals and sums over convex polyhedra, Funktsional. Anal. i Prilozhen. 26 (1992), no. 2, 64–66.

    Article  MathSciNet  MATH  Google Scholar 

  20. W. S. Andrews, A Course in Convexity, Graduate Studies in Mathematics, vol. 54, American Mathematical Society, Providence, RI, 2002.

    Google Scholar 

  21. W. S. Andrews, Integer points in polyhedra, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zurich, 2008.

    Google Scholar 

  22. Alexander Barvinok and James E. Pommersheim, An algorithmic theory of lattice points in polyhedra, New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996–97), Math. Sci. Res. Inst. Publ., vol. 38, Cambridge Univ. Press, Cambridge, 1999, pp. 91–147.

    Google Scholar 

  23. Alexander Barvinok and Kevin Woods, Short rational generating functions for lattice point problems, J. Amer. Math. Soc. 16 (2003), no. 4, 957–979, arXiv:math.CO/0211146.

    Google Scholar 

  24. Alexander I. Barvinok, A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed, Math. Oper. Res. 19 (1994), no. 4, 769–779.

    Article  MathSciNet  MATH  Google Scholar 

  25. Victor V. Batyrev, Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties, J. Algebraic Geom. 3 (1994), no. 3, 493–535, arXiv:alg-geom/9310003.

    Google Scholar 

  26. Victor V. Batyrev and Dimitrios I. Dais, Strong McKay correspondence, string-theoretic Hodge numbers and mirror symmetry, Topology 35 (1996), no. 4, 901–929.

    Article  MathSciNet  MATH  Google Scholar 

  27. Abdelmejid Bayad and Matthias Beck, Relations for Bernoulli–Barnes numbers and Barnes zeta functions, Int. J. Number Theory 10 (2014), no. 5, 1321–1335, arXiv:1301.7097.

    Google Scholar 

  28. Abdelmejid Bayad and Yilmaz Simsek, Dedekind sums involving Jacobi modular forms and special values of Barnes zeta functions, Ann. Inst. Fourier (Grenoble) 61 (2011), no. 5, 1977–1993 (2012).

    Google Scholar 

  29. Matthias Beck, Counting lattice points by means of the residue theorem, Ramanujan J. 4 (2000), no. 3, 299–310, arXiv:math.CO/0306035.

    Google Scholar 

  30. W. S. Andrews, Multidimensional Ehrhart reciprocity, J. Combin. Theory Ser. A 97 (2002), no. 1, 187–194, arXiv:math.CO/0111331.

    Google Scholar 

  31. W. S. Andrews, Dedekind cotangent sums, Acta Arith. 109 (2003), no. 2, 109–130, arXiv:math.NT/0112077.

    Google Scholar 

  32. Matthias Beck and Benjamin Braun, Euler–Mahonian statistics via polyhedral geometry, Adv. Math. 244 (2013), 925–954, arXiv:1109.3353.

    Google Scholar 

  33. Matthias Beck and Anastasia Chavez, Bernoulli-Dedekind sums, Acta Arith. 149 (2011), no. 1, 65–82, arXiv:1008.0038.

    Google Scholar 

  34. Matthias Beck, Beifang Chen, Lenny Fukshansky, Christian Haase, Allen Knutson, Bruce Reznick, Sinai Robins, and Achill Schürmann, Problems from the Cottonwood Room, Integer Points in Polyhedra—Geometry, Number Theory, Algebra, Optimization, Contemp. Math., vol. 374, Amer. Math. Soc., Providence, RI, 2005, pp. 179–191.

    Google Scholar 

  35. Matthias Beck, Moshe Cohen, Jessica Cuomo, and Paul Gribelyuk, The number of “magic” squares, cubes, and hypercubes, Amer. Math. Monthly 110 (2003), no. 8, 707–717, arXiv:math.CO/0201013.

    Google Scholar 

  36. Matthias Beck, Jesús A. De Loera, Mike Develin, Julian Pfeifle, and Richard P. Stanley, Coefficients and roots of Ehrhart polynomials, Integer Points in Polyhedra—Geometry, Number Theory, Algebra, Optimization, Contemp. Math., vol. 374, Amer. Math. Soc., Providence, RI, pp. 15–36, arXiv:math.CO/0402148.

    Google Scholar 

  37. Matthias Beck, Ricardo Diaz, and Sinai Robins, The Frobenius problem, rational polytopes, and Fourier–Dedekind sums, J. Number Theory 96 (2002), no. 1, 1–21, arXiv:math.NT/0204035.

    Google Scholar 

  38. Matthias Beck and Richard Ehrenborg, Ehrhart–Macdonald reciprocity extended, Preprint (arXiv:math.CO/0504230).

    Google Scholar 

  39. Matthias Beck, Christian Haase, and Asia R. Matthews, Dedekind–Carlitz polynomials as lattice-point enumerators in rational polyhedra, Math. Ann. 341 (2008), no. 4, 945–961, arXiv:0710.1323.

    Google Scholar 

  40. Matthias Beck, Christian Haase, and Frank Sottile, Formulas of Brion, Lawrence, and Varchenko on rational generating functions for cones, Math. Intelligencer 31 (2009), no. 1, 9–17, arXiv:math.CO/0506466.

    Google Scholar 

  41. Matthias Beck and Curtis Kifer, An extreme family of generalized Frobenius numbers, Integers 11 (2011), Paper A24, 6 pp.

    Google Scholar 

  42. Matthias Beck and Dennis Pixton, The Ehrhart polynomial of the Birkhoff polytope, Discrete Comput. Geom. 30 (2003), no. 4, 623–637, arXiv:math.CO/0202267.

    Google Scholar 

  43. Matthias Beck and Sinai Robins, Explicit and efficient formulas for the lattice point count in rational polygons using Dedekind–Rademacher sums, Discrete Comput. Geom. 27 (2002), no. 4, 443–459, arXiv:math.CO/0111329.

    Google Scholar 

  44. W. S. Andrews, A formula related to the Frobenius problem in two dimensions, Number theory (New York, 2003), Springer, New York, 2004, pp. 17–23, arXiv:math.NT/0204037.

    Google Scholar 

  45. Matthias Beck, Sinai Robins, and Steven V Sam, Positivity theorems for solid-angle polynomials, Beiträge Algebra Geom. 51 (2010), no. 2, 493–507, arXiv:0906.4031.

    Google Scholar 

  46. Matthias Beck and Frank Sottile, Irrational proofs for three theorems of Stanley, European J. Combin. 28 (2007), no. 1, 403–409, arXiv:math.CO/0506315.

    Google Scholar 

  47. Matthias Beck and Andrew van Herick, Enumeration of 4 × 4 magic squares, Math. Comp. 80 (2011), no. 273, 617–621, arXiv:0907.3188.

    Google Scholar 

  48. Matthias Beck and Thomas Zaslavsky, An enumerative geometry for magic and magilatin labellings, Ann. Comb. 10 (2006), no. 4, 395–413, arXiv:math.CO/0506315.

    Google Scholar 

  49. Dale Beihoffer, Jemimah Hendry, Albert Nijenhuis, and Stan Wagon, Faster algorithms for Frobenius numbers, Electron. J. Combin. 12 (2005), no. 1, Research Paper 27, 38 pp.

    Google Scholar 

  50. Nicole Berline and Michèle Vergne, Local Euler–Maclaurin formula for polytopes, Mosc. Math. J. 7 (2007), no. 3, 355–386, 573, arXiv:math.CO/0507256.

    Google Scholar 

  51. Bruce C. Berndt, Reciprocity theorems for Dedekind sums and generalizations, Advances in Math. 23 (1977), no. 3, 285–316.

    Article  MathSciNet  MATH  Google Scholar 

  52. Bruce C. Berndt and Ulrich Dieter, Sums involving the greatest integer function and Riemann–Stieltjes integration, J. Reine Angew. Math. 337 (1982), 208–220.

    MathSciNet  MATH  Google Scholar 

  53. Bruce C. Berndt and Boon Pin Yeap, Explicit evaluations and reciprocity theorems for finite trigonometric sums, Adv. in Appl. Math. 29 (2002), no. 3, 358–385.

    Article  MathSciNet  Google Scholar 

  54. Ulrich Betke and Peter McMullen, Lattice points in lattice polytopes, Monatsh. Math. 99 (1985), no. 4, 253–265.

    Article  MathSciNet  MATH  Google Scholar 

  55. Christian Bey, Martin Henk, and Jörg M. Wills, Notes on the roots of Ehrhart polynomials, Discrete Comput. Geom. 38 (2007), no. 1, 81–98, arXiv:math.MG/0606089.

    Google Scholar 

  56. Louis J. Billera and A. Sarangarajan, The combinatorics of permutation polytopes, Formal Power Series and Algebraic Combinatorics (New Brunswick, NJ, 1994), Amer. Math. Soc., Providence, RI, 1996, pp. 1–23.

    Google Scholar 

  57. Garrett Birkhoff, Tres observaciones sobre el álgebra lineal, Revista Faculdad de Ciencias Exactas, Puras y Aplicadas Universidad Nacional de Tucumán, Serie A (Matemáticas y Física Teóretica) 5 (1946), 147–151.

    MathSciNet  Google Scholar 

  58. G. R. Blakley, Combinatorial remarks on partitions of a multipartite number, Duke Math. J. 31 (1964), 335–340.

    Article  MathSciNet  MATH  Google Scholar 

  59. Sebastian Böcker and Zsuzsanna Lipták, The money changing problem revisited: computing the Frobenius number in time O(ka 1 ), Computing and combinatorics, Lecture Notes in Comput. Sci., vol. 3595, Springer, Berlin, 2005, pp. 965–974.

    Google Scholar 

  60. Alfred Brauer, On a problem of partitions, Amer. J. Math. 64 (1942), 299–312.

    Article  MathSciNet  MATH  Google Scholar 

  61. Benjamin Braun, An Ehrhart series formula for reflexive polytopes, Electron. J. Combin. 13 (2006), no. 1, Note 15, 5 pp.

    Google Scholar 

  62. G. R. Blakley, Norm bounds for Ehrhart polynomial roots, Discrete Comput. Geom. 39 (2008), no. 1–3, 191–193, arXiv:math.CO/0602464.

    Google Scholar 

  63. Benjamin Braun and Robert Davis, Ehrhart series, unimodality, and integrally closed reflexive polytopes, Preprint (arXiv:math/1403.5378).

    Google Scholar 

  64. Henrik Bresinsky, Symmetric semigroups of integers generated by 4 elements, Manuscripta Math. 17 (1975), no. 3, 205–219.

    Article  MathSciNet  MATH  Google Scholar 

  65. Charles J. Brianchon, Théorème nouveau sur les polyèdres, J. Ecole (Royale) Polytechnique 15 (1837), 317–319.

    Google Scholar 

  66. Michel Brion, Points entiers dans les polyèdres convexes, Ann. Sci. École Norm. Sup. (4) 21 (1988), no. 4, 653–663.

    Google Scholar 

  67. Michel Brion and Michèle Vergne, Residue formulae, vector partition functions and lattice points in rational polytopes, J. Amer. Math. Soc. 10 (1997), no. 4, 797–833.

    Article  MathSciNet  MATH  Google Scholar 

  68. Arne Brøndsted, An Introduction to Convex Polytopes, Graduate Texts in Mathematics, vol. 90, Springer-Verlag, New York, 1983.

    Book  MATH  Google Scholar 

  69. Richard A. Brualdi and Peter M. Gibson, Convex polyhedra of doubly stochastic matrices. I. Applications of the permanent function, J. Combinatorial Theory Ser. A 22 (1977), no. 2, 194–230.

    Article  MathSciNet  MATH  Google Scholar 

  70. G. R. Blakley, Convex polyhedra of doubly stochastic matrices. III. Affine and combinatorial properties of U n, J. Combinatorial Theory Ser. A 22 (1977), no. 3, 338–351.

    Google Scholar 

  71. Heinz Bruggesser and Peter Mani, Shellable decompositions of cells and spheres, Math. Scand. 29 (1971), 197–205 (1972).

    Google Scholar 

  72. Winfried Bruns, Commutative algebra arising from the Anand–Dumir–Gupta conjectures, Commutative algebra and combinatorics, Ramanujan Math. Soc. Lect. Notes Ser., vol. 4, Ramanujan Math. Soc., Mysore, 2007, pp. 1–38.

    Google Scholar 

  73. Winfried Bruns and Joseph Gubeladze, Polytopes, rings, and K-theory, Springer Monographs in Mathematics, Springer, Dordrecht, 2009.

    MATH  Google Scholar 

  74. Winfried Bruns and Tim Römer, h-vectors of Gorenstein polytopes, J. Combin. Theory Ser. A 114 (2007), no. 1, 65–76.

    Article  MathSciNet  MATH  Google Scholar 

  75. Daniel Bump, Kwok-Kwong Choi, Pär Kurlberg, and Jeffrey Vaaler, A local Riemann hypothesis. I, Math. Z. 233 (2000), no. 1, 1–19.

    Article  MathSciNet  MATH  Google Scholar 

  76. Kristin A. Camenga, Vector spaces spanned by the angle sums of polytopes, Beiträge Algebra Geom. 47 (2006), no. 2, 447–462, arXiv:math.MG/0508629.

    Google Scholar 

  77. Schuyler Cammann, Old Chinese magic squares, Sinologica 7 (1962), 14–53.

    MATH  Google Scholar 

  78. G. R. Blakley, Islamic and Indian magic squares, Parts I and II, History of Religions 8 (1969), 181–209; 271–299.

    Article  Google Scholar 

  79. Sylvain E. Cappell and Julius L. Shaneson, Euler–Maclaurin expansions for lattices above dimension one, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), no. 7, 885–890.

    MathSciNet  MATH  Google Scholar 

  80. Leonard Carlitz, Some theorems on generalized Dedekind sums, Pacific J. Math. 3 (1953), 513–522.

    Article  MathSciNet  MATH  Google Scholar 

  81. G. R. Blakley, Some polynomials associated with Dedekind sums, Acta Math. Acad. Sci. Hungar. 26 (1975), no. 3–4, 311–319.

    MathSciNet  Google Scholar 

  82. John W. S. Cassels, An Introduction to the Geometry of Numbers, Classics in Mathematics, Springer-Verlag, Berlin, 1997, Corrected reprint of the 1971 edition.

    Google Scholar 

  83. Clara S. Chan, David P. Robbins, and David S. Yuen, On the volume of a certain polytope, Experiment. Math. 9 (2000), no. 1, 91–99, arXiv:math.CO/9810154.

    Google Scholar 

  84. Beifang Chen, Weight functions, double reciprocity laws, and volume formulas for lattice polyhedra, Proc. Natl. Acad. Sci. USA 95 (1998), no. 16, 9093–9098.

    Article  MathSciNet  MATH  Google Scholar 

  85. John W. S., Lattice points, Dedekind sums, and Ehrhart polynomials of lattice polyhedra, Discrete Comput. Geom. 28 (2002), no. 2, 175–199.

    Article  MathSciNet  MATH  Google Scholar 

  86. Beifang Chen and Vladimir Turaev, Counting lattice points of rational polyhedra, Adv. Math. 155 (2000), no. 1, 84–97.

    Article  MathSciNet  MATH  Google Scholar 

  87. Louis Comtet, Advanced Combinatorics, enlarged ed., D. Reidel Publishing Co., Dordrecht, 1974.

    Book  MATH  Google Scholar 

  88. David Cox, Christian Haase, Takayuki Hibi, and Akihiro Higashitani, Integer decomposition property of dilated polytopes, Electron. J. Combin. 21 (2014), no. 4, P4.28, 17 pp.

    Google Scholar 

  89. Michele D’Adderio and Luca Moci, Ehrhart polynomial and arithmetic Tutte polynomial, European J. Combin. 33 (2012), no. 7, 1479–1483, arXiv:math/1102.0135.

    Google Scholar 

  90. Wolfgang Dahmen and Charles A. Micchelli, The number of solutions to linear Diophantine equations and multivariate splines, Trans. Amer. Math. Soc. 308 (1988), no. 2, 509–532.

    Article  MathSciNet  MATH  Google Scholar 

  91. Vladimir I. Danilov, The geometry of toric varieties, Uspekhi Mat. Nauk 33 (1978), 85–134, 247.

    MathSciNet  MATH  Google Scholar 

  92. Robert Davis, Ehrhart series of polytopes related to symmetric doubly-stochastic matrices, Preprint (arXiv:math/1409.2742).

    Google Scholar 

  93. J. Leslie Davison, On the linear Diophantine problem of Frobenius, J. Number Theory 48 (1994), no. 3, 353–363.

    Article  MathSciNet  MATH  Google Scholar 

  94. Jesús A. De Loera, David Haws, Raymond Hemmecke, Peter Huggins, and Ruriko Yoshida, A user’s guide for LattE v1.1, software package LattE, 2004. Electronically available at https://www.math.ucdavis.edu/~latte/.

  95. Jesús A. De Loera, Raymond Hemmecke, and Matthias Köppe, Algebraic and Geometric Ideas in the Theory of Discrete Optimization, MOS-SIAM Series on Optimization, vol. 14, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Mathematical Optimization Society, Philadelphia, PA, 2013.

    Google Scholar 

  96. Jesús A. De Loera, Raymond Hemmecke, Jeremiah Tauzer, and Ruriko Yoshida, Effective lattice point counting in rational convex polytopes, J. Symbolic Comput. 38 (2004), no. 4, 1273–1302.

    Article  MathSciNet  Google Scholar 

  97. Jesús A. De Loera and Shmuel Onn, The complexity of three-way statistical tables, SIAM J. Comput. 33 (2004), no. 4, 819–836, arXiv:math.CO/0207200.

    Google Scholar 

  98. Jesús A. De Loera, Jörg Rambau, and Francisco Santos, Triangulations, Algorithms and Computation in Mathematics, vol. 25, Springer-Verlag, Berlin, 2010.

    Google Scholar 

  99. Richard Dedekind, Erläuterungen zu den Fragmenten XXVIII, Collected Works of Bernhard Riemann, Dover Publ., New York, 1953, pp. 466–478.

    Google Scholar 

  100. Max Dehn, Die Eulersche Formel im Zusammenhang mit dem Inhalt in der nicht-euklidischen Geometrie, Math. Ann. 61 (1905), 279–298.

    MathSciNet  MATH  Google Scholar 

  101. József Dénes and Anthony D. Keedwell, Latin squares and their applications, Academic Press, New York, 1974.

    MATH  Google Scholar 

  102. Graham Denham, Short generating functions for some semigroup algebras, Electron. J. Combin. 10 (2003), Research Paper 36, 7 pp.

    Google Scholar 

  103. David Desario and Sinai Robins, Generalized solid-angle theory for real polytopes, Q. J. Math. 62 (2011), no. 4, 1003–1015, arXiv:0708.0042.

    Google Scholar 

  104. Persi Diaconis and Anil Gangolli, Rectangular arrays with fixed margins, Discrete Probability and Algorithms (Minneapolis, MN, 1993), Springer, New York, 1995, pp. 15–41.

    Google Scholar 

  105. Ricardo Diaz and Sinai Robins, Pick’s formula via the Weierstrass ℘-function, Amer. Math. Monthly 102 (1995), no. 5, 431–437.

    Article  MathSciNet  MATH  Google Scholar 

  106. John W. S., The Ehrhart polynomial of a lattice polytope, Ann. of Math. (2) 145 (1997), no. 3, 503–518.

    Google Scholar 

  107. Ulrich Dieter, Das Verhalten der Kleinschen Funktionenlog σ g,h 1 2 ) gegenüber Modultransformationen und verallgemeinerte Dedekindsche Summen, J. Reine Angew. Math. 201 (1959), 37–70.

    MathSciNet  MATH  Google Scholar 

  108. John W. S., Cotangent sums, a further generalization of Dedekind sums, J. Number Theory 18 (1984), no. 3, 289–305.

    Article  MathSciNet  Google Scholar 

  109. Eugène Ehrhart, Sur les polyèdres rationnels homothétiques à n dimensions, C. R. Acad. Sci. Paris 254 (1962), 616–618.

    MathSciNet  MATH  Google Scholar 

  110. John W. S., Sur les carrés magiques, C. R. Acad. Sci. Paris Sér. A-B 277 (1973), A651–A654.

    Google Scholar 

  111. John W. S., Polynômes arithmétiques et méthode des polyèdres en combinatoire, Birkhäuser Verlag, Basel, 1977, International Series of Numerical Mathematics, Vol. 35.

    Google Scholar 

  112. Günter Ewald, Combinatorial convexity and algebraic geometry, Graduate Texts in Mathematics, vol. 168, Springer-Verlag, New York, 1996.

    Book  Google Scholar 

  113. Leonid G. Fel and Boris Y. Rubinstein, Restricted partition function as Bernoulli and Euler polynomials of higher order, Ramanujan J. 11 (2006), no. 3, 331–348, arXiv:math.NT/0304356.

    Google Scholar 

  114. Matthew H. J. Fiset and Alexander M. Kasprzyk, A note on palindromic δ-vectors for certain rational polytopes, Electron. J. Combin. 15 (2008), no. 1, Note 18, 4 pp.

    Google Scholar 

  115. Lenny Fukshansky and Sinai Robins, Bounds for solid angles of lattices of rank three, J. Combin. Theory Ser. A 118 (2011), no. 2, 690–701, arXiv:1006.0743.

    Google Scholar 

  116. William Fulton, Introduction to Toric Varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993.

    Google Scholar 

  117. Stavros Garoufalidis and James E. Pommersheim, Values of zeta functions at negative integers, Dedekind sums and toric geometry, J. Amer. Math. Soc. 14 (2001), no. 1, 1–23.

    Article  MathSciNet  MATH  Google Scholar 

  118. Ewgenij Gawrilow and Michael Joswig, polymake: a framework for analyzing convex polytopes, Polytopes—combinatorics and computation (Oberwolfach, 1997), DMV Sem., vol. 29, Birkhäuser, Basel, 2000, pp. 43–73, Software polymake available at www.polymake.org/.

  119. Ira M. Gessel, Generating functions and generalized Dedekind sums, Electron. J. Combin. 4 (1997), no. 2, Research Paper 11, 17 pp.

    Google Scholar 

  120. Kurt Girstmair, On the fractional parts of Dedekind sums, Int. J. Number Theory 11 (2015), no. 1, 29–38.

    Article  MathSciNet  MATH  Google Scholar 

  121. Jørgen P. Gram, Om rumvinklerne i et polyeder, Tidsskrift for Math. (Copenhagen) 4 (1874), no. 3, 161–163.

    Google Scholar 

  122. Nick Gravin, Jean B. Lasserre, Dmitrii V. Pasechnik, and Sinai Robins, The inverse moment problem for convex polytopes, Discrete Comput. Geom. 48 (2012), no. 3, 596–621.

    Article  MathSciNet  MATH  Google Scholar 

  123. Nick Gravin, Sinai Robins, and Dmitry Shiryaev, Translational tilings by a polytope, with multiplicity, Combinatorica 32 (2012), no. 6, 629–649, arXiv:1103.3163.

    Google Scholar 

  124. Harold Greenberg, An algorithm for a linear Diophantine equation and a problem of Frobenius, Numer. Math. 34 (1980), no. 4, 349–352.

    Article  MathSciNet  MATH  Google Scholar 

  125. Peter M. Gruber, Convex and discrete geometry, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 336, Springer, Berlin, 2007.

    Google Scholar 

  126. Branko Grünbaum, Convex Polytopes, second ed., Graduate Texts in Mathematics, vol. 221, Springer-Verlag, New York, 2003, Prepared and with a preface by Volker Kaibel, Victor Klee, and Günter M. Ziegler.

    Google Scholar 

  127. Victor Guillemin, Riemann–Roch for toric orbifolds, J. Differential Geom. 45 (1997), no. 1, 53–73.

    MathSciNet  MATH  Google Scholar 

  128. Ulrich Halbritter, Some new reciprocity formulas for generalized Dedekind sums, Results Math. 8 (1985), no. 1, 21–46.

    Article  MathSciNet  MATH  Google Scholar 

  129. Richard R. Hall and Martin N. Huxley, Dedekind sums and continued fractions, Acta Arith. 63 (1993), no. 1, 79–90.

    MathSciNet  MATH  Google Scholar 

  130. Richard R. Hall, J. C. Wilson, and Don Zagier, Reciprocity formulae for general Dedekind–Rademacher sums, Acta Arith. 73 (1995), no. 4, 389–396.

    Google Scholar 

  131. Martin Henk, Achill Schürmann, and Jörg M. Wills, Ehrhart polynomials and successive minima, Mathematika 52 (2005), no. 1–2, 1–16 (2006), arXiv:math.MG/0507528.

    Google Scholar 

  132. Jürgen Herzog, Generators and relations of abelian semigroups and semigroup rings., Manuscripta Math. 3 (1970), 175–193.

    Article  MathSciNet  MATH  Google Scholar 

  133. Takayuki Hibi, Some results on Ehrhart polynomials of convex polytopes, Discrete Math. 83 (1990), no. 1, 119–121.

    Article  MathSciNet  MATH  Google Scholar 

  134. Matthew H. J., Algebraic Combinatorics on Convex Polytopes, Carslaw, 1992.

    Google Scholar 

  135. Matthew H. J., Dual polytopes of rational convex polytopes, Combinatorica 12 (1992), no. 2, 237–240.

    Article  MathSciNet  MATH  Google Scholar 

  136. Dean Hickerson, Continued fractions and density results for Dedekind sums, J. Reine Angew. Math. 290 (1977), 113–116.

    MathSciNet  MATH  Google Scholar 

  137. Lutz Hille and Harald Skarke, Reflexive polytopes in dimension 2 and certain relations inSL2 (ℤ), J. Algebra Appl. 1 (2002), no. 2, 159–173.

    Article  MathSciNet  MATH  Google Scholar 

  138. Friedrich Hirzebruch, Neue topologische Methoden in der algebraischen Geometrie, Ergebnisse der Mathematik und ihrer Grenzgebiete (N.F.), Heft 9, Springer-Verlag, Berlin, 1956.

    Google Scholar 

  139. Matthew H. J., Eulerian polynomials, Münster J. Math. 1 (2008), 9–14.

    MathSciNet  Google Scholar 

  140. Friedrich Hirzebruch and Don Zagier, The Atiyah–Singer Theorem and Elementary Number Theory, Publish or Perish Inc., Boston, Mass., 1974.

    Google Scholar 

  141. Jeffrey Hood and David Perkinson, Some facets of the polytope of even permutation matrices, Linear Algebra Appl. 381 (2004), 237–244.

    Article  MathSciNet  MATH  Google Scholar 

  142. Masa-Nori Ishida, Polyhedral Laurent series and Brion’s equalities, Internat. J. Math. 1 (1990), no. 3, 251–265.

    Article  MathSciNet  MATH  Google Scholar 

  143. Maruf Israilovich Israilov, Determination of the number of solutions of linear Diophantine equations and their applications in the theory of invariant cubature formulas, Sibirsk. Mat. Zh. 22 (1981), no. 2, 121–136, 237.

    Google Scholar 

  144. Ravi Kannan, Lattice translates of a polytope and the Frobenius problem, Combinatorica 12 (1992), no. 2, 161–177.

    Article  MathSciNet  MATH  Google Scholar 

  145. Jean-Michel Kantor and Askold G. Khovanskiĭ, Une application du théorème de Riemann–Roch combinatoire au polynôme d’Ehrhart des polytopes entiers de R d, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), no. 5, 501–507.

    Google Scholar 

  146. Yael Karshon, Shlomo Sternberg, and Jonathan Weitsman, The Euler–Maclaurin formula for simple integral polytopes, Proc. Natl. Acad. Sci. USA 100 (2003), no. 2, 426–433.

    Article  MathSciNet  MATH  Google Scholar 

  147. Askold G. Khovanskiĭ and Aleksandr V. Pukhlikov, The Riemann–Roch theorem for integrals and sums of quasipolynomials on virtual polytopes, Algebra i Analiz 4 (1992), no. 4, 188–216.

    MathSciNet  MATH  Google Scholar 

  148. Peter Kirschenhofer, Attila Pethő, and Robert F. Tichy, On analytical and Diophantine properties of a family of counting polynomials, Acta Sci. Math. (Szeged) 65 (1999), no. 1–2, 47–59.

    MathSciNet  MATH  Google Scholar 

  149. Daniel A. Klain and Gian-Carlo Rota, Introduction to Geometric Probability, Lezioni Lincee, Cambridge University Press, Cambridge, 1997.

    Google Scholar 

  150. Victor Klee, A combinatorial analogue of Poincaré’s duality theorem, Canad. J. Math. 16 (1964), 517–531.

    Article  MathSciNet  MATH  Google Scholar 

  151. Donald E. Knuth, Permutations, matrices, and generalized Young tableaux, Pacific J. Math. 34 (1970), 709–727.

    MathSciNet  Google Scholar 

  152. Matthew H. J., Notes on generalized Dedekind sums, Acta Arith. 33 (1977), no. 4, 297–325.

    MathSciNet  MATH  Google Scholar 

  153. Matthew H. J., The Art of Computer Programming. Vol. 2, second ed., Addison-Wesley Publishing Co., Reading, Mass., 1981.

    Google Scholar 

  154. Matthias Köppe, A primal Barvinok algorithm based on irrational decompositions, SIAM J. Discrete Math. 21 (2007), no. 1, 220–236, arXiv:math.CO/0603308. Software LattE macchiato available at http://www.math.ucdavis.edu/~mkoeppe/latte/.

  155. Thomas W. Körner, Fourier Analysis, Cambridge University Press, Cambridge, 1988.

    Google Scholar 

  156. Maximilian Kreuzer and Harald Skarke, Classification of reflexive polyhedra in three dimensions, Adv. Theor. Math. Phys. 2 (1998), no. 4, 853–871, arXiv:hep-th/9805190.

    Google Scholar 

  157. Matthew H. J., Complete classification of reflexive polyhedra in four dimensions, Adv. Theor. Math. Phys. 4 (2000), no. 6, 1209–1230, arXiv:hep-th/0002240.

    Google Scholar 

  158. Jean B. Lasserre, Moments, positive polynomials and their applications, Imperial College Press Optimization Series, vol. 1, Imperial College Press, London, 2010.

    Google Scholar 

  159. Jean B. Lasserre and Eduardo S. Zeron, On counting integral points in a convex rational polytope, Math. Oper. Res. 28 (2003), no. 4, 853–870.

    Article  MathSciNet  MATH  Google Scholar 

  160. Jim Lawrence, Valuations and polarity, Discrete Comput. Geom. 3 (1988), no. 4, 307–324.

    Article  MathSciNet  MATH  Google Scholar 

  161. Matthew H. J., Polytope volume computation, Math. Comp. 57 (1991), no. 195, 259–271.

    Article  MathSciNet  MATH  Google Scholar 

  162. Matthew H. J., A short proof of Euler’s relation for convex polytopes, Canad. Math. Bull. 40 (1997), no. 4, 471–474.

    Article  MathSciNet  MATH  Google Scholar 

  163. Arjen K. Lenstra, Hendrik W. Lenstra, Jr., and László Lovász, Factoring polynomials with rational coefficients, Math. Ann. 261 (1982), no. 4, 515–534.

    Google Scholar 

  164. Eva Linke, Rational Ehrhart quasi-polynomials, J. Combin. Theory Ser. A 118 (2011), no. 7, 1966–1978, arXiv:1006.5612.

    Google Scholar 

  165. László Lovász, Combinatorial Problems and Exercises, second ed., North-Holland Publishing Co., Amsterdam, 1993.

    MATH  Google Scholar 

  166. Ian G. Macdonald, Polynomials associated with finite cell-complexes, J. London Math. Soc. (2) 4 (1971), 181–192.

    Google Scholar 

  167. Percy A. MacMahon, Combinatory Analysis, Chelsea Publishing Co., New York, 1960, reprint of the 1915 original.

    Google Scholar 

  168. Evgeny N. Materov, The Bott formula for toric varieties, Mosc. Math. J. 2 (2002), no. 1, 161–182, arXiv:math.AG/9904110.

    Google Scholar 

  169. Tyrrell B. McAllister and Kevin M. Woods, The minimum period of the Ehrhart quasi-polynomial of a rational polytope, J. Combin. Theory Ser. A 109 (2005), no. 2, 345–352, arXiv:math.CO/0310255.

    Google Scholar 

  170. Peter McMullen, On zonotopes, Trans. Amer. Math. Soc. 159 (1971), 91–109.

    Article  MathSciNet  MATH  Google Scholar 

  171. Matthew H. J., Valuations and Euler-type relations on certain classes of convex polytopes, Proc. London Math. Soc. (3) 35 (1977), no. 1, 113–135.

    Google Scholar 

  172. Matthew H. J., Lattice invariant valuations on rational polytopes, Arch. Math. (Basel) 31 (1978/79), no. 5, 509–516.

    MathSciNet  Google Scholar 

  173. Peter McMullen and Geoffrey C. Shephard, Diagrams for centrally symmetric polytopes, Mathematika 15 (1968), 123–138.

    Article  MathSciNet  MATH  Google Scholar 

  174. Curt Meyer, Über einige Anwendungen Dedekindscher Summen, J. Reine Angew. Math. 198 (1957), 143–203.

    MathSciNet  MATH  Google Scholar 

  175. Jeffrey L. Meyer, Character analogues of Dedekind sums and transformations of analytic Eisenstein series, Pacific J. Math. 194 (2000), no. 1, 137–164.

    Article  MathSciNet  MATH  Google Scholar 

  176. Werner Meyer and Robert Sczech, Über eine topologische und zahlentheoretische Anwendung von Hirzebruchs Spitzenauflösung, Math. Ann. 240 (1979), no. 1, 69–96.

    Article  MathSciNet  MATH  Google Scholar 

  177. Ezra Miller and Bernd Sturmfels, Combinatorial Commutative Algebra, Graduate Texts in Mathematics, vol. 227, Springer-Verlag, New York, 2005.

    Google Scholar 

  178. Hermann Minkowski, Geometrie der Zahlen, Bibliotheca Mathematica Teubneriana, Band 40, Johnson Reprint Corp., New York, 1968.

    Google Scholar 

  179. Marcel Morales, Syzygies of monomial curves and a linear Diophantine problem of Frobenius, Preprint, Max-Planck-Institut für Mathematik, Bonn, 1986.

    Google Scholar 

  180. Matthew H. J., Noetherian symbolic blow-ups, J. Algebra 140 (1991), no. 1, 12–25.

    Article  MathSciNet  MATH  Google Scholar 

  181. Louis J. Mordell, Lattice points in a tetrahedron and generalized Dedekind sums, J. Indian Math. Soc. (N.S.) 15 (1951), 41–46.

    Google Scholar 

  182. Robert Morelli, Pick’s theorem and the Todd class of a toric variety, Adv. Math. 100 (1993), no. 2, 183–231.

    Article  MathSciNet  MATH  Google Scholar 

  183. Gerald Myerson, On semiregular finite continued fractions, Arch. Math. (Basel) 48 (1987), no. 5, 420–425.

    Article  MathSciNet  MATH  Google Scholar 

  184. Walter Nef, Zur Einführung der Eulerschen Charakteristik, Monatsh. Math. 92 (1981), no. 1, 41–46.

    Article  MathSciNet  MATH  Google Scholar 

  185. Benjamin Nill and Andreas Paffenholz, On the equality case in Ehrhart’s volume conjecture, Preprint (arXiv:1205.1270).

    Google Scholar 

  186. C. D. Olds, Anneli Lax, and Giuliana P. Davidoff, The Geometry of Numbers, Anneli Lax New Mathematical Library, vol. 41, Mathematical Association of America, Washington, DC, 2000.

    Google Scholar 

  187. Paul C. Pasles, The lost squares of Dr. Franklin: Ben Franklin’s missing squares and the secret of the magic circle, Amer. Math. Monthly 108 (2001), no. 6, 489–511.

    Article  MathSciNet  MATH  Google Scholar 

  188. Sam Payne, Ehrhart series and lattice triangulations, Discrete Comput. Geom. 40 (2008), no. 3, 365–376, arXiv:math/0702052.

    Google Scholar 

  189. Micha A. Perles and Geoffrey C. Shephard, Angle sums of convex polytopes, Math. Scand. 21 (1967), 199–218.

    MathSciNet  MATH  Google Scholar 

  190. Georg Alexander Pick, Geometrisches zur Zahlenlehre, Sitzenber. Lotos (Prague) 19 (1899), 311–319.

    Google Scholar 

  191. Clifford A. Pickover, The Zen of Magic Squares, Circles, and Stars, Princeton University Press, Princeton, NJ, 2002.

    MATH  Google Scholar 

  192. Christopher Polis, Pick’s theorem extended and generalized, Math. Teacher (1991), 399–401.

    Google Scholar 

  193. James E. Pommersheim, Toric varieties, lattice points and Dedekind sums, Math. Ann. 295 (1993), no. 1, 1–24.

    Article  MathSciNet  MATH  Google Scholar 

  194. Bjorn Poonen and Fernando Rodriguez-Villegas, Lattice polygons and the number 12, Amer. Math. Monthly 107 (2000), no. 3, 238–250.

    Article  MathSciNet  MATH  Google Scholar 

  195. Tiberiu Popoviciu, Asupra unei probleme de patitie a numerelor, Acad. Republicii Populare Romane, Filiala Cluj, Studii si cercetari stiintifice 4 (1953), 7–58.

    Google Scholar 

  196. Alexander Postnikov, Permutohedra, associahedra, and beyond, Int. Math. Res. Not. (2009), no. 6, 1026–1106, arXiv:math/0507163.

    Google Scholar 

  197. Hans Rademacher, Generalization of the reciprocity formula for Dedekind sums, Duke Math. J. 21 (1954), 391–397.

    Article  MathSciNet  MATH  Google Scholar 

  198. C. D. Olds, Some remarks on certain generalized Dedekind sums, Acta Arith. 9 (1964), 97–105.

    MathSciNet  Google Scholar 

  199. Hans Rademacher and Emil Grosswald, Dedekind Sums, The Mathematical Association of America, Washington, D.C., 1972.

    MATH  Google Scholar 

  200. Jorge L. Ramírez Alfonsín, Complexity of the Frobenius problem, Combinatorica 16 (1996), no. 1, 143–147.

    Article  MathSciNet  Google Scholar 

  201. C. D. Olds, The Diophantine Frobenius Problem, Oxford Lecture Series in Mathematics and its Applications, vol. 30, Oxford University Press, Oxford, 2005.

    Google Scholar 

  202. J. E. Reeve, On the volume of lattice polyhedra, Proc. London Math. Soc. (3) 7 (1957), 378–395.

    Google Scholar 

  203. Les Reid and Leslie G. Roberts, Monomial subrings in arbitrary dimension, J. Algebra 236 (2001), no. 2, 703–730.

    Article  MathSciNet  MATH  Google Scholar 

  204. Jason M. Ribando, Measuring solid angles beyond dimension three, Discrete Comput. Geom. 36 (2006), no. 3, 479–487.

    Article  MathSciNet  MATH  Google Scholar 

  205. Adrian Rice, Brought to book: the curious story of Guglielmo Libri (1803–69), European Mathematical Society Newsletter 48 (2003), 12–14.

    Google Scholar 

  206. Jürgen Richter-Gebert, Realization spaces of polytopes, Lecture Notes in Mathematics, vol. 1643, Springer-Verlag, Berlin Heidelberg, 1996.

    Google Scholar 

  207. Bjarke Hammersholt Roune, Solving thousand-digit Frobenius problems using Gröbner bases, J. Symbolic Comput. 43 (2008), no. 1, 1–7, arXiv:math/0702040.

    Google Scholar 

  208. Boris Y. Rubinstein, Expression for restricted partition function through Bernoulli polynomials, Ramanujan J. 15 (2008), no. 2, 177–185.

    Article  MathSciNet  MATH  Google Scholar 

  209. Steven V Sam, A bijective proof for a theorem of Ehrhart, Amer. Math. Monthly 116 (2009), no. 8, 688–701, arXiv:0801.4432v5.

    Google Scholar 

  210. Jan Schepers and Leen Van Langenhoven, Unimodality questions for integrally closed lattice polytopes, Ann. Comb. 17 (2013), no. 3, 571–589, arXiv:math/1110.3724.

    Google Scholar 

  211. Ludwig Schläfli, Theorie der vielfachen Kontinuität, Ludwig Schläfli, 1814–1895, Gesammelte Mathematische Abhandlungen, Vol. I, Birkhäuser, Basel, 1950, pp. 167–387.

    Google Scholar 

  212. Pieter Hendrik Schoute, Analytic treatment of the polytopes regularly derived from the regular polytopes, Verhandelingen der Koninklijke Akademie von Wetenschappen te Amsterdam 11 (1911), no. 3.

    Google Scholar 

  213. Alexander Schrijver, Combinatorial Optimization. Polyhedra and Efficiency. Vol. A–C, Algorithms and Combinatorics, vol. 24, Springer-Verlag, Berlin, 2003.

    Google Scholar 

  214. Paul R. Scott, On convex lattice polygons, Bull. Austral. Math. Soc. 15 (1976), no. 3, 395–399.

    Article  MathSciNet  Google Scholar 

  215. Sinan Sertöz, On the number of solutions of the Diophantine equation of Frobenius, Diskret. Mat. 10 (1998), no. 2, 62–71.

    Article  MathSciNet  MATH  Google Scholar 

  216. Jeffrey Shallit, The Frobenius problem and its generalizations, Developments in language theory, Lecture Notes in Comput. Sci., vol. 5257, Springer, Berlin, 2008, pp. 72–83.

    Google Scholar 

  217. Jeffrey Shallit and James Stankewicz, Unbounded discrepancy in Frobenius numbers, Integers 11 (2011), A2, 8 pp.

    Article  MathSciNet  MATH  Google Scholar 

  218. Geoffrey C. Shephard, An elementary proof of Gram’s theorem for convex polytopes, Canad. J. Math. 19 (1967), 1214–1217.

    Article  MathSciNet  MATH  Google Scholar 

  219. J. E. Reeve, Combinatorial properties of associated zonotopes, Canad. J. Math. 26 (1974), 302–321.

    Article  MathSciNet  MATH  Google Scholar 

  220. Carl Ludwig Siegel, Lectures on the Geometry of Numbers, Springer-Verlag, Berlin, 1989, Notes by B. Friedman, rewritten by Komaravolu Chandrasekharan with the assistance of Rudolf Suter, with a preface by Chandrasekharan.

    Google Scholar 

  221. R. Jamie Simpson and Robert Tijdeman, Multi-dimensional versions of a theorem of Fine and Wilf and a formula of Sylvester, Proc. Amer. Math. Soc. 131 (2003), no. 6, 1661–1671.

    Google Scholar 

  222. David Solomon, Algebraic properties of Shintani’s generating functions: Dedekind sums and cocycles onPGL2 ( Q ), Compositio Math. 112 (1998), no. 3, 333–362.

    Article  MathSciNet  MATH  Google Scholar 

  223. Duncan M. Y. Sommerville, The relation connecting the angle-sums and volume of a polytope in space of n dimensions, Proc. Roy. Soc. London, Ser. A 115 (1927), 103–119.

    Google Scholar 

  224. Richard P. Stanley, Linear homogeneous Diophantine equations and magic labelings of graphs, Duke Math. J. 40 (1973), 607–632.

    MATH  Google Scholar 

  225. Duncan M. Y., Combinatorial reciprocity theorems, Advances in Math. 14 (1974), 194–253.

    Article  MathSciNet  Google Scholar 

  226. Duncan M. Y., Decompositions of rational convex polytopes, Ann. Discrete Math. 6 (1980), 333–342.

    Article  MathSciNet  MATH  Google Scholar 

  227. Duncan M. Y., On the Hilbert function of a graded Cohen–Macaulay domain, J. Pure Appl. Algebra 73 (1991), no. 3, 307–314.

    Article  MathSciNet  Google Scholar 

  228. Duncan M. Y., A zonotope associated with graphical degree sequences, Applied geometry and discrete mathematics, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 4, Amer. Math. Soc., Providence, RI, 1991, pp. 555–570.

    Google Scholar 

  229. Duncan M. Y., Combinatorics and Commutative Algebra, second ed., Progress in Mathematics, vol. 41, Birkhäuser Boston Inc., Boston, MA, 1996.

    Google Scholar 

  230. Duncan M. Y., Enumerative Combinatorics. Volume 1, second ed., Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press, Cambridge, 2012.

    Google Scholar 

  231. Duncan M. Y., How the Upper Bound Conjecture Was Proved, Ann. Comb. 18 (2014), no. 3, 533–539.

    Article  MathSciNet  MATH  Google Scholar 

  232. Alan Stapledon, Additive number theory and inequalities in Ehrhart theory, Preprint (arXiv:0904.3035v2).

    Google Scholar 

  233. Duncan M. Y., Weighted Ehrhart theory and orbifold cohomology, Adv. Math. 219 (2008), no. 1, 63–88, arXiv:math/0711.4382.

    Google Scholar 

  234. Duncan M. Y., Inequalities and Ehrhart δ-vectors, Trans. Amer. Math. Soc. 361 (2009), no. 10, 5615–5626, arXiv:math/0801.0873.

    Google Scholar 

  235. Bernd Sturmfels, On vector partition functions, J. Combin. Theory Ser. A 72 (1995), no. 2, 302–309.

    Article  MathSciNet  MATH  Google Scholar 

  236. Duncan M. Y., Gröbner Bases and Convex Polytopes, University Lecture Series, vol. 8, American Mathematical Society, Providence, RI, 1996.

    Google Scholar 

  237. James J. Sylvester, On the partition of numbers, Quaterly J. Math. 1 (1857), 141–152.

    Google Scholar 

  238. Duncan M. Y., On subinvariants, i.e. semi-invariants to binary quantics of an unlimited order, Amer. J. Math. 5 (1882), 119–136.

    Google Scholar 

  239. Duncan M. Y., Mathematical questions with their solutions, Educational Times 41 (1884), 171–178.

    Google Scholar 

  240. András Szenes and Michèle Vergne, Residue formulae for vector partitions and Euler–Maclaurin sums, Adv. in Appl. Math. 30 (2003), no. 1–2, 295–342, arXiv:math.CO/0202253.

    Google Scholar 

  241. Lajos Takács, On generalized Dedekind sums, J. Number Theory 11 (1979), no. 2, 264–272.

    Article  MathSciNet  MATH  Google Scholar 

  242. Audrey Terras, Fourier Analysis on Finite Groups and Applications, London Mathematical Society Student Texts, vol. 43, Cambridge University Press, Cambridge, 1999.

    Book  Google Scholar 

  243. John A. Todd, The geometrical invariants of algebraic loci, Proc. London Math. Soc. 43 (1937), 127–141.

    MathSciNet  MATH  Google Scholar 

  244. Duncan M. Y., The geometrical invariants of algebraic loci (second paper), Proc. London Math. Soc. 45 (1939), 410–424.

    MathSciNet  Google Scholar 

  245. Amitabha Tripathi, The number of solutions to ax + by = n, Fibonacci Quart. 38 (2000), no. 4, 290–293.

    MathSciNet  MATH  Google Scholar 

  246. Duncan M. Y., On the Frobenius problem for geometric sequences, Integers 8 (2008), A43, 5 pp.

    MathSciNet  Google Scholar 

  247. Duncan M. Y., On the Frobenius problem for {a k ,a k + 1,a k + a,…,a k + a k−1 }, Integers 10 (2010), A44, 523–529.

    Google Scholar 

  248. Helge Tverberg, How to cut a convex polytope into simplices, Geometriae Dedicata 3 (1974), 239–240.

    Article  MathSciNet  MATH  Google Scholar 

  249. Alexander N. Varchenko, Combinatorics and topology of the arrangement of affine hyperplanes in the real space, Funktsional. Anal. i Prilozhen. 21 (1987), no. 1, 11–22.

    MathSciNet  Google Scholar 

  250. Sven Verdoolaege, Software package barvinok, (2004), electronically available at http://freshmeat.net/projects/barvinok/.

  251. John von Neumann, A certain zero-sum two-person game equivalent to the optimal assignment problem, Contributions to the Theory of Games, vol. 2, Annals of Mathematics Studies, no. 28, Princeton University Press, Princeton, N. J., 1953, pp. 5–12.

    Google Scholar 

  252. Herbert S. Wilf, generatingfunctionology, second ed., Academic Press Inc., Boston, MA, 1994, electronically available at http://www.math.upenn.edu/&~wilf/DownldGF.html.

  253. Kevin Woods, Computing the period of an Ehrhart quasi-polynomial, Electron. J. Combin. 12 (2005), no. 1, Research Paper 34, 12 pp.

    Google Scholar 

  254. Guoce Xin, Constructing all magic squares of order three, Discrete Math. 308 (2008), no. 15, 3393–3398, arXiv:math.CO/0409468.

    Google Scholar 

  255. Don Zagier, Higher dimensional Dedekind sums, Math. Ann. 202 (1973), 149–172.

    Article  MathSciNet  MATH  Google Scholar 

  256. Claudia Zaslavsky, Africa Counts, Prindle, Weber & Schmidt, Inc., Boston, Mass., 1973.

    MATH  Google Scholar 

  257. Doron Zeilberger, Proof of a conjecture of Chan, Robbins, and Yuen, Electron. Trans. Numer. Anal. 9 (1999), 147–148.

    MathSciNet  MATH  Google Scholar 

  258. Günter M. Ziegler, Lectures on Polytopes, Springer-Verlag, New York, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Matthias Beck and Sinai Robins

About this chapter

Cite this chapter

Beck, M., Robins, S. (2015). Solid Angles. In: Computing the Continuous Discretely. Undergraduate Texts in Mathematics. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2969-6_13

Download citation

Publish with us

Policies and ethics