Skip to main content

Part of the book series: Fields Institute Communications ((FIC,volume 75))

Abstract

Any finite dimensional embedded invariant torus of a Hamiltonian system, densely filled by quasi-periodic solutions, is isotropic. This property allows us to construct a set of symplectic coordinates in a neighborhood of the torus in which the Hamiltonian is in a generalized KAM normal form with angle-dependent coefficients. Based on this observation we develop an approach to KAM theory via a Nash-Moser implicit function iterative theorem. The key point is to construct an approximate right inverse of the differential operator associated to the linearized Hamiltonian system at each approximate quasi-periodic solution. In the above symplectic coordinates the linearized dynamics on the tangential and normal directions to the approximate torus are approximately decoupled. The construction of an approximate inverse is thus reduced to solving a quasi-periodically forced linear differential equation in the normal variables. Applications of this procedure allow to prove the existence of finite dimensional Diophantine invariant tori of autonomous PDEs.

Dedicated to Walter Craig for his 60th birthday.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arcostanzo, M., Arnaud, M.C., Bolle, P., and Zavidovique, M.: Tonelli Hamiltonians without conjugate points and C 0 integrability. Math. Z. 280, 165–194 (2015)

    Article  MathSciNet  Google Scholar 

  2. Baldi, P., Berti, M., Montalto, R.: KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation. Math. Ann. 359(1–2), 471–536 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  3. Baldi, P., Berti, M., Montalto, R.: KAM for autonomous quasi-linear perturbations of KdV, preprint (2014)

    Google Scholar 

  4. Berti, M., Bolle, P.: Sobolev quasi periodic solutions of multidimensional wave equations with a multiplicative potential. Nonlinearity 25, 2579–2613 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Berti, M., Bolle, P.: Quasi-periodic solutions with Sobolev regularity of NLS on \(\mathbb{T}^{d}\) with a multiplicative potential. J. Eur. Math. Soc. 15, 229–286 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  6. Berti, M., Bolle, P.: Quasi-periodic solutions for autonomous NLW on \(\mathbb{T}^{d}\) with a multiplicative potential, in preparation

    Google Scholar 

  7. Berti, M., Bolle, P., Procesi, M.: An abstract Nash-Moser theorem with parameters and applications to PDEs. Ann. I. H. Poincaré 1, 377–399 (2010)

    Article  MathSciNet  Google Scholar 

  8. Berti, M., Corsi, L., Procesi, M.: An abstract Nash-Moser theorem and quasi-periodic solutions for NLW and NLS on compact Lie groups and homogeneous spaces. Comm. Math. Phys. 334, 1413–1454 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bourgain, J.: Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE. Int. Math. Res. Not. 11, 475–497 (1994)

    Article  MathSciNet  Google Scholar 

  10. Bourgain, J.: Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations. Ann. Math. 148, 363–439 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bourgain, J.: Green’s function estimates for lattice Schrödinger operators and applications. Annals of Mathematics Studies, vol. 158. Princeton University Press, Princeton (2005)

    Google Scholar 

  12. Craig, W.: Problèmes de petits diviseurs dans les équations aux dérivées partielles, Panoramas et Synthèses, vol. 9. Société Mathématique de France, Paris (2000)

    Google Scholar 

  13. Craig, W., Wayne, C.E.: Newton’s method and periodic solutions of nonlinear wave equation. Comm. Pure Appl. Math. 46, 1409–1498 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. De la Llave, R., Gonzalez, A., Jorba, A., Villanueva, J.: KAM theory without action-angle variables. Nonlinearity 18, 855–895 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Eliasson, L.H.: Perturbations of stable invariant tori for Hamiltonian systems. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (4) 15(1), 115–147 (1988)

    Google Scholar 

  16. Eliasson, L.H., Kuksin, S.: KAM for non-linear Schrödinger equation. Ann. Math. 172, 371–435 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Fejoz, J.: Démonstration du théorème d’ Arnold sur la stabilité du système planétaire (d’ après M. Herman). Ergodic Theory Dyn. Syst. 24, 1–62 (2004)

    Google Scholar 

  18. Fontich, E., De La Llave, R., Sire, Y.: A method for the study of whiskered quasi-periodic and almost-periodic solutions in finite and infinite dimensional Hamiltonian systems. Electron. Res. Announc. Math. Sci. 16, 9–22 (2009)

    MATH  MathSciNet  Google Scholar 

  19. Herman, M.: Inégalités “a priori” pour des tores lagrangiens invariants par des difféomorphismes symplectiques. Publ. Math. Inst. Hautes Étud. Sci. 70, 47–101 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kuksin, S.: Hamiltonian perturbations of infinite-dimensional linear systems with imaginary spectrum. Funktsional. Anal. i Prilozhen. 21(3), 22–37, 95 (1987)

    Google Scholar 

  21. Kuksin, S.: Analysis of Hamiltonian PDEs, Oxford University Press, Oxford (2000)

    Google Scholar 

  22. Moser, J.: A rapidly convergent iteration method and non-linear partial differential equations I-II. Ann. Scuola Norm. Sup. Pisa 3(20), 265–315, 499–535 (1966)

    Google Scholar 

  23. Moser, J.: Convergent series expansions for quasi-periodic motions. Math. Ann. 169, 136–176 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  24. Moser, J., Zehnder, E.: Notes on Dynamical Systems, Courant Lecture Notes, vol. 12. Courant Institute of Mathematical Sciencce, New York (2005)

    Google Scholar 

  25. Pöschel, J.: A KAM-theorem for some nonlinear partial differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (1) 4(23), 119–148 (1996)

    Google Scholar 

  26. Procesi, M., Xu, X.: Quasi-Töplitz Functions in KAM Theorem. SIAM J. Math Anal. 45(4), 2148–2181 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  27. Salamon, D., Zehnder, E.: KAM theory in configuration space. Comm. Math. Helv. 64, 84–132 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  28. Wayne, E.: Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory. Comm. Math. Phys. 127, 479–528 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  29. Zehnder, E.: Generalized implicit function theorems with applications to some small divisors problems I-II. Comm. Pure Appl. Math. 28, 91–140 (1975); 29, 49–113 (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Berti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Berti, M., Bolle, P. (2015). A Nash-Moser Approach to KAM Theory. In: Guyenne, P., Nicholls, D., Sulem, C. (eds) Hamiltonian Partial Differential Equations and Applications. Fields Institute Communications, vol 75. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2950-4_9

Download citation

Publish with us

Policies and ethics