Skip to main content

On a Fluid-Particle Interaction Model: Global in Time Weak Solutions Within a Moving Domain in \(\mathbb{R}^{3}\)

  • Chapter
Hamiltonian Partial Differential Equations and Applications

Part of the book series: Fields Institute Communications ((FIC,volume 75))

Abstract

A fluid-particle interaction model is presented for the evolution of particles dispersed in a fluid. The fluid flow is governed by the Navier-Stokes equations for a compressible fluid while the evolution of the particle densities is given by the Smoluchowski equation. The coupling between the dispersed and dense phases is obtained through the drag forces that the fluid and particles exert mutually. In the present context, the flow occupies a physical domain Ω t with boundary Γ t both of which vary in time. Global-in-time weak solutions are obtained using an approach based on penalization of the boundary behavior and viscosity in the weak formulation.

Dedicated to Walter Craig, mentor and friend, in honor of his 60th birthday.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amsden, A.A.: Kiva-3V Release 2, Improvements to Kiva-3V. Technical Report, Los Alamos National Laboratory (1999)

    Book  Google Scholar 

  2. Amsden, A.A., O’Rourke, P.J., Butler, T.D.: Kiva-2, a computer program for chemical reactive flows with sprays. Technical Report. Los Alamos National Laboratory (1989)

    Google Scholar 

  3. Angot, P., Bruneau, Ch.-H., Fabrie, P.: A penalization method to take into account obstacles in incompressible viscous flows. Numer. Math. 81 (4), 497–520 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ballew, J., Trivisa, K.: Weakly dissipative solutions and weak-strong uniqueness for the Navier-Stokes-Smoluchowski system. Nonlinear Anal. 91, 1–19 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  5. Baranger, C.: Modélisation, étude mathématique et simulation des collisions dans les fluides complexes. Théses ENS Cachan, Juin (2004)

    Google Scholar 

  6. Berres, S., Bürger, R., Karlsen, K.H., Rory, E.M.: Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression. SIAM J. Appl. Math. 64, 41–80 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Caflisch, R., Papanicolaou, G.: Dynamic theory of suspensions with brownian effects. SIAM J. Appl. Math. 43, 885–906 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  8. Carrillo, J.A., Goudon, T.: Stability and asymptotic analysis of a fluid-particle interaction model. Commun. Partial Differ. Equ. 31, 1349–1379 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Carrillo, J.A., Goudon, T., Lafitte, P.: Simulation of fluid and particles flows: asymptotic preserving schemes for bubbling and flowing regimes. J. Comput. Phys. 227, 7929–7951 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Carrillo, J.A., Karper, T., Trivisa, K.: On the dynamics of a fluid-particle interaction model: The bubbling regime. Nonlinear Anal. 74, 2778–2801 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. DiPerna, R.J., Lions, P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–547 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  12. Donatelli, D., Trivisa, K.: On a nonlinear model for tumor growth: Global in time weak solutions. J. Math. Fluid Mech. 16(4), 787–803 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  13. Donatelli, D., Trivisa, K.: On a nonlinear model for tumor growth with drug application. To appear in Nonlinearity (2015)

    Google Scholar 

  14. Donatelli, D., Trivisa, K.: On a nonlinear model for tumor growth in a cellular medium. Preprint (2015)

    Google Scholar 

  15. Feireisl, E.: Dynamics of Viscous Compressible Fluids. Oxford University Press, Oxford (2003)

    Book  Google Scholar 

  16. Feiresl, E., Neustupa, J., Stebel, J.: Convergence of a Brinkman-type penalization for compressible fluid flows. J. Differ. Equ. 250(1), 596–606 (2011)

    Article  Google Scholar 

  17. Feireisl, E., Kreml, O., Necasova, S., Neustupa, J., Stebel, J.: Weak solutions to the barotropic Navier-Stokes system with slip boundary conditions in time dependent domains. J. Differ. Equ. 254, 125–140 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  18. Friedman, A.: A hierarchy of cancer models and their mathematical challenges. Discrete Contin. Dyn. Syst. 4(1), 147–159 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lions, P.L.: Mathematical Topics in Fluid Dynamics Compressible Models, vol. 2. Oxford Science Publication, Oxford (1998)

    Google Scholar 

  20. Mellet, A., Vasseur, A.: Asymptotic analysis for a Vlasov-Fokker-Planck compressible Navier-Stokes system of equations. Commun. Math. Phys. 281, 573–596 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Mellet, A., Vasseur, A.: Global weak solutions for a Vlasov-Fokker-Planck Navier-Stokes system of equations. Math. Models Methods Appl. Sci. 17, 1039–1063 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. Osher, S., Fedwik, R.: Level Set Methods and Dynamic Implicit Surfaces. Applied Mathematical Science, vol. 153. Springer, New York (2003)

    Google Scholar 

  23. Williams, F.A.: Combustion Theory. Benjamin/Cummings, Menlo Park, CA (1985)

    Google Scholar 

Download references

Acknowledgements

The work of S.D. was supported in part by the National Science Foundation under the grant DMS-1211519 and by the John Osborn Memorial Summer Fellowship. K.T. gratefully acknowledges the support in part by the National Science Foundation under the grant DMS-1211519 and by the Simons Foundation under the Simons Fellows in Mathematics Award 267399.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantina Trivisa .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Free Energy Solutions: Global in Time Existence Within Bounded and Unbounded Domains \(\varOmega \subset \mathbb{R}^{3}\)

In this section, we present for completeness the main results on global existence of free energy solutions to (2a)–(2c) for both bounded and unbounded fixed domains. We impose the no-slip boundary condition for the velocity and no-flux for the particle density, which in the present context has the form

$$\displaystyle{ \mathbf{u}\big\vert _{\partial \varOmega } = (\nabla _{x}\eta +\eta \nabla _{x}\varPhi ) \cdot \nu \big\vert _{\partial \varOmega } = 0\,\,\,\mbox{ for a.a.}\,\,\,t \in (0,T), }$$
(59)

with ν denoting the outer normal vector to the boundary ∂ Ω. The usual pressure and stress tensor, (3), (4), are imposed.

Our problem is supplemented with the initial data {η 0, ρ 0, u 0} such that

$$\displaystyle{ \begin{array}{ll} \eta (0,x) & =\eta _{0} \in L^{2}(\varOmega ) \cap L_{+}^{1}(\varOmega ), \\ \rho (0,x) & =\rho _{0} \in L^{\gamma }(\varOmega ) \cap L_{+}^{1}(\varOmega ), \\ (\rho \mathbf{u})(0,x)& = \mathbf{m}_{0} \in L^{\frac{6} {5} }(\varOmega ) \cap L^{1}(\varOmega ). \end{array} }$$
(60)

The total energy of the mixture is given by

$$\displaystyle{ E(\eta,\rho,\mathbf{u})(t):=\int _{\varOmega }\frac{1} {2}\rho (t)\vert \mathbf{u}(t)\vert ^{2} + \frac{a} {\gamma -1}\rho ^{\gamma }(t) + (\eta \log \eta )(t) + (\beta \rho +\eta )(t)\varPhi \ \mathrm{d}x. }$$
(61)

At the formal level, the total energy can be viewed as a Lyapunov function satisfying the energy inequality

$$\displaystyle{ \frac{dE} {dt} +\int _{\varOmega }\mu \vert \nabla _{x}\mathbf{u}\vert ^{2} +\lambda \vert \mathrm{div}_{ x}\mathbf{u}\vert ^{2} + \vert 2\nabla _{ x}\sqrt{\eta } + \sqrt{\eta }\nabla _{x}\varPhi \vert ^{2}\ \mathrm{d}x \leq 0. }$$
(62)

Definition 4.

Let us assume that (Ω, Φ) satisfy the confinement hypotheses (HC). We say that {ρ, u, η} is a free-energy solution of problem (2a)–(2c) with boundary conditions (59) and initial data satisfying (60) provided that the following hold:

  • The fluid density ρ ≥ 0 represents a renormalized solution of Eq. (2a) on a time-space cylinder \((0,\infty )\times \varOmega\), that is, for any test function \(\varphi \in \mathcal{D}([0,T) \times \overline{\varOmega })\), any T > 0, and any b such that

    $$\displaystyle{b \in L^{\infty }\cap C[0,\infty ),\ B(\rho ) =\rho B(1) +\rho \int _{ 1}^{\rho }\frac{b(z)} {z^{2}} \ \mathrm{d}z,}$$

    the following integral identity holds:

$$\displaystyle{ \int _{0}^{\infty }\int _{ \varOmega }\Big(B(\rho )\partial _{t}\varphi + B(\rho )\mathbf{u} \cdot \nabla _{x}\varphi - b(\rho )\mathrm{div}_{x}\mathbf{u}\varphi \Big)\ \mathrm{d}x\ \mathrm{d}t = -\int _{\varOmega }B(\rho _{0})\varphi (0,\cdot )\ \mathrm{d}x. }$$
(63)
  • The balance of momentum holds in a distributional sense, namely

    $$\displaystyle\begin{array}{rcl} & & \int _{0}^{\infty }\int _{ \varOmega }\Big(\rho \mathbf{u} \cdot \partial _{t}\varphi +\rho \mathbf{u} \otimes \mathbf{u}: \nabla _{x}\varphi + (p(\rho )+\eta )\mathrm{div}_{x}\varphi \Big)\ \mathrm{d}x\ \mathrm{d}t \\ & & \quad =\int _{ 0}^{\infty }\int _{ \varOmega }- (\mu \nabla _{x}\mathbf{u}\ +\lambda \mathrm{div}_{x}\mathbf{u}\mathbb{I}): \nabla _{x}\varphi + (\eta +\beta \rho )\nabla _{x}\varPhi \cdot \varphi \ \mathrm{d}x\ \mathrm{d}t \\ & & \quad \ -\int _{\varOmega }(\rho \mathbf{u})_{0} \cdot \varphi (0,\cdot )\ \mathrm{d}x {}\end{array}$$
    (64)

    for any test function \(\varphi \in \mathcal{D}([0,T);\mathcal{D}(\overline{\varOmega }; \mathbb{R}^{3}))\) and any T > 0 satisfying \(\varphi \vert _{\partial \varOmega } = 0\).

    All quantities appearing in (64) are supposed to be at least integrable. In particular, the velocity field u belongs to the space \(L^{2}(0,T;W^{1,2}(\varOmega; \mathbb{R}^{3}))\), therefore it is legitimate to require u to satisfy the boundary conditions (59) in the sense of traces.

  • The particle density η ≥ 0 is a weak solution of (2c). In particular, the integral identity

    $$\displaystyle{ \int _{0}^{\infty }\!\!\!\int _{ \varOmega }\eta \partial _{t}\varphi +\eta \mathbf{u} \cdot \nabla _{x}\varphi -\eta \nabla _{x}\varPhi \cdot \nabla _{x}\varphi -\nabla _{x}\eta \cdot \nabla _{x}\varphi \ \mathrm{d}x\mathrm{d}t = -\int _{\varOmega }\eta _{0}\varphi (0,\cdot )\ \mathrm{d}x }$$
    (65)

    is satisfied for test functions \(\varphi \in \mathcal{D}([0,T) \times \overline{\varOmega })\) and any T > 0.

    All quantities appearing in (65) must be at least integrable on (0, T) ×Ω. In particular, η belongs \(L^{2}(0,T;L^{3}(\varOmega )) \cap L^{1}(0,T;W^{1,\frac{3} {2} }(\varOmega )).\)

  • Given the total free-energy of the system by

    $$\displaystyle{E(\rho,\mathbf{u},\eta )(t):=\int _{\varOmega }\left (\frac{1} {2}\rho \vert \mathbf{u}\vert ^{2} + \frac{a} {\gamma -1}\rho ^{\gamma } +\eta \log \eta +(\beta \rho +\eta )\varPhi \right )\ \mathrm{d}x,}$$

    then E(ρ, u, η)(t) is finite and bounded by the initial energy of the system, i.e., E(ρ, u, η)(t) ≤ E(ρ 0, u 0, η 0) a.e. t > 0. Moreover, the following free energy-dissipation inequality holds

$$\displaystyle{ \int _{0}^{\infty }\!\!\!\int \left (\mu \vert \nabla _{ x}\mathbf{u}\vert ^{2} +\lambda \vert \mathrm{div}_{ x}\mathbf{u}\vert ^{2} + \vert 2\nabla _{ x}\sqrt{\eta } + \sqrt{\eta }\nabla _{x}\varPhi \vert ^{2}\right )\,\mathrm{d}x\mathrm{d}t \leq E(\rho _{ 0},\mathbf{u}_{0},\eta _{0}). }$$
(66)

We can now state the main result on global existence. For the details of the proof we refer the reader to Carrillo, et al. [10].

Theorem 2.

Global Existence Let us assume that (Ω,Φ) satisfy the confinement hypotheses (HC) . Then, the problem  (2a)–(2c) supplemented with boundary conditions  (59) and initial data satisfying  (60) admits a weak solution {ρ, u ,η} on \((0,\infty )\times \varOmega\) in the sense of Definition  4 . In addition,

  1. i)

    the total fluid mass and particle mass given by

    $$\displaystyle{M_{\rho }(t) =\int _{\varOmega }\rho (t,\cdot )\ dx\qquad \mbox{ and}\qquad M_{\eta }(t) =\int _{\varOmega }\eta (t,\cdot )\ dx,}$$

    respectively, are constants of motion.

  2. ii)

    the density satisfies the higher integrability result

    $$\displaystyle{\rho \in L^{\gamma +\varTheta }((0,T)\times \varOmega ),}$$

    for any T > 0, where \(\varTheta =\min \{ \frac{2} {3}\gamma - 1, \frac{1} {4}\}\) .

We can also completely characterize the large time behavior of free-energy solutions.

Theorem 3.

Large-time Asymptotics: Let us assume that (Ω,Φ) satisfy the confinement hypotheses (HC) . Then, for any free-energy solution (ρ, u ,η) of the problem  (2a)–(2c) , in the sense of Definition  4 , there exist universal stationary states ρ s = ρ s (x), η s = η s (x), such that

$$\displaystyle{\left \{\begin{array}{ll} &\rho (t) \rightarrow \rho _{s}\ \mbox{ strongly in}\ \ L^{\gamma }(\varOmega ), \\ &\mathop{\mathrm{ess\ sup}}\nolimits \limits _{\tau >t}\int _{\varOmega }\rho (\tau )\vert \mathbf{u}(\tau )\vert ^{2}\,dx \rightarrow 0, \\ &\eta (t) \rightarrow \eta _{s}\ \mbox{ strongly in}\ \ L^{p_{2}}(\varOmega )\,\,\mbox{ for}\,\,p_{2} > 1.\\ \end{array} \right.}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Doboszczak, S., Trivisa, K. (2015). On a Fluid-Particle Interaction Model: Global in Time Weak Solutions Within a Moving Domain in \(\mathbb{R}^{3}\) . In: Guyenne, P., Nicholls, D., Sulem, C. (eds) Hamiltonian Partial Differential Equations and Applications. Fields Institute Communications, vol 75. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2950-4_4

Download citation

Publish with us

Policies and ethics