Skip to main content

Junctional Signaling in Endothelial Cells

  • Chapter
  • First Online:
Endothelial Signaling in Development and Disease
  • 1054 Accesses

Abstract

Cell-to-cell junctions not only support the crucial function of mutual adhesion among the cells of the endothelial layer but they also harmonize the signaling and transcription program of each individual cell to its adhesive interactions with neighboring cells. Such coordination is achieved through association with cell-to-cell junctions of multiprotein complexes that can start specific signaling programs, depending on the state of cell-to-cell junctions, and that can also modulate the organization of cell-to-cell junctions themselves. Such reciprocity between adhesion and signaling is crucial for the physiological activity of the endothelium.

On the other hand, dysfunctions of endothelial cell-to-cell junctions appear to play central roles in several vascular pathologies. The molecular basis of such defects starts to be recognized and delineates endothelial cell-to-cell junctions as possible pharmacological targets for therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adam AP, Sharenko AL, Pumiglia K, Vincent PA. Src-induced tyrosine phosphorylation of VE-cadherin is not sufficient to decrease barrier function of endothelial monolayers. J Biol Chem. 2010;285:7045–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Akers AL, Johnson E, Steinberg GK, Zabramski JM, Marchuk DA. Biallelic somatic and germline mutations in cerebral cavernous malformations (CCMs): evidence for a two-hit mechanism of CCM pathogenesis. Hum Mol Genet. 2009;18:919–30.

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Anastasiadis PZ. p120-ctn: a nexus for contextual signaling via Rho GTPases. Biochim Biophys Acta. 2007;1773:34–46.

    Article  CAS  PubMed  Google Scholar 

  4. Baluk P, Hashizume H, McDonald DM. Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev. 2005;15:102–11.

    Article  CAS  PubMed  Google Scholar 

  5. Baluk P, et al. Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exp Med. 2007;204:2349–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Birukova AA, Tian X, Tian Y, Higginbotham K, Birukov KG. Rap-afadin axis in control of Rho signaling and endothelial barrier recovery. Mol Biol Cell. 2013;24:2678–88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Boulday G, et al. Developmental timing of CCM2 loss influences cerebral cavernous malformations in mice. J Exp Med. 2011;208:1835–47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Bravi L, et al. Sulindac metabolites decrease cerebrovascular malformations in CCM3-knockout mice. Proc Natl Acad Sci U S A. 2015;112(27):8421–6.

    Google Scholar 

  9. Brunet A, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 1999;96:857–68.

    Article  CAS  PubMed  Google Scholar 

  10. Carmeliet P. Angiogenesis in health and disease. Nat Med. 2003;9:653–60.

    Article  CAS  PubMed  Google Scholar 

  11. Carmeliet P, et al. Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell. 1999;98:147–57.

    Article  CAS  PubMed  Google Scholar 

  12. Cattelino A, et al. The conditional inactivation of the beta-catenin gene in endothelial cells causes a defective vascular pattern and increased vascular fragility. J Cell Biol. 2003;162:1111–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Chen XL, et al. VEGF-induced vascular permeability is mediated by FAK. Dev Cell. 2012;22:146–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Chrzanowska-Wodnicka M, Kraus AE, Gale D, White GC 2nd & Vansluys J. Defective angiogenesis, endothelial migration, proliferation, and MAPK signaling in Rap1b-deficient mice. Blood. 2008;111:2647–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Claesson-Welsh L, Welsh M. VEGFA and tumour angiogenesis. J Intern Med. 2013;273:114–27.

    Article  CAS  PubMed  Google Scholar 

  16. Clevers H, Nusse R. Wnt/beta-catenin signaling and disease. Cell. 2012;149:1192–205.

    Article  CAS  PubMed  Google Scholar 

  17. Collisson EA, Carranza DC, Chen IY, Kolodney MS. Isoprenylation is necessary for the full invasive potential of RhoA overexpression in human melanoma cells. J Invest Dermatol. 2002;119:1172–6.

    Article  CAS  PubMed  Google Scholar 

  18. Corada M, et al. Vascular endothelial-cadherin is an important determinant of microvascular integrity in vivo. Proc Natl Acad Sci U S A. 1999;96:9815–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Corada M, et al. Monoclonal antibodies directed to different regions of vascular endothelial cadherin extracellular domain affect adhesion and clustering of the protein and modulate endothelial permeability. Blood. 2001;97:1679–84.

    Article  CAS  PubMed  Google Scholar 

  20. Cristante E, et al. Identification of an essential endogenous regulator of blood-brain barrier integrity, and its pathological and therapeutic implications. Proc Natl Acad Sci U S A. 2013;110:832–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Daneman R, et al. Wnt/beta-catenin signaling is required for CNS, but not non-CNS, angiogenesis. Proc Natl Acad Sci U S A. 2009;106:641–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Dejana E, Tournier-Lasserve E, Weinstein BM. The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev Cell. 2009;16:209–21.

    Article  CAS  PubMed  Google Scholar 

  23. Fagotto F. Looking beyond the Wnt pathway for the deep nature of beta-catenin. EMBO Rep. 2013;14:422–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Fukuhara S, et al. Differential function of Tie2 at cell-cell contacts and cell-substratum contacts regulated by angiopoietin-1. Nat Cell Biol. 2008;10:513–26.

    Article  CAS  PubMed  Google Scholar 

  25. Gault J, et al. Cerebral cavernous malformations: somatic mutations in vascular endothelial cells. Neurosurgery. 2009;65:138–44; discussion 144–5.

    Google Scholar 

  26. Gavard J, Gutkind JS. VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol. 2006;8:1223–34.

    Article  CAS  PubMed  Google Scholar 

  27. Gavard J, Patel V, Gutkind JS. Angiopoietin-1 prevents VEGF-induced endothelial permeability by sequestering Src through mDia. Dev Cell. 2008;14:25–36.

    Article  CAS  PubMed  Google Scholar 

  28. Giampietro C, et al. Overlapping and divergent signaling pathways of N-cadherin and VE-cadherin in endothelial cells. Blood. 2012;119:2159–70.

    Article  CAS  PubMed  Google Scholar 

  29. Gingras AR, Liu JJ, Ginsberg MH. Structural basis of the junctional anchorage of the cerebral cavernous malformations complex. J Cell Biol. 2012;199:39–48.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Glading AJ, Ginsberg MH. Rap1 and its effector KRIT1/CCM1 regulate beta-catenin signaling. Dis Model Mech. 2010;3:73–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Glading A, Han J, Stockton RA, Ginsberg MH. KRIT-1/CCM1 is a Rap1 effector that regulates endothelial cell cell junctions. J Cell Biol. 2007;179:247–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Gloerich M, Bos JL. Regulating Rap small G-proteins in time and space. Trends Cell Biol. 2011;21:615–23.

    Article  CAS  PubMed  Google Scholar 

  33. Goentoro L, Kirschner MW. Evidence that fold-change, and not absolute level, of beta-catenin dictates Wnt signaling. Mol Cell. 2009;36:872–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Gore AV, Lampugnani MG, Dye L, Dejana E, Weinstein BM. Combinatorial interaction between CCM pathway genes precipitates hemorrhagic stroke. Dis Model Mech. 2008;1:275–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Hayashi M, et al. VE-PTP regulates VEGFR2 activity in stalk cells to establish endothelial cell polarity and lumen formation. Nat Commun. 2013;4:1672.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. He Y, et al. Stabilization of VEGFR2 signaling by cerebral cavernous malformation 3 is critical for vascular development. Sci Signal. 2010;3:ra26.

    PubMed Central  PubMed  Google Scholar 

  37. Herwig MC, Tsokos M, Hermanns MI, Kirkpatrick CJ, Muller AM. Vascular endothelial cadherin expression in lung specimens of patients with sepsis-induced acute respiratory distress syndrome and endothelial cell cultures. Pathobiology. 2013;80:245–51.

    Article  CAS  PubMed  Google Scholar 

  38. Iden S, et al. A distinct PAR complex associates physically with VE-cadherin in vertebrate endothelial cells. EMBO Rep. 2006;7:1239–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Kam Y, Quaranta V. Cadherin-bound beta-catenin feeds into the Wnt pathway upon adherens junctions dissociation: evidence for an intersection between beta-catenin pools. PloS One. 2009;4:e4580.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Kleaveland B, et al. Regulation of cardiovascular development and integrity by the heart of glass-cerebral cavernous malformation protein pathway. Nat Med. 2009;15:169–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Koh GY. Orchestral actions of angiopoietin-1 in vascular regeneration. Trends Mol Med. 2013;19:31–9.

    Article  CAS  PubMed  Google Scholar 

  42. Kooistra MR, Corada M, Dejana E, Bos JL. Epac1 regulates integrity of endothelial cell junctions through VE-cadherin. FEBS Lett. 2005;579:4966–72.

    Article  CAS  PubMed  Google Scholar 

  43. Korswagen HC, Herman MA, Clevers HC. Distinct beta-catenins mediate adhesion and signalling functions in C. elegans. Nature. 2000;406:527–32.

    Article  CAS  PubMed  Google Scholar 

  44. Kovacic JC, Mercader N, Torres M, Boehm M, Fuster V. Epithelial-to-mesenchymal and endothelial-to-mesenchymal transition: from cardiovascular development to disease. Circulation. 2012;125:1795–808.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Lambeng, N. et al. Vascular endothelial-cadherin tyrosine phosphorylation in angiogenic and quiescent adult tissues. Circ Res. 2005;96:384–91.

    Google Scholar 

  46. Lampugnani MG. Endothelial cell-to-cell junctions: adhesion and signaling in physiology and pathology. Cold Spring Harb Perspect Med 2012;2:pii: a006528.

    Google Scholar 

  47. Lampugnani MG, et al. A novel endothelial-specific membrane protein is a marker of cell-cell contacts. J Cell Biol. 1992;118:1511–22.

    Article  CAS  PubMed  Google Scholar 

  48. Lampugnani MG, et al. VE-cadherin regulates endothelial actin activating Rac and increasing membrane association of Tiam. Mol Biol Cell. 2002;13:1175–89.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Lampugnani MG, et al. Contact inhibition of VEGF-induced proliferation requires vascular endothelial cadherin, beta-catenin, and the phosphatase DEP-1/CD148. J Cell Biol. 2003;161:793–804.

    Article  PubMed Central  CAS  Google Scholar 

  50. Lampugnani MG, Orsenigo F, Gagliani MC, Tacchetti C, Dejana E. Vascular endothelial cadherin controls VEGFR-2 internalization and signaling from intracellular compartments. J Cell Biol. 2006;174:593–604.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Lampugnani MG, et al. CCM1 regulates vascular-lumen organization by inducing endothelial polarity. J Cell Sci. 2010;123:1073–80.

    Article  CAS  PubMed  Google Scholar 

  52. Lenard A, et al. In vivo analysis reveals a highly stereotypic morphogenetic pathway of vascular anastomosis. Dev Cell. 2013;25:492–506.

    Article  CAS  PubMed  Google Scholar 

  53. Liao F, et al. Selective targeting of angiogenic tumor vasculature by vascular endothelial-cadherin antibody inhibits tumor growth without affecting vascular permeability. Cancer Res. 2002;62:2567–75.

    CAS  PubMed  Google Scholar 

  54. Liebner S, et al. Beta-catenin is required for endothelial-mesenchymal transformation during heart cushion development in the mouse. J Cell Biol. 2004;166:359–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Liebner S, et al. Wnt/beta-catenin signaling controls development of the blood-brain barrier. J Cell Biol. 2008;183:409–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Lilien J, Balsamo J. The regulation of cadherin-mediated adhesion by tyrosine phosphorylation/dephosphorylation of beta-catenin. Curr Opin Cell Biol. 2005;17:459–65.

    Article  CAS  PubMed  Google Scholar 

  57. Lopez D, Niu G, Huber P, Carter WB. Tumor-induced upregulation of Twist, Snail, and Slug represses the activity of the human VE-cadherin promoter. Arch Biochem Biophys. 2009;482:77–82.

    Article  CAS  PubMed  Google Scholar 

  58. Maddaluno L, et al. EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature. 2013;498:492–6.

    Article  CAS  PubMed  Google Scholar 

  59. Maher MT, Flozak AS, Stocker AM, Chenn A, Gottardi CJ. Activity of the beta-catenin phosphodestruction complex at cell-cell contacts is enhanced by cadherin-based adhesion. J Cell Biol. 2009;186:219–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Mandai K, Rikitake Y, Shimono Y, Takai Y. Afadin/AF-6 and canoe: roles in cell adhesion and beyond. Prog Mol Biol Translational Sci. 2013;116:433–54.

    Article  CAS  Google Scholar 

  61. May C, et al. Identification of a transiently exposed VE-cadherin epitope that allows for specific targeting of an antibody to the tumor neovasculature. Blood. 2005;105:4337–44.

    Article  CAS  PubMed  Google Scholar 

  62. McDonald DA, et al. A novel mouse model of cerebral cavernous malformations based on the two-hit mutation hypothesis recapitulates the human disease. Hum Mol Genet. 2011;20:211–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. McDonald DA, et al. Fasudil decreases lesion burden in a murine model of cerebral cavernous malformation disease. Stroke. 2012;43:571–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Medici D, Kalluri R. Endothelial-mesenchymal transition and its contribution to the emergence of stem cell phenotype. Semin Cancer Biol. 2012;22:379–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Medici D, Hay ED, Olsen BR. Snail and Slug promote epithelial-mesenchymal transition through beta-catenin-T-cell factor-4-dependent expression of transforming growth factor-beta3. Mol Biol Cell. 2008;19:4875–87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Miyoshi J, Takai Y. Nectin and nectin-like molecules: biology and pathology. Am J Nephrol. 2007;27:590–604.

    Article  CAS  PubMed  Google Scholar 

  67. Monaghan-Benson E, Burridge K. The regulation of vascular endothelial growth factor-induced microvascular permeability requires Rac and reactive oxygen species. J Biol Chem. 2009;284:25602–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Montero-Balaguer M, et al. Stable vascular connections and remodeling require full expression of VE-cadherin in zebrafish embryos. PloS ONE. 2009;4:e5772.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  69. Nanes BA, et al. p120-catenin binding masks an endocytic signal conserved in classical cadherins. J Cell Biol. 2012;199:365–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Navarro P, et al. Catenin-dependent and -independent functions of vascular endothelial cadherin. J Biol Chem. 1995;270:30965–72.

    Article  CAS  PubMed  Google Scholar 

  71. Nelson WJ. Regulation of cell-cell adhesion by the cadherin-catenin complex. Biochem Soc Trans. 2008;36:149–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Nitta T, et al. Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol. 2003;161:653–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Noda K, et al. Vascular endothelial-cadherin stabilizes at cell-cell junctions by anchoring to circumferential actin bundles through alpha- and beta-catenins in cyclic AMP-Epac-Rap1 signal-activated endothelial cells. Mol Biol Cell. 2010;21:584–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Oas RG, et al. p120-catenin and beta-catenin differentially regulate cadherin adhesive function. Mol Biol Cell. 2013;24:704–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Orsenigo F, et al. Phosphorylation of VE-cadherin is modulated by haemodynamic forces and contributes to the regulation of vascular permeability in vivo. Nat Commun. 2012;3:1208.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  76. Pagenstecher A, Stahl S, Sure U, Felbor U. A two-hit mechanism causes cerebral cavernous malformations: complete inactivation of CCM1, CCM2 or CCM3 in affected endothelial cells. Hum Mol Genet. 2009;18:911–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Pannekoek WJ, et al. Epac1 and PDZ-GEF cooperate in Rap1 mediated endothelial junction control. Cell Signal. 2011;23:2056–64.

    Article  CAS  PubMed  Google Scholar 

  78. Paolinelli R, et al. Wnt activation of immortalized brain endothelial cells as a tool for generating a standardized model of the blood brain barrier in vitro. PloS ONE. 2013;8:e70233.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Park HJ, et al. 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors interfere with angiogenesis by inhibiting the geranylgeranylation of RhoA. Circ Res. 2002;91:143–50.

    Article  CAS  PubMed  Google Scholar 

  80. Petit N, Blecon A, Denier C, Tournier-Lasserve E. Patterns of expression of the three cerebral cavernous malformation (CCM) genes during embryonic and postnatal brain development. Gene Expr Patterns. 2006;6:495–503.

    Article  CAS  PubMed  Google Scholar 

  81. Potter MD, Barbero S, Cheresh DA. Tyrosine phosphorylation of VE-cadherin prevents binding of p120- and beta-catenin and maintains the cellular mesenchymal state. J Biol Chem. 2005;280:31906–12.

    Article  CAS  PubMed  Google Scholar 

  82. Potts JD, Dagle JM, Walder JA, Weeks DL, Runyan RB. Epithelial-mesenchymal transformation of embryonic cardiac endothelial cells is inhibited by a modified antisense oligodeoxynucleotide to transforming growth factor beta 3. Proc Natl Acad Sci U S A. 1991;88:1516–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Rampersad SN, et al. Cyclic AMP phosphodiesterase 4D (PDE4D) Tethers EPAC1 in a vascular endothelial cadherin (VE-Cad)-based signaling complex and controls cAMP-mediated vascular permeability. J Biol Chem. 2010;285:33614–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Revencu N, et al. Parkes Weber syndrome, vein of Galen aneurysmal malformation, and other fast-flow vascular anomalies are caused by RASA1 mutations. Hum Mutat. 2008;29:959–65.

    Article  CAS  PubMed  Google Scholar 

  85. Riant F, Bergametti F, Ayrignac X, Boulday G, Tournier-Lasserve E. Recent insights into cerebral cavernous malformations: the molecular genetics of CCM. FEBS J. 2010;277:1070–5.

    Article  CAS  PubMed  Google Scholar 

  86. Roberts TK, et al. CCL2 disrupts the adherens junction: implications for neuroinflammation. Lab Invest. 2012;92:1213–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Roura S, Miravet S, Piedra J, Garcia de Herreros A, Dunach M. Regulation of E-cadherin/Catenin association by tyrosine phosphorylation. J Biol Chem. 1999;274:36734–40.

    Article  CAS  PubMed  Google Scholar 

  88. Rudini N, et al. VE-cadherin is a critical endothelial regulator of TGF-beta signalling. EMBO J. 2008;27:993–1004.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Saharinen P, et al. Angiopoietins assemble distinct Tie2 signalling complexes in endothelial cell-cell and cell-matrix contacts. Nat Cell Biol. 2008;10:527–37.

    Article  CAS  PubMed  Google Scholar 

  90. Sakurai A, et al. MAGI-1 is required for Rap1 activation upon cell-cell contact and for enhancement of vascular endothelial cadherin-mediated cell adhesion. Mol Biol Cell. 2006;17:966–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Sanson B, White P, Vincent JP. Uncoupling cadherin-based adhesion from wingless signalling in Drosophila. Nature. 1996;383:627–30.

    Article  PubMed  Google Scholar 

  92. Sawada J, et al. Small GTPase R-Ras regulates integrity and functionality of tumor blood vessels. Cancer Cell. 2012;22:235–49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Schlessinger K, Hall A, Tolwinski N. Wnt signaling pathways meet Rho GTPases. Genes Dev. 2009;23:265–77.

    Article  CAS  PubMed  Google Scholar 

  94. Serebriiskii I, Estojak J, Sonoda G, Testa JR, Golemis EA. Association of Krev-1/rap1a with Krit1, a novel ankyrin repeat-containing protein encoded by a gene mapping to 7q21–22. Oncogene. 1997;15:1043–9.

    Article  CAS  PubMed  Google Scholar 

  95. Shenkar R, et al. Advanced magnetic resonance imaging of cerebral cavernous malformations: part II. Imaging of lesions in murine models. Neurosurgery. 2008;63:790–7 (discussion 797–8).

    Article  Google Scholar 

  96. Spindler V, Schlegel N, Waschke J. Role of GTPases in control of microvascular permeability. Cardiovasc Res. 2010;87:243–53.

    Article  CAS  PubMed  Google Scholar 

  97. Stahl S, et al. Novel CCM1, CCM2, and CCM3 mutations in patients with cerebral cavernous malformations: in-frame deletion in CCM2 prevents formation of a CCM1/CCM2/CCM3 protein complex. Hum Mutat. 2008;29:709–17.

    Article  CAS  PubMed  Google Scholar 

  98. Stenman JM, et al. Canonical Wnt signaling regulates organ-specific assembly and differentiation of CNS vasculature. Science. 2008;322:1247–50.

    Article  CAS  PubMed  Google Scholar 

  99. Stockton RA, Shenkar R, Awad IA, Ginsberg MH. Cerebral cavernous malformations proteins inhibit Rho kinase to stabilize vascular integrity. J Exp Med. 2010;207:881–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Taddei A, et al. Endothelial adherens junctions control tight junctions by VE-cadherin-mediated upregulation of claudin-5. Nat Cell Biol. 2008;10:923–34.

    Article  CAS  PubMed  Google Scholar 

  101. Thanou M, Gedroyc W. MRI-guided focused ultrasound as a new method of drug delivery. J Drug Deliv. 2013;2013:616197.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Timmerman I, et al. The tyrosine phosphatase SHP2 regulates recovery of endothelial adherens junctions through control of beta-catenin phosphorylation. Mol Biol Cell. 2012;23:4212–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Turowski P, et al. Phosphorylation of vascular endothelial cadherin controls lymphocyte emigration. J Cell Sci. 2008;121:29–37.

    Article  CAS  PubMed  Google Scholar 

  104. Uebelhoer M, Boon LM, Vikkula M. Vascular anomalies: from genetics toward models for therapeutic trials. Cold Spring Harbor Perspect Med. 2012;2:pii: a009688.

    Google Scholar 

  105. Ukropec JA, Hollinger MK, Salva SM, Woolkalis MJ. SHP2 association with VE-cadherin complexes in human endothelial cells is regulated by thrombin. J Biol Chem. 2000;275:5983–6.

    Article  CAS  PubMed  Google Scholar 

  106. van Wetering S, et al. Reactive oxygen species mediate Rac-induced loss of cell-cell adhesion in primary human endothelial cells. J Cell Sci. 2002;115:1837–46.

    PubMed  Google Scholar 

  107. Voss K, et al. CCM3 interacts with CCM2 indicating common pathogenesis for cerebral cavernous malformations. Neurogenetics. 2007;8:249–56.

    Article  CAS  PubMed  Google Scholar 

  108. Whitehead KJ, Plummer NW, Adams JA, Marchuk DA, Li DY. Ccm1 is required for arterial morphogenesis: implications for the etiology of human cavernous malformations. Development. 2004;131:1437–48.

    Article  CAS  PubMed  Google Scholar 

  109. Whitehead KJ, et al. The cerebral cavernous malformation signaling pathway promotes vascular integrity via Rho GTPases. Nat Med. 2009;15:177–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. Wildenberg GA, et al. p120-catenin and p190RhoGAP regulate cell-cell adhesion by coordinating antagonism between Rac and Rho. Cell. 2006;127:1027–39.

    Article  CAS  PubMed  Google Scholar 

  111. Wimmer R, Cseh B, Maier B, Scherrer K, Baccarini M. Angiogenic sprouting requires the fine tuning of endothelial cell cohesion by the Raf-1/Rok-alpha complex. Dev Cell. 2012;22:158–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  112. Xie Y, et al. Genomic characteristics of adhesion molecules in patients with symptomatic pulmonary embolism. Mol Med Rep. 2012;6:585–90.

    CAS  PubMed  Google Scholar 

  113. Yamashita K, et al. Fasudil, a Rho kinase (ROCK) inhibitor, protects against ischemic neuronal damage in vitro and in vivo by acting directly on neurons. Brain Res. 2007;1154:215–24.

    Article  CAS  PubMed  Google Scholar 

  114. Zawistowski JS, et al. CCM1 and CCM2 protein interactions in cell signaling: implications for cerebral cavernous malformations pathogenesis. Hum Mol Genet. 2005;14:2521–31.

    Article  CAS  PubMed  Google Scholar 

  115. Zhang X, et al. Phosphorylation of serine 256 suppresses transactivation by FKHR (FOXO1) by multiple mechanisms. Direct and indirect effects on nuclear/cytoplasmic shuttling and DNA binding. J Biol Chem. 2002;277:45276–84.

    Article  CAS  PubMed  Google Scholar 

  116. Zhou B, et al. Interactions between beta-catenin and transforming growth factor-beta signaling pathways mediate epithelial-mesenchymal transition and are dependent on the transcriptional co-activator cAMP-response element-binding protein (CREB)-binding protein (CBP). J Biol Chem. 2012;287:7026–38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Grazia Lampugnani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bravi, L., Lampugnani, M. (2015). Junctional Signaling in Endothelial Cells. In: Schmidt, M., Liebner, S. (eds) Endothelial Signaling in Development and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2907-8_6

Download citation

Publish with us

Policies and ethics