Skip to main content

Development and Differentiation of the Lymphatic Vascular System

  • Chapter
  • First Online:
Endothelial Signaling in Development and Disease

Abstract

The lymphatic vasculature is critical for the maintenance of homeostasis, and performs essential roles in the trafficking of fluids, immune cells, and dietary fats. This importance is highlighted by the contribution of the lymphatic vasculature to several human diseases, including lymphedema, tumor metastasis, and inflammation. In this chapter, we seek to review basic principles of lymphatic vessel biology and discuss the current understanding of molecular mechanisms involved in lymphatic endothelial cell identity, embryonic and postnatal lymphatic development and maturation. Knowledge of the underlying molecular mechanisms controlling lymphatic vessel biology may lead to targeted treatments to improve patient care in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alitalo K, Tammela T, Petrova TV. Lymphangiogenesis in development and human disease. Nature. 2005;438(7070):946–53.

    Article  CAS  PubMed  Google Scholar 

  2. Stacker SA, Achen MG, Jussila L, Baldwin ME, Alitalo K. Lymphangiogenesis and cancer metastasis. Nat Rev Cancer. 2002;2(8):573–83.

    Article  CAS  PubMed  Google Scholar 

  3. Greene AK, Grant FD, Slavin SA. Lower-extremity lymphedema and elevated body-mass index. N Engl J Med. 2012;366(22):2136–7.

    Article  CAS  PubMed  Google Scholar 

  4. Kim H, Kataru RP, Koh GY. Regulation and implications of inflammatory lymphangiogenesis. Trends Immunol. 2012;33(7):350–6.

    Article  CAS  PubMed  Google Scholar 

  5. Baluk P, Fuxe J, Hashizume H, Romano T, Lashnits E, Butz S, et al. Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exp Med. 2007;204(10):2349–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Schulte-Merker S, Sabine A, Petrova TV. Lymphatic vascular morphogenesis in development, physiology, and disease. J Cell Biol. 2011;193(4):607–18.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Sabin FR. On the origin of the lymphatic system from the veins and the development of the lymph hearts and thoracic duct in the pig. Am J Anat. 1902;1:367–91.

    Article  Google Scholar 

  8. Hagerling R, Pollmann C, Andreas M, Schmidt C, Nurmi H, Adams RH, et al. A novel multistep mechanism for initial lymphangiogenesis in mouse embryos based on ultramicroscopy. EMBO J. 2013;32(5):629–44.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Srinivasan RS, Dillard ME, Lagutin OV, Lin FJ, Tsai S, Tsai MJ, et al. Lineage tracing demonstrates the venous origin of the mammalian lymphatic vasculature. Genes Dev. 2007;21(19):2422–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Yang Y, Garcia-Verdugo JM, Soriano-Navarro M, Srinivasan RS, Scallan JP, Singh MK, et al. Lymphatic endothelial progenitors bud from the cardinal vein and intersomitic vessels in mammalian embryos. Blood. 2012;120(11):2340–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Wigle JT, Oliver G. Prox1 function is required for the development of the murine lymphatic system. Cell. 1999;98(6):769–78.

    Article  CAS  PubMed  Google Scholar 

  12. Wigle JT, Harvey N, Detmar M, Lagutina I, Grosveld G, Gunn MD, et al. An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J. 2002;21(7):1505–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Johnson NC, Dillard ME, Baluk P, McDonald DM, Harvey NL, Frase SL, et al. Lymphatic endothelial cell identity is reversible and its maintenance requires Prox1 activity. Genes Dev. 2008;22(23):3282–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Petrova TV, Makinen T, Makela TP, Saarela J, Virtanen I, Ferrell RE, et al. Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor. EMBO J. 2002;21(17):4593–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Francois M, Caprini A, Hosking B, Orsenigo F, Wilhelm D, Browne C, et al. Sox18 induces development of the lymphatic vasculature in mice. Nature. 2008;456(7222):643–69.

    Article  CAS  PubMed  Google Scholar 

  16. Irrthum A, Devriendt K, Chitayat D, Matthijs G, Glade C, Steijlen PM, et al. Mutations in the transcription factor gene SOX18 underlie recessive and dominant forms of hypotrichosis-lymphedema-telangiectasia. Am J Hum Genet. 2003;72(6):1470–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Deng Y, Atri D, Eichmann A, Simons M. Endothelial ERK signaling controls lymphatic fate specification. J Clin Invest. 2013;123(3):1202–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. You LR, Lin FJ, Lee CT, DeMayo FJ, Tsai MJ, Tsai SY. Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity. Nature. 2005;435(7038):98–104.

    Article  CAS  PubMed  Google Scholar 

  19. Lin FJ, Chen XP, Qin J, Hong YK, Tsai MJ, Tsai SY. Direct transcriptional regulation of neuropilin-2 by COUP-TFII modulates multiple steps in murine lymphatic vessel development. J Clin Invest. 2010;120(5):1694–707.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Srinivasan RS, Geng X, Yang Y, Wang YD, Mukatira S, Studer M, et al. The nuclear hormone receptor Coup-TFII is required for the initiation and early maintenance of Prox1 expression in lymphatic endothelial cells. Genes Dev. 2010;24(7):696–707.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Xu YL, Yuan L, Mak J, Pardanaud L, Caunt M, Kasman I, et al. Neuropilin-2 mediates VEGF-C-induced lymphatic sprouting together with VEGFR3. J Cell Biol. 2010;188(1):115–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Swift MR, Weinstein BM. Arterial-venous specification during development. Circ Res. 2009;104(5):576–88.

    Article  CAS  PubMed  Google Scholar 

  23. Murtomaki A, Uh MK, Choi YK, Kitajewski C, Borisenko V, Kitajewski J, et al. Notch1 functions as a negative regulator of lymphatic endothelial cell differentiation in the venous endothelium. Development. 2013;140(11):2365–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Jeltsch M, Leppanen V-M, Saharinen P, Alitalo K. Receptor tyrosine kinase-mediated angiogenesis. Cold Spring Harb Perspect Biol. 2013;5(9):1–20.

    Article  CAS  Google Scholar 

  25. Adams RH, Alitalo K. Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol. 2007;8(6):464–78.

    Article  CAS  PubMed  Google Scholar 

  26. Kaipainen A, Korhonen J, Mustonen T, van Hinsbergh VW, Fang GH, Dumont D, et al. Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci U S A. 1995;92(8):3566–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Lymboussaki A, Partanen TA, Olofsson B, Thomas-Crusells J, Fletcher CDM, de Waal RMW, et al. Expression of the vascular endothelial growth factor C receptor VEGFR-3 in lymphatic endothelium of the skin and in vascular tumors. Am J Pathol. 1998;153(2):395–403.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Partanen TA, Arola J, Saaristo A, Jussila L, Ora A, Miettinen M, et al. VEGF-C and VEGF-D expression in neuroendocrine cells and their receptor, VEGFR-3, in fenestrated blood vessels in human tissues. FASEB J. 2000;14(13):2087–96.

    Article  CAS  PubMed  Google Scholar 

  29. Tammela T, Zarkada G, Wallgard E, Murtomaki A, Suchting S, Wirzenius M, et al. Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature. 2008;454(7204):656–60.

    Article  CAS  PubMed  Google Scholar 

  30. Kukk E, Lymboussaki A, Taira S, Kaipainen A, Jeltsch M, Joukov V, et al. VEGF-C receptor binding and pattern of expression with VEGFR-3 suggests a role in lymphatic vascular development. Development. 1996;122(12):3829–37.

    CAS  PubMed  Google Scholar 

  31. Karkkainen MJ, Haiko P, Sainio K, Partanen J, Taipale J, Petrova TV, et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol. 2004;5(1):74–80.

    Article  CAS  PubMed  Google Scholar 

  32. Jeltsch M, Kaipainen A, Joukov V, Meng XJ, Lakso M, Rauvala H, et al. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science. 1997;276(5317):1423–5.

    Article  CAS  PubMed  Google Scholar 

  33. Karkkainen MJ, Ferrell RE, Lawrence EC, Kimak MA, Levinson KL, McTigue MA, et al. Missense mutations interfere with VEGFR-3 signalling in primary lymphoedema. Nat Genet. 2000;25(2):153–9.

    Article  CAS  PubMed  Google Scholar 

  34. Makinen T, Jussila L, Veikkola T, Karpanen T, Kettunen MI, Pulkkanen KJ, et al. Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nat Med. 2001;7(2):199–205.

    Article  CAS  PubMed  Google Scholar 

  35. Koch S, Claesson-Welsh L. Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb Perspect Med. 2012;2(7):a006502.

    Google Scholar 

  36. Karpanen T, Heckman CA, Keskitalo S, Jeltsch M, Ollila H, Neufeld G, et al. Functional interaction of VEGF-C and VEGF-D with neuropilin receptors. FASEB J. 2006;20(9):1462–72.

    Article  CAS  PubMed  Google Scholar 

  37. Yuan L, Moyon D, Pardanaud L, Breant C, Karkkainen MJ, Alitalo K, et al. Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development. 2002;129(20):4797–806.

    CAS  PubMed  Google Scholar 

  38. Caunt M, Mak J, Liang WC, Stawicki S, Pan Q, Tong RK, et al. Blocking neuropilin-2 function inhibits tumor cell metastasis. Cancer Cell. 2008;13(4):331–42.

    Article  CAS  PubMed  Google Scholar 

  39. Kearsey J, Petit S, De Oliveira C, Schweighoffer F. A novel four transmembrane spanning protein, CLP24. A hypoxically regulated cell junction protein. Eur J Biochem. 2004 Jul;271(13):2584–92.

    Article  CAS  PubMed  Google Scholar 

  40. Saharinen P, Helotera H, Miettinen J, Norrmen C, D'Amico G, Jeltsch M, et al. Claudin-like protein 24 interacts with the VEGFR-2 and VEGFR-3 pathways and regulates lymphatic vessel development. Genes Dev. 2010;24(9):875–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Alders M, Hogan BM, Gjini E, Salehi F, Al-Gazali L, Hennekam EA, et al. Mutations in CCBE1 cause generalized lymph vessel dysplasia in humans. Nat Genet. 2009;41(12):1272–4.

    Article  CAS  PubMed  Google Scholar 

  42. Bos FL, Caunt M, Peterson-Maduro J, Planas-Paz L, Kowalski J, Karpanen T, et al. CCBE1 is essential for mammalian lymphatic vascular development and enhances the lymphangiogenic effect of vascular endothelial growth factor-C in vivo. Circ Res. 2011;109(5):486–91.

    Article  CAS  PubMed  Google Scholar 

  43. Connell FC, Kalidas K, Ostergaard P, Brice G, Murday V, Mortimer PS, et al. CCBE1 mutations can cause a mild, atypical form of generalized lymphatic dysplasia but are not a common cause of non-immune hydrops fetalis. Clin Genet. 2012;81(2):191–7.

    Article  CAS  PubMed  Google Scholar 

  44. Hogan BM, Bos FL, Bussmann J, Witte M, Chi NC, Duckers HJ, et al. CCBE1 is required for embryonic lymphangiogenesis and venous sprouting. Nat Genet. 2009;41(4):396–8.

    Article  CAS  PubMed  Google Scholar 

  45. Planas-Paz L, Strilic B, Goedecke A, Breier G, Fassler R, Lammert E. Mechanoinduction of lymph vessel expansion. EMBO J. 2012;31(4):788–804.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Augustin HG, Koh GY, Thurston G, Alitalo K. Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol. 2009;10(3):165–77.

    Article  CAS  PubMed  Google Scholar 

  47. Gale NW, Thurston G, Hackett SF, Renard R, Wang Q, McClain J, et al. Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by angiopoietin-1. Dev Cell. 2002;3(3):411–23.

    Article  CAS  PubMed  Google Scholar 

  48. D'Amico G, Korhonen EA, Waltari M, Saharinen P, Laakkonen P, Alitalo K. Loss of endothelial Tie1 receptor impairs lymphatic vessel development. Arterioscler Thromb Vasc Biol. 2010;30(2):207–9.

    Article  PubMed  CAS  Google Scholar 

  49. Qu XH, Tompkins K, Batts LE, Puri M, Baldwin S. Abnormal embryonic lymphatic vessel development in Tie1 hypomorphic mice. Development. 2010;137(8):1285–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Kullander K, Klein R. Mechanisms and functions of EPH and ephrin signalling. Nat Rev Mol Cell Biol. 2002;3(7):475–86.

    Article  CAS  PubMed  Google Scholar 

  51. Makinen T, Adams RH, Bailey J, Lu Q, Ziemiecki A, Alitalo K, et al. PDZ interaction site in ephrinB2 is required for the remodeling of lymphatic vasculature. Genes Dev. 2005;19(3):397–410.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  52. Wang YD, Nakayama M, Pitulescu ME, Schmidt TS, Bochenek ML, Sakakibara A, et al. Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature. 2010;465(7297):483–6.

    Article  CAS  PubMed  Google Scholar 

  53. Geudens I, Gerhardt H. Coordinating cell behaviour during blood vessel formation. Development. 2011;138(21):4569–83.

    Article  CAS  PubMed  Google Scholar 

  54. Benedito R, Rocha SF, Woeste M, Zamykal M, Radtke F, Casanovas O, et al. Notch-dependent VEGFR3 upregulation allows angiogenesis without VEGF-VEGFR2 signalling. Nature. 2012;484(7392):110–4.

    Article  CAS  PubMed  Google Scholar 

  55. Jakobsson L, Franco CA, Bentley K, Collins RT, Ponsioen B, Aspalter IM, et al. Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat Cell Biol. 2010;12(10):943–53.

    Article  CAS  PubMed  Google Scholar 

  56. Geudens I, Herpers R, Hermans K, Segura I, Ruiz de Almodovar C, Bussmann J, et al. Role of Delta-like-4/Notch in the formation and wiring of the lymphatic network in zebrafish. Arterioscler Thromb Vasc Biol. 2010;30(9):1695–702.

    Article  CAS  PubMed  Google Scholar 

  57. Zheng W, Tammela T, Yamamoto M, Anisimov A, Holopainen T, Kaijalainen S, et al. Notch restricts lymphatic vessel sprouting induced by vascular endothelial growth factor. Blood. 2011;118(4):1154–62.

    Article  CAS  PubMed  Google Scholar 

  58. Niessen K, Zhang G, Ridgway JB, Chen H, Kolumam G, Siebel CW, et al. The Notch1-Dll4 signaling pathway regulates mouse postnatal lymphatic development. Blood. 2011;118(7):1989–97.

    Article  CAS  PubMed  Google Scholar 

  59. Lebrin F, Deckers M, Bertolino P, ten Dijke P. TGF-beta receptor function in the endothelium. Cardiovasc Res. 2005;65(3):599–608.

    Article  CAS  PubMed  Google Scholar 

  60. Niessen K, Zhang G, Ridgway JB, Chen H, Yan MH. ALK1 signaling regulates early postnatal lymphatic vessel development. Blood. 2010;115(8):1654–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Levet S, Ciais D, Merdzhanova G, Mallet C, Zimmers TA, Lee S-J, et al. Bone morphogenetic protein 9 (BMP9) controls lymphatic vessel maturation and valve formation. Blood. 2013;122(4):598–607.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. James JM, Nalbandian A, Y-s M. TGF-beta signaling is required for sprouting lymphangiogenesis during lymphatic network development in the skin. Development. 2013;140(18):3903–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Makinen T, Veikkola T, Mustjoki S, Karpanen T, Catimel B, Nice EC, et al. Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J. 2001;20(17):4762–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Fruman DA, Mauvais-Jarvis F, Pollard DA, Yballe CM, Brazil D, Bronson RT, et al. Hypoglycaemia, liver necrosis and perinatal death in mice lacking all isoforms of phosphoinositide 3-kinase p85 alpha. Nat Genet. 2000;26(3):379–82.

    Article  CAS  PubMed  Google Scholar 

  65. Mouta-Bellum C, Kirov A, Miceli-Libby L, Mancini ML, Petrova TV, Liaw L, et al. Organ-specific lymphangiectasia, arrested lymphatic sprouting, and maturation defects resulting from gene-targeting of the PI3K regulatory isoforms p85 alpha, p55 alpha, and p50 alpha. Dev Dyn. 2009;238(10):2670–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Gupta S, Ramjaun AR, Haiko P, Wang YH, Warne PH, Nicke B, et al. Binding of Ras to phosphoinositide 3-kinase p110 alpha is required for Ras-driven tumorigenesis in mice. Cell. 2007;129(5):957–68.

    Article  CAS  PubMed  Google Scholar 

  67. Chen JH, Somanath PR, Razorenova O, Chen WS, Hay N, Bornstein P, et al. Akt1 regulates pathological angiogenesis, vascular maturation and permeability in vivo. Nat Med. 2005;11(11):1188–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Zhou F, Chang Z, Zhang LQ, Hong YK, Shen B, Wang B, et al. Akt/protein kinase B Is required for lymphatic network formation, remodeling, and valve development. Am J Pathol. 2010;177(4):2124–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Chen WS, Xu P-Z, Gottlob K, Chen M-L, Sokol K, Shiyanova T, et al. Growth retardation and increased apoptosis in mice with homozygous disruption of the akt1 gene. Genes Dev. 2001;15(17):2203–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Henkemeyer M, Rossi DJ, Holmyard DP, Puri MC, Mbamalu G, Harpal K, et al. Vascular system defects and neuronal apoptosis in mice lacking Ras GTPase-activating protein. Nature. 1995;377(6551):695–701.

    Article  CAS  PubMed  Google Scholar 

  71. Lapinski PE, Kwon S, Lubeck BA, Wilkinson JE, Srinivasan RS, Sevick-Muraca E, et al. RASA1 maintains the lymphatic vasculature in a quiescent functional state in mice. J Clin Invest. 2012;122(2):733–47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Garrett TA, van Buula JD, Burridge K. VEGF-induced Rac1 activation in endothelial cells is regulated by the guanine nucleotide exchange factor Vav2. Exp Cell Res. 2007;313(15):3285–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. D’Amico G, Jones DT, Nye E, Sapienza K, Ramjuan AR, Reynolds LE, et al. Regulation of lymphatic-blood vessel separation by endothelial Rac1. Development. 2009;136(23):4043–53.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  74. Srinivasan RS, Oliver G. Prox1 dosage controls the number of lymphatic endothelial cell progenitors and the formation of the lymphovenous valves. Genes Dev. 2011;25(20):2187–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Carramolino L, Fuentes J, Garcia-Andres C, Azcoitia V, Riethmacher D, Torres M. Platelets play an essential role in separating the blood and lymphatic vasculatures during embryonic angiogenesis. Circ Res. 2010;106(7):1197–201.

    Article  CAS  PubMed  Google Scholar 

  76. Fu J, Gerhardt H, McDaniel JM, Xia B, Liu X, Ivanciu L, et al. Endothelial cell O-glycan deficiency causes blood/lymphatic misconnections and consequent fatty liver disease in mice. J Clin Invest. 2008;118(11):3725–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Uhrin P, Zaujec J, Breuss JM, Olcaydu D, Chrenek P, Stockinger H, et al. Novel function for blood platelets and podoplanin in developmental separation of blood and lymphatic circulation. Blood. 2010;115(19):3997–4005.

    Article  CAS  PubMed  Google Scholar 

  78. Ichise H, Ichise T, Ohtani O, Yoshida N. Phospholipase gamma2 is necessary for separation of blood and lymphatic vasculature in mice. Development. 2009;136(2):191–5.

    Article  CAS  PubMed  Google Scholar 

  79. Abtahian F, Guerriero A, Sebzda E, Lu M-M, Zhou R, Mocsai A, et al. Regulation of blood and lymphatic vascular separation by signaling proteins SLP-76 and Syk. Science. 2003;299(5604):247–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Bertozzi CC, Schmaier AA, Mericko P, Hess PR, Zou Z, Chen M, et al. Platelets regulate lymphatic vascular development through CLEC-2-SLP-76 signaling. Blood. 2010;116(4):661–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. D’Amico G, Alitalo K. Inside bloody lymphatics. Blood. 2010;116(4):512–3.

    Article  PubMed  Google Scholar 

  82. Hamrick SEG, Hansmann G. Patent ductus arteriosus of the preterm infant. Pediatrics. 2010;125(5):1020–30.

    Article  PubMed  Google Scholar 

  83. Bohmer R, Neuhaus B, Buhren S, Zhang D, Stehling M, Bock B, et al. Regulation of developmental lymphangiogenesis by Syk+ leukocytes. Dev Cell. 2010;18(3):437–49.

    Article  PubMed  CAS  Google Scholar 

  84. Yao LC, Baluk P, Srinivasan RS, Oliver G, McDonald DM. Plasticity of button-like junctions in the endothelium of airway lymphatics in development and inflammation. Am J Pathol. 2012;180(6):2561–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Pham THM, Baluk P, Xu Y, Grigorova I, Bankovich AJ, Pappu R, et al. Lymphatic endothelial cell sphingosine kinase activity is required for lymphocyte egress and lymphatic patterning. J Exp Med. 2010;207(1):17–27.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Norrmen C, Ivanov KI, Cheng JP, Zangger N, Delorenzi M, Jaquet M, et al. FOXC2 controls formation and maturation of lymphatic collecting vessels through cooperation with NFATc1. J Cell Biol. 2009;185(3):439–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Bazigou E, Xie S, Chen C, Weston A, Miura N, Sorokin L, et al. Integrin-alpha 9 Is required for fibronectin matrix assembly during lymphatic valve morphogenesis. Dev Cell. 2009;17(2):175–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Kazenwadel J, Secker GA, Liu YJJ, Rosenfeld JA, Wildin RS, Cuellar-Rodriguez J, et al. Loss-of-function germline GATA2 mutations in patients with MDS/AML or MonoMAC syndrome and primary lymphedema reveal a key role for GATA2 in the lymphatic vasculature. Blood. 2012;119(5):1283–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Sabine A, Agalarov Y, Maby-El Hajjami H, Jaquet M, Hagerling R, Pollmann C, et al. Mechanotransduction, PROX1, and FOXC2 cooperate to control Connexin37 and Calcineurin during lymphatic-valve formation. Dev Cell. 2012;22(2):430–45.

    Article  CAS  PubMed  Google Scholar 

  90. Petrova TV, Karpanen T, Norrmen C, Mellor R, Tamakoshi T, Finegold D, et al. Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nat Med. 2004;10(9):974–81.

    Article  CAS  PubMed  Google Scholar 

  91. Fang JM, Dagenais SL, Erickson RP, Arlt MF, Glynn MW, Gorski JL, et al. Mutations in FOXC2 (MFH-1), a forkhead family transcription factor, are responsible for the hereditary lymphedema-distichiasis syndrome. Am J Hum Genet. 2000;67(6):1382–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Mellor RH, Brice G, Stanton AWB, French J, Smith A, Jeffery S, et al. Mutations in FOXC2 are strongly associated with primary valve failure in veins of the lower limb. Circulation. 2007;115(14):1912–20.

    Article  CAS  PubMed  Google Scholar 

  93. Sholto-Douglas-Vernon C, Bell R, Brice G, Mansour S, Sarfarazi M, Child AH, et al. Lymphoedema-distichiasis and FOXC2: unreported mutations, de novo mutation estimate, families without coding mutations. Hum Genet. 2005;117(2–3):238–42.

    Article  CAS  PubMed  Google Scholar 

  94. Kanady JD, Dellinger MT, Munger SJ, Witte MH, Simon AM. Connexin37 and Connexin43 deficiencies in mice disrupt lymphatic valve development and result in lymphatic disorders including lymphedema and chylothorax. Dev Biol. 2011;354(2):253–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Brice G, Ostergaard P, Jeffery S, Gordon K, Mortimer PS, Mansour S. A novel mutation in GJA1 causing oculodentodigital syndrome and primary lymphoedema in a three generation family. Clin Genet. 2013;84(4):378–81.

    Article  CAS  PubMed  Google Scholar 

  96. Ferrell RE, Baty CJ, Kimak MA, Karlsson JM, Lawrence EC, Franke-Snyder M, et al. GJC2 missense mutations cause human lymphedema. Am J Hum Genet. 2010;86(6):943–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Finegold DN, Baty CJ, Knickelbein KZ, Perschke S, Noon SE, Campbell D, et al. Connexin 47 mutations increase risk for secondary lymphedema following breast cancer treatment. Clin Cancer Res. 2012;18(8):2382–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Katsuta H, Fukushima Y, Maruyama K, Hirashima M, Nishida K, Nishikawa SI, et al. EphrinB2-EphB4 signals regulate formation and maintenance of funnel-shaped valves in corneal lymphatic capillaries. Invest Ophthalmol Vis Sci. 2013;54(6):4102–8.

    Article  CAS  PubMed  Google Scholar 

  99. Tatin F, Taddei A, Weston A, Fuchs E, Devenport D, Tissir F, et al. Planar cell polarity protein Celsr1 regulates endothelial adherens junctions and directed cell rearrangements during valve morphogenesis. Dev Cell. 2013;26(1):31–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Muthuchamy M, Gashev A, Boswell N, Dawson N, Zawieja D. Molecular and functional analyses of the contractile apparatus in lymphatic muscle. FASEB J. 2003;17(3):920–2.

    CAS  PubMed  Google Scholar 

  101. Zhang RZ, Gashev AA, Zawieja DC, Davis MJ. Mechanical properties of rat mesenteric lymphatic and arterial smooth muscle. FASEB J. 2005;19(4):A165.

    Google Scholar 

  102. Zhang R, Taucer AI, Gashev AA, Muthuchamy M, Zawieja DC, Davis MJ. Maximum shortening velocity of lymphatic muscle approaches that of striated muscle. Am J Physiol Heart Circ Physiol. 2013;305:1494–507.

    Article  CAS  Google Scholar 

  103. von der Weid P-Y, Zawieja DC. Lymphatic smooth muscle: the motor unit of lymph drainage. Int J Biochem Cell Biol. 2004;36(7):1147–53.

    Article  CAS  Google Scholar 

  104. Lutter S, Xie S, Tatin F, Makinen T. Smooth muscle-endothelial cell communication activates Reelin signaling and regulates lymphatic vessel formation. J Cell Biol. 2012;197(6):837–49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Samama B, Boehm N. Reelin immunoreactivity in lymphatics and liver during development and adult life. Anat Rec A Discov Mol Cell Evol Biol. 2005;285A(1):595–9.

    Article  PubMed  Google Scholar 

  106. Bouvree K, Brunet I, del Toro R, Gordon E, Prahst C, Cristofaro B, et al. Semaphorin3A, Neuropilin-1, and PlexinA1 are required for lymphatic valve formation. Circ Res. 2012;111(4):437–45.

    Article  CAS  PubMed  Google Scholar 

  107. Jurisic G, Maby-El Hajjami H, Karaman S, Ochsenbein AM, Alitalo A, Siddiqui SS, et al. An unexpected role of Semaphorin3A-Neuropilin-1 signaling in lymphatic vessel maturation and valve formation. Circ Res. 2012;111(4):426–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana V. Petrova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bernier-Latmani, J., Sabine, A., Petrova, T. (2015). Development and Differentiation of the Lymphatic Vascular System. In: Schmidt, M., Liebner, S. (eds) Endothelial Signaling in Development and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2907-8_5

Download citation

Publish with us

Policies and ethics