Skip to main content

Cytoskeletal Elements and the Reproductive Success in Animals

  • Chapter
The Cytoskeleton in Health and Disease

Abstract

Reproduction is a stepwise process that starts at the formation of gametes and ends at the completion of meiosis and the first mitotic divisions of the zygote. The involvement of main cytoskeletal elements in mediating the reproductive processes is now well established. This chapter summarizes recent advances in the field related to cytoskeletal dynamics underpinning the basic events of reproduction such as gametogenesis, gametes reciprocal activation, sperm-oocyte interaction and zygote formation. We have described the distinct patterns of distribution of microfilaments and microtubules and their rearrangements along the entire reproductive process. Evidences are provided that these elements play a dynamic role in the establishment and regulation of basic structure and functions of gametes and zygote during the processes of maturation and fertilization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AR:

Acrosome reaction

CG:

Cortical granules

GV:

Germinal vesicle

GVBD:

Germinal vesicle breakdown

MI:

Metaphase I

MII:

Metaphase II

ZP:

Zona pellucida

References

  1. Bement WM, Ian Gallicano G, Capco DG (1992) Role of the cytoskeleton during early development. Microsc Res Tech 22:23–48

    CAS  PubMed  Google Scholar 

  2. Elinson R, Houliston E (1990) Cytoskeleton in Xenopus oocytes and eggs. Semin Cell Biol 1:349–357

    CAS  PubMed  Google Scholar 

  3. Gallicano GI (2001) Composition, regulation, and function of the cytoskeleton in mammalian eggs and embryos. Front Biosci 6:D1089–D1108

    CAS  PubMed  Google Scholar 

  4. Longo FJ (1989) Egg cortical architecture. In: Schatten H, Schatten G (eds) The cell biology of fertilization, 1st edn. Academic, San Diego, CA

    Google Scholar 

  5. Koch RA, Lambert CC (1990) Ultrastructure of sperm, spermiogenesis, and sperm‐egg interactions in selected invertebrates and lower vertebrates which use external fertilization. J Electron Microsc Tech 16:115–154

    CAS  PubMed  Google Scholar 

  6. Sperry AO (2012) The dynamic cytoskeleton of the developing male germ cell. Biol Cell 104:297–305

    CAS  PubMed  Google Scholar 

  7. McLay DW, Clarke HJ (2003) Remodelling the paternal chromatin at fertilization in mammals. Reproduction 125:625–633

    CAS  PubMed  Google Scholar 

  8. Toshimori K, Ito C (2003) Formation and organization of the mammalian sperm head. Arch Histol Cytol 66:383–396

    PubMed  Google Scholar 

  9. Dvořáková K, Moore HD, Šebková N, Paleček J (2005) Cytoskeleton localization in the sperm head prior to fertilization. Reproduction 130:61–69

    PubMed  Google Scholar 

  10. Lie PP, Mruk DD, Lee WM, Cheng CY (2010) Cytoskeletal dynamics and spermatogenesis. Philos Trans R Soc Lond B Biol Sci 365:1581–1592

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Sun X, Kovacs T, Hu YJ, Yang WX (2011) The role of actin and myosin during spermatogenesis. Mol Biol Rep 38:3993–4001

    CAS  PubMed  Google Scholar 

  12. Sathananthan A (1997) Ultrastructure of the human egg. Hum Cell 10:21

    CAS  PubMed  Google Scholar 

  13. Oulhen N, Reich A, Wong JL, Ramos I, Wessel GM (2013) Diversity in the fertilization envelopes of echinoderms. Evol Dev 15:28–40

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Satoh N (1994) Developmental biology of ascidians. Cambridge University Press, Cambridge

    Google Scholar 

  15. Gupta SK, Bhandari B, Shrestha A, Biswal BK, Palaniappan C, Malhotra SS, Gupta N (2012) Mammalian zona pellucida glycoproteins: structure and function during fertilization. Cell Tissue Res 349:665–678

    CAS  PubMed  Google Scholar 

  16. Tosti E, Boni R (2004) Electrical events during gamete maturation and fertilization in animals and humans. Hum Reprod Update 10:53–65

    CAS  PubMed  Google Scholar 

  17. Runge KE, Evans JE, He Z-Y, Gupta S, McDonald KL, Stahlberg H, Primakoff P, Myles DG (2007) Oocyte CD9 is enriched on the microvillar membrane and required for normal microvillar shape and distribution. Dev Biol 304:317–325

    CAS  PubMed  Google Scholar 

  18. Liu M (2011) The biology and dynamics of mammalian cortical granules. Reprod Biol Endocrinol 9:149

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Hyttel P (2011) Electron microscopy of mammalian oocyte development, maturation and fertilization. In: Tosti E, Boni R (eds) Oocyte maturation and fertilization: a long history for a short event. Bentham Science Publisher, Dubai, United Arab Emirates

    Google Scholar 

  20. Voronina E, Wessel GM (2003) The regulation of oocyte maturation. Curr Top Dev Biol 58:53–110

    CAS  PubMed  Google Scholar 

  21. Eppig JJ (1996) Coordination of nuclear and cytoplasmic oocyte maturation in eutherian mammals. Reprod Fertil Dev 8:485–489

    CAS  PubMed  Google Scholar 

  22. Tsafriri A (1979) Mammalian oocyte maturation: model systems and their physiological relevance. Adv Exp Med Biol 112:269–281

    CAS  PubMed  Google Scholar 

  23. Yanagimachi R (1994) Mammalian fertilization. Physiol Reprod 1:189–317

    Google Scholar 

  24. Albertini DF, Sanfins A, Combelles CM (2003) Origins and manifestations of oocyte maturation competencies. Reprod Biomed Online 6:410–415

    CAS  PubMed  Google Scholar 

  25. Connors SA, Kanatsu-Shinohara M, Schultz RM, Kopf GS (1998) Involvement of the cytoskeleton in the movement of cortical granules during oocyte maturation, and cortical granule anchoring in mouse eggs. Dev Biol 200:103–115

    CAS  PubMed  Google Scholar 

  26. Ducibella T, Anderson E, Albertini DF, Aalberg J, Rangarajan S (1988) Quantitative studies of changes in cortical granule number and distribution in the mouse oocyte during meiotic maturation. Dev Biol 130:184–197

    CAS  PubMed  Google Scholar 

  27. Ferreira E, Vireque A, Adona P, Meirelles F, Ferriani R, Navarro P (2009) Cytoplasmic maturation of bovine oocytes: structural and biochemical modifications and acquisition of developmental competence. Theriogenology 71:836–848

    CAS  PubMed  Google Scholar 

  28. Racedo SE, Rawe VY, Niemann H (2012) Dynamic changes of the Golgi apparatus during bovine in vitro oocyte maturation. Reproduction 143:439–447

    CAS  PubMed  Google Scholar 

  29. Santella L, De Riso L, Gragnaniello G, Kyozuka K (1999) Cortical granule translocation during maturation of starfish oocytes requires cytoskeletal rearrangement triggered by InsP3-mediated Ca2+ release. Exp Cell Res 248:567–574

    CAS  PubMed  Google Scholar 

  30. Schorderet-Slatkine S (1972) Action of progesterone and related steroids on oocyte maturation in Xenopus laevis. An in vitro study. Cell Differ 1:179–189

    CAS  PubMed  Google Scholar 

  31. Stricker SA (2006) Structural reorganizations of the endoplasmic reticulum during egg maturation and fertilization. Semin Cell Dev Biol 17:303–313

    CAS  PubMed  Google Scholar 

  32. Sun QY, Schatten H (2006) Regulation of dynamic events by microfilaments during oocyte maturation and fertilization. Reproduction 131:193–205

    CAS  PubMed  Google Scholar 

  33. Suzuki H, Yang X, Foote RH (1994) Surface alterations of the bovine oocyte and its investments during and after maturation and fertilization in vitro. Mol Reprod Dev 38:421–430

    CAS  PubMed  Google Scholar 

  34. Tosti E, Boni R, Gallo A, Silvestre F (2013) Ion currents modulating oocyte maturation in animals. Syst Biol Reprod Med 59:61–68

    CAS  PubMed  Google Scholar 

  35. Van Blerkom J (1991) Microtubule mediation of cytoplasmic and nuclear maturation during the early stages of resumed meiosis in cultured mouse oocytes. Proc Natl Acad Sci U S A 88:5031–5035

    PubMed Central  PubMed  Google Scholar 

  36. Bavister BD, Squirrell JM (2000) Mitochondrial distribution and function in oocytes and early embryos. Hum Reprod 15:189–198

    PubMed  Google Scholar 

  37. Primakoff P, Myles DG (2002) Gamete fusion in mammals. In: Hardy DM (ed) Fertilization, 1st edn. Academic, San Diego, CA

    Google Scholar 

  38. Tosti E (1994) Sperm activation in species with external fertilisation. Zygote 2:359–361

    CAS  PubMed  Google Scholar 

  39. Dale B (1994) Oocyte activation in invertebrates and humans. Zygote 2:373–377

    CAS  PubMed  Google Scholar 

  40. Horner VL, Wolfner MF (2008) Transitioning from egg to embryo: triggers and mechanisms of egg activation. Dev Dyn 237:527–544

    CAS  PubMed  Google Scholar 

  41. Inaba K (2003) Molecular architecture of the sperm flagella: molecules for motility and signaling. Zoolog Sci 20:1043–1056

    CAS  PubMed  Google Scholar 

  42. Jouannet P, Serres C (1997) The movement of the human spermatozoon. Bull Acad Natl Med 182:1025–1034

    Google Scholar 

  43. Shingyoji C (2013) Measuring the regulation of dynein activity during flagellar motility. Methods Enzymol 524:147

    CAS  PubMed  Google Scholar 

  44. Nakachi M, Nakajima A, Nomura M, Yonezawa K, Ueno K, Endo T, Inaba K (2011) Proteomic profiling reveals compartment‐specific, novel functions of ascidian sperm proteins. Mol Reprod Dev 78:529–549

    CAS  PubMed  Google Scholar 

  45. Ma X, Zhao Y, Sun W, Shimabukuro K, Miao L (2012) Transformation: how do nematode sperm become activated and crawl? Protein Cell 3:755–761

    CAS  PubMed  Google Scholar 

  46. Roberts TM, Stewart M (2012) Role of major sperm protein (MSP) in the protrusion and retraction of Ascaris sperm. Int Rev Cell Mol Biol 297:265–293

    CAS  PubMed  Google Scholar 

  47. Finkelstein M, Megnagi B, Ickowicz D, Breitbart H (2013) Regulation of sperm motility by PIP2(4,5) and actin polymerization. Dev Biol 381:62–72

    CAS  PubMed  Google Scholar 

  48. Lin M, Hess R, Aitken R (2002) Induction of sperm maturation in vitro in epididymal cell cultures of the tammar wallaby (Macropus eugenii): disruption of motility initiation and sperm morphogenesis by inhibition of actin polymerization. Reproduction 124:107–117

    CAS  PubMed  Google Scholar 

  49. Kaupp UB, Kashikar ND, Weyand I (2008) Mechanisms of sperm chemotaxis. Annu Rev Physiol 70:93–117

    CAS  PubMed  Google Scholar 

  50. Hozumi A, Padma P, Toda T, Ide H, Inaba K (2008) Molecular characterization of axonemal proteins and signaling molecules responsible for chemoattractant‐induced sperm activation in Ciona intestinalis. Cell Motil Cytoskeleton 65:249–267

    CAS  PubMed  Google Scholar 

  51. Barros C, Crosby J, Moreno R (1996) Early steps of sperm-egg interactions during mammalian fertilization. Cell Biol Int 20:33–39

    CAS  PubMed  Google Scholar 

  52. Brener E, Rubinstein S, Cohen G, Shternall K, Rivlin J, Breitbart H (2003) Remodeling of the actin cytoskeleton during mammalian sperm capacitation and acrosome reaction. Biol Reprod 68:837–845

    CAS  PubMed  Google Scholar 

  53. Tilney LG, Inoué S (1982) Acrosomal reaction of Thyone sperm. II. The kinetics and possible mechanism of acrosomal process elongation. J Cell Biol 93:820–827

    CAS  PubMed  Google Scholar 

  54. Schatten G, Schatten H (1983) Fertilization and early development of sea urchins. Scan Electron Microsc (Pt 3):1403–1413

    Google Scholar 

  55. Zepeda-Bastida A, Chiquete-Felix N, Uribe-Carvajal S, Mujica A (2011) The acrosomal matrix from Guinea pig sperm contains structural proteins, suggesting the presence of an actin skeleton. J Androl 32:411–419

    CAS  PubMed  Google Scholar 

  56. Breitbart H, Cohen G, Rubinstein S (2005) Role of actin cytoskeleton in mammalian sperm capacitation and the acrosome reaction. Reproduction 129:263–268

    CAS  PubMed  Google Scholar 

  57. Liu D, Martic M, Clarke G, Dunlop M, Baker H (1999) An important role of actin polymerization in the human zona pellucida-induced acrosome reaction. Mol Hum Reprod 5:941–949

    CAS  PubMed  Google Scholar 

  58. Miller DJ, Shi X, Burkin H (2002) Molecular basis of mammalian gamete binding. Recent Prog Horm Res 57:37–73

    CAS  PubMed  Google Scholar 

  59. Breed WG, Idriss D, Leigh CM, Oko RJ (2009) Temporal deposition and spatial distribution of cytoskeletal proteins in the sperm head of an Australian rodent. Reprod Fertil Dev 21:428–439

    CAS  PubMed  Google Scholar 

  60. Rogers B, Bastias C, Coulson RL, Russell LD (1989) Cytochalasin D inhibits penetration of hamster eggs by guinea pig and human spermatozoa. J Androl 10:275–282

    CAS  PubMed  Google Scholar 

  61. Sánchez‐Gutiérrez M, Contreras RG, Mújica A (2002) Cytochalasin‐D retards sperm incorporation deep into the egg cytoplasm but not membrane fusion with the egg plasma membrane. Mol Reprod Dev 63:518–528

    Google Scholar 

  62. Kumakiri J, Oda S, Kinoshita K, Miyazaki S (2003) Involvement of Rho family G protein in the cell signaling for sperm incorporation during fertilization of mouse eggs: inhibition by Clostridium difficile toxin B. Dev Biol 260:522–535

    CAS  PubMed  Google Scholar 

  63. Schatten G, Schatten H (1987) Cytoskeletal alterations and nuclear architectural changes during mammalian fertilization. Curr Top Dev Biol 23:23–54

    CAS  PubMed  Google Scholar 

  64. Talbot P, Shur BD, Myles DG (2003) Cell adhesion and fertilization: steps in oocyte transport, sperm-zona pellucida interactions, and sperm-egg fusion. Biol Reprod 68:1–9

    CAS  PubMed  Google Scholar 

  65. Inoue N, Ikawa M, Isotani A, Okabe M (2005) The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature 434:234–238

    CAS  PubMed  Google Scholar 

  66. Sosnik J, Miranda PV, Spiridonov NA, Yoon S-Y, Fissore RA, Johnson GR, Visconti PE (2009) Tssk6 is required for Izumo relocalization and gamete fusion in the mouse. J Cell Sci 122:2741–2749

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Lachance C, Goupil S, Leclerc P (2013) Stattic V, a STAT3 inhibitor, affects human spermatozoa through regulation of mitochondrial activity. J Cell Physiol 228:704–713

    CAS  PubMed  Google Scholar 

  68. Lambert CC, Lambert G (1984) The role of actin and myosin in ascidian sperm mitochondrial translocation. Dev Biol 106:307–314

    CAS  PubMed  Google Scholar 

  69. Bernabò N, Berardinelli P, Mauro A, Russo V, Lucidi P, Mattioli M, Barboni B (2011) The role of actin in capacitation-related signaling: an in silico and in vitro study. BMC Syst Biol 5:47

    PubMed Central  PubMed  Google Scholar 

  70. Azoury J, Verlhac MH, Dumont J (2009) Actin filaments: key players in the control of asymmetric divisions in mouse oocytes. Biol Cell 101:69–76

    CAS  PubMed  Google Scholar 

  71. Kim NH, Chung HM, Cha KY, Chung KS (1998) Microtubule and microfilament organization in maturing human oocytes. Hum Reprod 13:2217–2222

    CAS  PubMed  Google Scholar 

  72. Longo FJ, Chen D-Y (1985) Development of cortical polarity in mouse eggs: involvement of the meiotic apparatus. Dev Biol 107:382–394

    CAS  PubMed  Google Scholar 

  73. Terada Y, Fukaya T, Yajima A (1995) Localization of microfilaments during oocyte maturation of golden hamster. Mol Reprod Dev 41:486–492

    CAS  PubMed  Google Scholar 

  74. Wang WH, Abeydeera LR, Prather RS, Day BN (2000) Polymerization of nonfilamentous actin into microfilaments is an important process for porcine oocyte maturation and early embryo development. Biol Reprod 62:1177–1183

    CAS  PubMed  Google Scholar 

  75. Calarco PG (2005) The role of microfilaments in early meiotic maturation of mouse oocytes. Microsc Microanal 11:146–153

    CAS  PubMed  Google Scholar 

  76. Gard DL, Cha B-J, Roeder AD (1995) F-actin is required for spindle anchoring and rotation in Xenopus oocytes: a re-examination of the effects of cytochalasin B on oocyte maturation. Zygote 3:17–26

    CAS  PubMed  Google Scholar 

  77. Okada I, Fujiki S, Iwase S, Abe H (2012) Stabilization of actin filaments prevents germinal vesicle breakdown and affects microtubule organization in Xenopus oocytes. Cytoskeleton 69:312–323

    CAS  PubMed  Google Scholar 

  78. Prodon F, Hanawa K, Nishida H (2009) Actin microfilaments guide the polarized transport of nuclear pore complexes and the cytoplasmic dispersal of Vasa mRNA during GVBD in the ascidian Halocynthia roretzi. Dev Biol 330:377–388

    CAS  PubMed  Google Scholar 

  79. Prodon F, Chenevert J, Sardet C (2006) Establishment of animal-vegetal polarity during maturation in ascidian oocytes. Dev Biol 290:297–311

    CAS  PubMed  Google Scholar 

  80. Brunet S, Verlhac MH (2011) Positioning to get out of meiosis: the asymmetry of division. Hum Reprod Update 17:68–75

    PubMed  Google Scholar 

  81. Kwon S, Lim HJ (2011) Small GTPases and formins in mammalian oocyte maturation: cytoskeletal organizers. Clin Exp Reprod Med 38:1–5

    PubMed Central  PubMed  Google Scholar 

  82. Li R, Albertini DF (2013) The road to maturation: somatic cell interaction and self-organization of the mammalian oocyte. Nat Rev Mol Cell Biol 14:141–152

    CAS  PubMed  Google Scholar 

  83. McNally FJ (2013) Mechanisms of spindle positioning. J Cell Biol 200:131–140

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Sun QY, Lai L, Park KW, Kühholzer B, Prather RS, Schatten H (2001) Dynamic events are differently mediated by microfilaments, microtubules, and mitogen-activated protein kinase during porcine oocyte maturation and fertilization in vitro. Biol Reprod 64:879–889

    CAS  PubMed  Google Scholar 

  85. Ryabova L, Betina M, Vassetzky S (1986) Influence of cytochalasin B on oocyte maturation in Xenopus laevis. Cell Differ 19:89–96

    CAS  PubMed  Google Scholar 

  86. Weber KL, Sokac AM, Berg JS, Cheney RE, Bement WM (2004) A microtubule-binding myosin required for nuclear anchoring and spindle assembly. Nature 431:325–329

    CAS  PubMed  Google Scholar 

  87. Howe K, FitzHarris G (2013) Recent insights into spindle function in mammalian oocytes and early embryos. Biol Reprod 89:71

    PubMed  Google Scholar 

  88. Yllera‐Fernandez MDM, Crozet N, Ahmed‐Ali M (1992) Microtubule distribution during fertilization in the rabbit. Mol Reprod Dev 32:271–276

    Google Scholar 

  89. Sawin KE, Endow SA (1993) Meiosis, mitosis and microtubule motors. Bioessays 15:399–407

    CAS  PubMed  Google Scholar 

  90. Ya R, Downs SM (2012) Perturbing microtubule integrity blocks AMP-activated protein kinase-induced meiotic resumption in cultured mouse oocytes. Zygote 1:1–12

    Google Scholar 

  91. Dale B, Wilding M (2011) Ionic events at fertilization. In: Tosti E, Boni R (eds) Oocyte maturation and fertilization: a long history for a short event. Bentham Science Publisher, Dubai, United Arab Emirates

    Google Scholar 

  92. Krauchunas AR, Wolfner MF (2012) Molecular changes during egg activation. Curr Top Dev Biol 102:267–292

    Google Scholar 

  93. Ramos I, Wessel GM (2013) Calcium pathway machinery at fertilization in echinoderms. Cell Calcium 53:16–23

    CAS  PubMed  Google Scholar 

  94. Whitaker M (2006) Calcium at fertilization and in early development. Physiol Rev 86:25–88

    PubMed Central  CAS  PubMed  Google Scholar 

  95. Bezzaouia A, Gallo A, Silvestre F, Tekaya S, Tosti E (2014) Distribution pattern and activity of mitochondria during oocyte growth and maturation in the ascidian Styela plicata. Zygote 22(4):462–469. doi:10.1017/S0967199412000640

    PubMed  Google Scholar 

  96. Roegiers F, Djediat C, Dumollard R, Rouvière C, Sardet C (1999) Phases of cytoplasmic and cortical reorganizations of the ascidian zygote between fertilization and first division. Development 126:3101–3117

    CAS  PubMed  Google Scholar 

  97. Sawada T, Osanai K (1985) Distribution of actin filaments in fertilized egg of the ascidian Ciona intestinalis. Dev Biol 111:260–265

    CAS  PubMed  Google Scholar 

  98. Tosti E, Romano G, Buttino I, Cuomo A, Ianora A, Miralto A (2003) Bioactive aldehydes from diatoms block the fertilization current in ascidian oocytes. Mol Reprod Dev 66:72–80

    CAS  PubMed  Google Scholar 

  99. Sun QY, Wu G, Lai L, Park K, Cabot R, Cheong H, Day B, Prather R, Schatten H (2001) Translocation of active mitochondria during pig oocyte maturation, fertilization and early embryo development in vitro. Reproduction 122:155–163

    CAS  PubMed  Google Scholar 

  100. Brevini T, Cillo F, Antonini S, Gandolfi F (2007) Cytoplasmic remodelling and the acquisition of developmental competence in pig oocytes. Anim Reprod Sci 98:23–38

    CAS  PubMed  Google Scholar 

  101. Gadella B, Evans J (2011) Membrane fusions during mammalian fertilization. Adv Exp Med Biol 713:65–80

    CAS  PubMed  Google Scholar 

  102. Bonder EM, Fishkind DJ, Cotran NM, Begg DA (1989) The cortical actin-membrane cytoskeleton of unfertilized sea urchin eggs: analysis of the spatial organization and relationship of filamentous actin, nonfilamentous actin, and egg spectrin. Dev Biol 134:327–341

    CAS  PubMed  Google Scholar 

  103. Kim NH, Day BN, Lee HT, Chung KS (1996) Microfilament assembly and cortical granule distribution during maturation, parthenogenetic activation and fertilisation in the porcine oocyte. Zygote 4:145–149

    CAS  PubMed  Google Scholar 

  104. Eliyahu E, Tsaadon A, Shtraizent N, Shalgi R (2005) The involvement of protein kinase C and actin filaments in cortical granule exocytosis in the rat. Reproduction 129:161–170

    CAS  PubMed  Google Scholar 

  105. Begg DA, Rebhun LI, Hyatt H (1982) Structural organization of actin in the sea urchin egg cortex: microvillar elongation in the absence of actin filament bundle formation. J Cell Biol 93:24–32

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Eddy E, Shapiro B (1979) Membrane events of fertilization in the sea urchin. Scan Electron Microsc 3:287–297

    PubMed  Google Scholar 

  107. Tilney LG, Jaffe LA (1980) Actin, microvilli, and the fertilization cone of sea urchin eggs. J Cell Biol 87:771–782

    CAS  PubMed  Google Scholar 

  108. Henson JH, Begg DA (1988) Filamentous actin organization in the unfertilized sea urchin egg cortex. Dev Biol 127:338–348

    CAS  PubMed  Google Scholar 

  109. Franke W, Rathke P, Seib E, Trendelenburg M, Osborn M, Weber K (1976) Distribution and mode of arrangement of microfilamentous structures and actin in the cortex of the amphibian oocyte. Cytobiologie 14:111–130

    CAS  PubMed  Google Scholar 

  110. Burgess DR, Schroeder TE (1977) Polarized bundles of actin filaments within microvilli of fertilized sea urchin eggs. J Cell Biol 74:1032–1037

    CAS  PubMed  Google Scholar 

  111. Cline CA, Schatten H, Balczon R, Schatten G (1983) Actin‐mediated surface motility during sea urchin fertilization. Cell Motil 3:513–524

    CAS  PubMed  Google Scholar 

  112. Talansky BE, Malter HE, Cohen J (1991) A preferential site for sperm‐egg fusion in mammals. Mol Reprod Dev 28:183–188

    CAS  PubMed  Google Scholar 

  113. Boyle JA, Chen H, Bamburg JR (2001) Sperm incorporation in Xenopus laevis: characterisation of morphological events and the role of microfilaments. Zygote 9:167–181

    CAS  PubMed  Google Scholar 

  114. Kyozuka K, Osanai K (1994) Cytochalasin B does not block sperm penetration into denuded starfish oocytes. Zygote 2:103–109

    CAS  PubMed  Google Scholar 

  115. Kyozuka K, Osanai K (1988) Fertilization cone formation in starfish oocytes: the role of the egg cortex actin microfilaments in sperm incorporation. Gamete Res 20:275–285

    CAS  PubMed  Google Scholar 

  116. Schatten H, Schatten G (1980) Surface activity at the egg plasma membrane during sperm incorporation and its cytochalasin B sensitivity: scanning electron microscopy and time-lapse video microscopy during fertilization of the sea urchin Lytechinus variegatus. Dev Biol 78:435–449

    CAS  PubMed  Google Scholar 

  117. Yonemura S, Mabuchi I (1987) Wave of cortical actin polymerization in the sea urchin egg. Cell Motil Cytoskeleton 7:46–53

    CAS  PubMed  Google Scholar 

  118. Le Guen P, Crozet N, Huneau D, Gall L (1989) Distribution and role of microfilaments during early events of sheep fertilization. Gamete Res 22:411–425

    PubMed  Google Scholar 

  119. Yanagimachi R (2005) Male gamete contributions to the embryo. Ann N Y Acad Sci 1061:203–207

    CAS  PubMed  Google Scholar 

  120. Palermo GD, Colombero LT, Rosenwaks Z (1997) The human sperm centrosome is responsible for normal syngamy and early embryonic development. Rev Reprod 2:19–27

    CAS  PubMed  Google Scholar 

  121. Schatten G, Simerly C, Schatten H (1985) Microtubule configurations during fertilization, mitosis, and early development in the mouse and the requirement for egg microtubule-mediated motility during mammalian fertilization. Proc Natl Acad Sci U S A 82:4152–4156

    PubMed Central  CAS  PubMed  Google Scholar 

  122. Stambaugh RL, Nicosia SV (1984) Localization of tubulin and microtubules of in vivo fertilized rabbit oocytes. J Androl 5:259–264

    CAS  PubMed  Google Scholar 

  123. Terada Y, Simerly CR, Hewitson L, Schatten G (2000) Sperm aster formation and pronuclear decondensation during rabbit fertilization and development of a functional assay for human sperm. Biol Reprod 62:557–563

    CAS  PubMed  Google Scholar 

  124. Swain JE, Pool TB (2008) ART failure: oocyte contributions to unsuccessful fertilization. Hum Reprod Update 14:431–446

    PubMed  Google Scholar 

  125. Cantiello HF (1997) Role of actin filament organization in cell volume and ion channel regulation. J Exp Zool 279:425–435

    CAS  PubMed  Google Scholar 

  126. Moccia F (2007) Latrunculin A depolarizes starfish oocytes. Comp Biochem Physiol A Mol Integr Physiol 148:845–852

    CAS  PubMed  Google Scholar 

  127. Dubreuil RR (2006) Functional links between membrane transport and the spectrin cytoskeleton. J Membr Biol 211:151–161

    CAS  PubMed  Google Scholar 

  128. Machnicka B, Czogalla A, Hryniewicz-Jankowska A, Bogusławska DM, Grochowalska R, Heger E, Sikorski AF (2013) Spectrins: a structural platform for stabilization and activation of membrane channels, receptors and transporters. Biochim Biophys Acta. doi:10.1016/j.bbamem.2013.05.002

    PubMed  Google Scholar 

  129. Brownlee C, Dale B (1990) Temporal and spatial correlation of fertilization current, calcium waves and cytoplasmic contraction in eggs of Ciona intestinalis. Proc R Soc B 239:321–328

    CAS  Google Scholar 

  130. Sardet C, Paix A, Prodon F, Dru P, Chenevert J (2007) From oocyte to 16‐cell stage: cytoplasmic and cortical reorganizations that pattern the ascidian embryo. Dev Dyn 236:1716–1731

    CAS  PubMed  Google Scholar 

  131. Chun J, Santella L (2009) Roles of the actin‐binding proteins in intracellular Ca2+ signalling. Acta Physiol (Oxf) 195:61–70

    CAS  Google Scholar 

  132. Chun JT, Vasilev F, Santella L (2013) Antibody against the actin-binding protein depactin attenuates Ca2+ signaling in starfish eggs. Biochem Biophys Res Commun 441:301–307

    CAS  PubMed  Google Scholar 

  133. Stack C, Lucero AJ, Shuster CB (2006) Calcium‐responsive contractility during fertilization in sea urchin eggs. Dev Dyn 235:1042–1052

    PubMed Central  CAS  PubMed  Google Scholar 

  134. Rawe V, Olmedo SB, Nodar F, Doncel G, Acosta A, Vitullo A (2000) Cytoskeletal organization defects and abortive activation in human oocytes after IVF and ICSI failure. Mol Hum Reprod 6:510–516

    CAS  PubMed  Google Scholar 

  135. Pickering SJ, Johnson MH, Braude PR, Houliston E (1988) Cytoskeletal organization in fresh, aged and spontaneously activated human oocytes. Hum Reprod 3:978–989

    CAS  PubMed  Google Scholar 

  136. Zhu ZY, Chen DY, Li JS, Lian L, Lei L, Han ZM, Sun QY (2003) Rotation of meiotic spindle is controlled by microfilaments in mouse oocytes. Biol Reprod 68:943–946

    CAS  PubMed  Google Scholar 

  137. Azoury J, Lee KW, Georget V, Rassinier P, Leader B, Verlhac MH (2008) Spindle positioning in mouse oocytes relies on a dynamic meshwork of actin filaments. Curr Biol 18:1514–1519

    CAS  PubMed  Google Scholar 

  138. Maddox AS, Azoury J, Dumont J (2012) Polar body cytokinesis. Cytoskeleton 69:855–868

    CAS  PubMed  Google Scholar 

  139. Schaerer-Brodbeck C, Riezman H (2000) Interdependence of filamentous actin and microtubules for asymmetric cell division. Biol Chem 381:815–825

    CAS  PubMed  Google Scholar 

  140. Noguchi T, Mabuchi I (2001) Reorganization of actin cytoskeleton at the growing end of the cleavage furrow of Xenopus egg during cytokinesis. J Cell Sci 114:401–412

    CAS  PubMed  Google Scholar 

  141. Takayama M, Noguchi T, Yamashiro S, Mabuchi I (2002) Microtuble organization in Xenopus eggs during the first cleavage and its role in cytokinesis. Cell Struct Funct 27:163–171

    PubMed  Google Scholar 

  142. Chew TG, Lorthongpanich C, Ang WX, Knowles BB, Solter D (2012) Symmetric cell division of the mouse zygote requires an actin network. Cytoskeleton 69:1040–1046

    CAS  PubMed  Google Scholar 

  143. Schatten H, Sun QY (2010) The role of centrosomes in fertilization, cell division and establishment of asymmetry during embryo development. Semin Cell Dev Biol 21:174–184

    PubMed  Google Scholar 

  144. Morito Y, Terada Y, Nakamura S, Morita J, Yoshimoto T, Murakami T, Yaegashi N, Okamura K (2005) Dynamics of microtubules and positioning of female pronucleus during bovine parthenogenesis. Biol Reprod 73:935–941

    CAS  PubMed  Google Scholar 

  145. Mailhes JB, Carabatsos MJ, Young D, London SN, Bell M, Albertini DF (1999) Taxol-induced meiotic maturation delay, spindle defects, and aneuploidy in mouse oocytes and zygotes. Mutat Res 423:79–90

    CAS  PubMed  Google Scholar 

  146. Rawe VY, Olmedo SB, Nodar FN, Vitullo AD (2002) Microtubules and parental genome organisation during abnormal fertilisation in humans. Zygote 10:223–228

    PubMed  Google Scholar 

  147. Heil‐Chapdelaine RA, Otto JJ (1996) Relative changes in F‐actin during the first cell cycle: evidence for two distinct pools of F‐actin in the sea urchin egg. Cell Motil Cytoskeleton 34:26–35

    Google Scholar 

  148. Wong GK, Allen PG, Begg DA (1997) Dynamics of filamentous actin organization in the sea urchin egg cortex during early cleavage divisions: implications for the mechanism of cytokinesis. Cell Motil Cytoskeleton 36:30–42

    CAS  PubMed  Google Scholar 

  149. Döhner K, Sodeik B (2005) The role of the cytoskeleton during viral infection. Curr Top Microbiol Immunol 285:67–108

    PubMed  Google Scholar 

  150. Hall A (2009) The cytoskeleton and cancer. Cancer Metastasis Rev 28:5–14

    PubMed  Google Scholar 

  151. Pardee JD (2009) The actin cytoskeleton in cell motility, cancer, and infection. Morgan & Claypool Publishers, San Rafael, CA

    Google Scholar 

  152. Roth Z, Hansen P (2005) Disruption of nuclear maturation and rearrangement of cytoskeletal elements in bovine oocytes exposed to heat shock during maturation. Reproduction 129:235–244

    CAS  PubMed  Google Scholar 

  153. Silvestre F, Tosti E (2010) Impact of marine drugs on cytoskeleton-mediated reproductive events. Mar Drugs 8:881–915

    PubMed Central  CAS  PubMed  Google Scholar 

  154. Tamura AN, Huang TTF, Marikawa Y (2013) Impact of vitrification on the meiotic spindle and components of the microtubule-organizing center in mouse mature oocytes. Biol Reprod 89:112

    PubMed Central  PubMed  Google Scholar 

  155. Asch R, Simerly C, Ord T, Ord V, Schatten G (1995) The stages at which human fertilization arrests: microtubule and chromosome configurations in inseminated oocytes which failed to complete fertilization and development in humans. Mol Hum Reprod 1:239–248

    Google Scholar 

  156. Hafez E, Goff L, Hafez B (2004) Mammalian fertilization, IVF, ICSI: physiological/molecular parameters, clinical application. Arch Androl 50:69–88

    CAS  PubMed  Google Scholar 

  157. Hewitson L, Phil D, Simerly C, Schatten G (2000) Cytoskeletal aspects of assisted fertilization. Semin Reprod Med 18:151–160

    CAS  PubMed  Google Scholar 

  158. Salvolini E, Buldreghini E, Lucarini G, Vignini A, Lenzi A, Di Primio R, Balercia G (2012) Involvement of sperm plasma membrane and cytoskeletal proteins in human male infertility. Fertil Steril 99:697–704

    PubMed  Google Scholar 

  159. Simerly C, Wu G-J, Zoran S, Ord T, Rawlins R, Jones J, Navara C, Gerrity M, Rinehart J, Binor Z (1995) The paternal inheritance of the centrosome, the cell’s microtubule-organizing center, in humans, and the implications for infertility. Nat Med 1:47–52

    PubMed  Google Scholar 

  160. Terada Y (2007) Functional analyses of the sperm centrosome in human reproduction: implications for assisted reproductive technique. Soc Reprod Fertil Suppl 63:507

    PubMed  Google Scholar 

  161. Zhivkova R, Delimitreva S, Vatev I (2010) Role of oocyte cytoplasmic factors in human IVF failure. Akush Ginekol 49:26

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabetta Tosti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gallo, A., Tosti, E. (2015). Cytoskeletal Elements and the Reproductive Success in Animals. In: Schatten, H. (eds) The Cytoskeleton in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2904-7_6

Download citation

Publish with us

Policies and ethics