Skip to main content

Possible Functions of Intermediate Filaments in Mammalian Ovarian Follicles and Oocytes

  • Chapter
Book cover The Cytoskeleton in Health and Disease
  • 879 Accesses

Abstract

Intermediate filaments (IFs) are cytoskeletal structures that primarily maintain the structural and mechanical integrity of cells and tissues. However, recent evidence reveals that IFs participate in a number of critical cellular processes, such as regulation of the cytoplasmic architecture, cell growth, cell migration, organelle positioning, signaling, and/or regulating transcription. Although IFs have been studied in various somatic cells of many species, we focus here mainly on data obtained from studies in mammalian ovarian follicles and oocytes. The ovarian follicles contain keratin, vimentin, desmin, nestin, glial fibrillary acidic protein (GFAP) and neurofilaments. The characteristic structural features and expression patterns of the different members of the IF protein family will be discussed in mammalian ovarian tissues and oocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albers K, Fuchs E (1992) The molecular biology of intermediate filament proteins. Int Rev Cytol 134:243–279

    CAS  PubMed  Google Scholar 

  2. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1994) Intermediate filaments. In: Alberts B et al (eds) Molecular biology of the cell, 3rd edn. Garland Science, New York

    Google Scholar 

  3. Chang L, Goldman RD (2004) Intermediate filaments mediate cytoskeletal crosstalk. Nat Rev Mol Cell Biol 5:601–613

    CAS  PubMed  Google Scholar 

  4. Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2000) Section 19.6, intermediate filaments. In: Lodish H et al (eds) Molecular cell biology, 4th edn. W. H. Freeman, New York

    Google Scholar 

  5. Paramio JM, Jorcano JL (2002) Beyond structure: do intermediate filaments modulate cell signalling? Bioessays 24:836–844

    CAS  PubMed  Google Scholar 

  6. Steinert PM, Steven AC, Roop DR (1985) The molecular biology of intermediate filaments. Cell 42:411–419

    CAS  PubMed  Google Scholar 

  7. Moll R, Divo M, Langbein L (2008) The human keratins: biology and pathology. Histochem Cell Biol 129:705–733. doi:10.1007/s00418-008-0435-6

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Schweizer J, Bowden PE, Coulombe PA, Langbein L, Lane EB, Magin TM, Maltais L, Omary MB, Parry DA, Rogers MA, Wright MW (2006) New consensus nomenclature for mammalian keratins. J Cell Biol 174:169–174

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Haines RL, Lane EB (2012) Keratins and disease at a glance. J Cell Sci 125:3923–3928. doi:10.1242/jcs.099655

    CAS  PubMed  Google Scholar 

  10. Magin TM, Vijayaraj P, Leube RE (2007) Structural and regulatory functions of keratins. Exp Cell Res 313:2021–2032

    CAS  PubMed  Google Scholar 

  11. Windoffer R, Leube RE (2001) De novo formation of cytokeratin filament networks originates from the cell cortex in A-431 cells. Cell Motil Cytoskeleton 50:33–44

    CAS  PubMed  Google Scholar 

  12. Green KJ, Talian JC, Goldman RD (1986) Relationship between intermediate filaments and microfilaments in cultured fibroblasts: evidence for common foci during cell spreading. Cell Motil Cytoskeleton 6:408–418

    Google Scholar 

  13. Green KJ, Geiger B, Jones JC, Talian JC, Goldman RD (1987) The relationship between intermediate filaments and microfilaments before and during the formation of desmosomes and adherens-type junctions in mouse epidermal keratinocytes. J Cell Biol 104:1389–1402

    CAS  PubMed  Google Scholar 

  14. Yoon KH, Yoon M, Moir RD, Khuon S, Flitney FW, Goldman RD (2001) Insights into the dynamic properties of keratin intermediate filaments in living epithelial cells. J Cell Biol 153:503–516

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Evans RM (1998) Vimentin: the conundrum of the intermediate filament gene family. Bioessays 20:79–86

    CAS  PubMed  Google Scholar 

  16. Franke WW, Schmid E, Osborn M, Weber K (1979) Intermediate-sized filaments of human endothelial cells. J Cell Biol 81:570–580

    CAS  PubMed  Google Scholar 

  17. Galou M, Colucci-Guyon E, Ensergueix D, Ridet JL, Gimenez y Ribotta M, Privat A, Babinet C, Dupouey P (1996) Disrupted glial fibrillary acidic protein network in astrocytes from vimentin knockout mice. J Cell Biol 133:853–863

    CAS  PubMed  Google Scholar 

  18. Herrmann H, Aebi U (2000) Intermediate filaments and their associates: multi-talented structural elements specifying cytoarchitecture and cytodynamics. Curr Opin Cell Biol 12:79–90

    CAS  PubMed  Google Scholar 

  19. Steinert PM, Chou YH, Prahlad V, Parry DA, Marekov LN, Wu KC, Jang SI, Goldman RD (1999) A high molecular weight intermediate filament-associated protein in BHK-21 cells is nestin, a type VI intermediate filament protein. J Biol Chem 274:9881–9890

    CAS  PubMed  Google Scholar 

  20. Eckes B, Dogic D, Colucci-Guyon E, Wang N, Maniotis A, Ingber D, Merckling A, Langa F, Aumailley M, Delouvée A, Koteliansky V, Babinet C, Krieg T (1998) Impaired mechanical stability, migration and contractile capacity in vimentin-deficient fibroblasts. J Cell Sci 111:1897–1907

    CAS  PubMed  Google Scholar 

  21. Esue O, Carson AA, Tseng Y, Wirtz D (2006) A direct interaction between actin and vimentin filaments mediated by the tail domain of vimentin. J Biol Chem 281:30393–30399

    CAS  PubMed  Google Scholar 

  22. Goldman RD (1971) The role of three cytoplasmic fibers in BHK-21 cell motility. I. Microtubules and the effects of colchicine. J Cell Biol 51:752–762

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Helfand BT, Loomis P, Yoon M, Goldman RD (2003) Rapid transport of neural intermediate filament protein. J Cell Sci 116:2345–2359

    CAS  PubMed  Google Scholar 

  24. Bär H, Strelkov SV, Sjoberg G, Aebi U, Herrmann H (2004) The biology of desmin filaments: how do mutations affect their structure, assembly, and organisation? J Struct Biol 148:137–152

    PubMed  Google Scholar 

  25. Kasantikul V, Shuangshoti S (1989) Positivity to glial fibrillary acidic protein in bone, cartilage, and chordoma. J Surg Oncol 41:22–26

    CAS  PubMed  Google Scholar 

  26. Eriksson KS, Zhang S, Lin L, Lariviere RC, Julien JP, Mignot E (2008) The type III neurofilaments peripherin is expressed in the tuberomammillary neurons of the mouse. BMC Neurosci 9:26. doi:10.1186/1471-2202-9-26

    PubMed Central  PubMed  Google Scholar 

  27. Trojanowski JQ, Lee VM (1985) Expression of neurofilament antigens by normal and neoplastic human adrenal chromaffin cells. N Engl J Med 313:101–104

    CAS  PubMed  Google Scholar 

  28. Yuan A, Rao MV, Veeranna, Nixon RA (2012) Neurofilaments at a glance. J Cell Sci 125:3257–3263

    Google Scholar 

  29. Shah JV, Flanagan LA, Janmey PA, Leterrier JF (2000) Bidirectional translocation of neurofilaments along microtubules mediated in part by dynein/dynactin. Mol Biol Cell 11:3495–3508

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Cochard P, Paulin D (1984) Initial expression of neurofilaments and vimentin in the central and peripheral nervous system of the mouse embryo in vivo. J Neurosci 14:2080–2094

    Google Scholar 

  31. Shea TB, Beermann ML, Fischer I (1993) Transient requirement for vimentin in neuritogenesis: intracellular delivery of anti-vimentin antibodies and antisense oligonucleotides inhibit neurite initiation but not elongation of existing neurites in neuroblastoma. J Neurosci Res 36:66–76

    CAS  PubMed  Google Scholar 

  32. Burke B, Stewart CL (2013) The nuclear lamins: flexibility in function. Nat Rev Mol Cell Biol 14:13–24

    CAS  PubMed  Google Scholar 

  33. Gerace L, Burke B (1988) Functional organization of the nuclear envelope. Annu Rev Cell Biol 4:335–374

    CAS  PubMed  Google Scholar 

  34. Lin F, Worman HJ (1997) Expression of nuclear lamins in human tissues and cancer cell lines and transcription from the promoters of the lamin A/C and B1 genes. Exp Cell Res 236:378–384

    CAS  PubMed  Google Scholar 

  35. Oryschak AF, Ghadially FN, Bhatnagar R (1974) Nuclear fibrous lamina in the chondrocytes of articular cartilage. J Anat 118:511–515

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Patrizi G, Poger M (1967) The ultrastructure of the nuclear periphery. The zonula nucleum limitans. J Ultrastruct Res 17:127–136

    CAS  PubMed  Google Scholar 

  37. Tsai JW, Lian WN, Kemal S, Kriegstein AR, Vallee RB (2010) An unconventional kinesin and cytoplasmic dynein mediate interkinetic nuclear migration in neural stem cells. Nat Neurosci 13:1463–1471. doi:10.1038/nn.2665

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Lendahl U, Zimmerman LB, McKay RD (1990) CNS stem cells express a new class of intermediate filament protein. Cell 60:585–595

    CAS  PubMed  Google Scholar 

  39. Hendrickson ML, Rao AJ, Demerdash ON, Kalil RE (2011) Expression of nestin by neural cells in the adult rat and human brain. PLoS One 6, e18535. doi:10.1371/journal.pone.0018535

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Michalczyk K, Ziman M (2005) Nestin structure and predicted function in cellular cytoskeletal organisation. Histol Histopathol 20:665–671

    CAS  PubMed  Google Scholar 

  41. Wiese C, Rolletschek A, Kania G, Blyszczuk P, Tarasov KV, Tarasova Y, Wersto RP, Boheler KR, Wobus AM (2004) Nestin expression: a property of multi-lineage progenitor cells? Cell Mol Life Sci 61:2510–2522

    CAS  PubMed  Google Scholar 

  42. Lobo MV, Arenas MI, Alonso FJ, Gomez G, Bazan E, Paino CL, Fernandez E, Fraile B, Paniagua R, Moyano A, Caso E (2004) Nestin, a neuroectodermal stem cell marker molecule, is expressed in Leydig cells of the human testis and in some specific cell types from human testicular tumours. Cell Tissue Res 316:369–376

    CAS  PubMed  Google Scholar 

  43. Abraham EJ, Leech CA, Lin JC, Zulewski H, Habener JF (2002) Insulinotropic hormone glucagon-like peptide-1 differentiation of human pancreatic islet derived progenitor cells into insulin-producing cells. Endocrinology 143:3152–3161

    CAS  PubMed  Google Scholar 

  44. Davidoff MS, Middendorff R, Enikolopov G, Riethmacher D, Holstein AF, Muller D (2004) Progenitor cells of the testosterone-producing Leydig cells revealed. J Cell Biol 167:935–944

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Frojdman K, Pelliniemi LJ, Lendahl U, Virtanen I, Eriksson JE (1997) The intermediate filament protein nestin occurs transiently in differentiating testis of rat and mouse. Differentiation 61:243–249

    CAS  PubMed  Google Scholar 

  46. Huang H, Tang X (2003) Phenotypic determination and characterization of nestin-positive precursors derived from human fetal pancreas. Lab Invest 83:539–547

    CAS  PubMed  Google Scholar 

  47. Zulewski H, Abraham EJ, Gerlach MJ, Daniel PB, Moritz W, Muller B, Vallejo M, Thomas MK, Habener JF (2001) Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes. Diabetes 50:521–533

    CAS  PubMed  Google Scholar 

  48. Takahashi N, Itoh MT, Ishizuka B (2008) Human chorionic gonadotropin induces nestin expression in endothelial cells of the ovary via vascular endothelial growth factor signaling. Endocrinology 149:253–260

    CAS  PubMed  Google Scholar 

  49. Dahlstrand J, Collins VP, Lendahl U (1992) Expression of the class VI intermediate filament nestin in human central nervous system tumors. Cancer Res 52:5334–5341

    CAS  PubMed  Google Scholar 

  50. Eliasson C, Sahlgren C, Berthold CH, Stakeberg J, Celis JE, Betsholtz C, Eriksson JE, Pekny M (1999) Intermediate filament protein partnership in astrocytes. J Biol Chem 274:23996–24006

    CAS  PubMed  Google Scholar 

  51. Marvin MJ, Dahlstrand J, Lendahl U, McKay RD (1998) A rod end deletion in the intermediate filament protein nestin alters its subcellular localization in neuroepithelial cells of transgenic mice. J Cell Sci 111:1951–1961

    CAS  PubMed  Google Scholar 

  52. Sjöberg G, Jiang WQ, Ringertz NR, Lendahl U, Sejersen T (1994) Colocalization of nestin and vimentin/desmin in skeletal muscle cells demonstrated by three-dimensional fluorescence digital imaging microscopy. Exp Cell Res 214:447–458

    PubMed  Google Scholar 

  53. Chen J, Boyle S, Zhao M, Su W, Takahashi K, Davis L, Decaestecker M, Takahashi T, Breyer MD, Hao CM (2006) Differential expression of the intermediate filament protein nestin during renal development and its localization in adult podocytes. J Am Soc Nephrol 17:1283–1291

    CAS  PubMed  Google Scholar 

  54. Guérette D, Khan PA, Savard PE, Vincent M (2007) Molecular evolution of type VI intermediate filament proteins. BMC Evol Biol 7:164. doi:10.1186/1471-2148-7-164

    PubMed Central  PubMed  Google Scholar 

  55. Wei R, Yang J, Hou W, Liu G, Gao M, Zhang L, Wang H, Mao G, Gao H, Chen G, Hong T (2013) Insulin-producing cells derived from human embryonic stem cells: comparison of definitive endoderm- and nestin-positive progenitor-based differentiation strategies. PLoS One 8(8), e72513. doi:10.1371/journal.pone.0072513. eCollection 2013

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Helfand BT, Mikami A, Vallee RB, Goldman RD (2002) A requirement for cytoplasmic dynein and dynactin in intermediate filament network assembly and organization. J Cell Biol 157:795–806

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Helfand BT, Chang L, Goldman RD (2004) Intermediate filaments are dynamic and motile elements of cellular architecture. J Cell Sci 117:133–141

    CAS  PubMed  Google Scholar 

  58. Hyder CL, Pallari HM, Kochin V, Eriksson JE (2008) Providing cellular signposts—post-translational modifications of intermediate filaments. FEBS Lett 582:2140–2148. doi:10.1016/j.febslet.2008.04.064

    CAS  PubMed  Google Scholar 

  59. Minin AA, Moldaver MV (2008) Intermediate vimentin filaments and their role in intracellular organelle distribution. Biochemistry (Mosc) 73:1453–1466

    CAS  Google Scholar 

  60. Oriolo AS, Wald FA, Ramsauer VP, Salas PJ (2007) Intermediate filaments: a role in epithelial polarity. Exp Cell Res 313:2255–2264

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Lehtonen E, Lehto VP, Vartio T, Badley RA, Virtanen I (1983) Expression of cytokeratin polypeptides in mouse oocytes and preimplantation embryos. Dev Biol 100:158–165

    CAS  PubMed  Google Scholar 

  62. Czernobilsky B, Moll R, Levy R, Franke WW (1985) Co-expression of cytokeratin and vimentin filaments in mesothelial, granulosa and rete ovarii cells of the human ovary. Eur J Cell Biol 37:175–190

    CAS  PubMed  Google Scholar 

  63. Lehtonen E (1985) A monoclonal antibody against mouse oocyte cytoskeleton recognizing cytokeratin-type filaments. J Embryol Exp Morphol 90:197–209

    CAS  PubMed  Google Scholar 

  64. Gall L, Le Guen P, Huneau D (1989) Cytokeratin-like proteins in the sheep oocyte. Cell Differ Dev 28:95–104

    CAS  PubMed  Google Scholar 

  65. Plancha CE, Carmo-Fonseca M, David-Ferreira JF (1989) Cytokeratin filaments are present in golden hamster oocytes and early embryos. Differentiation 42:1–9

    CAS  PubMed  Google Scholar 

  66. van Niekerk CC, Boerman OC, Ramaekers FC, Poels LG (1991) Marker profile of different phases in the transition of normal human ovarian epithelium to ovarian carcinomas. Am J Pathol 138:455–463

    PubMed Central  PubMed  Google Scholar 

  67. Fridmacher V, Locquet O, Magre S (1992) Differential expression of acidic cytokeratins 18 and 19 during sexual differentiation of the rat gonad. Development 115:503–517

    CAS  PubMed  Google Scholar 

  68. Santini D, Ceccarelli C, Mazzoleni G, Pasquinelli G, Jasonni VM, Martinelli GN (1993) Demonstration of cytokeratin intermediate filaments in oocytes of the developing and adult human ovary. Histochemistry 99:311–319

    CAS  PubMed  Google Scholar 

  69. Gallicano GI, Larabell CA, McGaughey RW, Capco DG (1994) Novel cytoskeletal elements in mammalian eggs are composed of a unique arrangement of intermediate filaments. Mech Dev 45:211–226

    CAS  PubMed  Google Scholar 

  70. van den Hurk R, Dijkstra G, van Mil FN, Hulshof SC, van den Ingh TS (1995) Distribution of the intermediate filament proteins vimentin, keratin, and desmin in the bovine ovary. Mol Reprod Dev 41:459–467

    PubMed  Google Scholar 

  71. Khan-Dawood FS, Yusoff Dawood M, Tabibzadeh S (1996) Immunohistochemical analysis of the microanatomy of primate ovary. Biol Reprod 54:734–742

    CAS  PubMed  Google Scholar 

  72. Plancha CE (1996) Cytokeratin dynamics during oocyte maturation in the hamster requires reaching of metaphase I. Differentiation 60:87–98

    CAS  PubMed  Google Scholar 

  73. Appert A, Fridmacher V, Locquet O, Magre S (1998) Patterns of keratins 8, 18 and 19 during gonadal differentiation in the mouse: sex- and time-dependent expression of keratin 19. Differentiation 63:273–284

    CAS  PubMed  Google Scholar 

  74. Marettová E, Maretta M (2002) Demonstration of intermediate filaments in sheep ovary. Acta Histochem 104:431–434

    PubMed  Google Scholar 

  75. Bukovsky A, Caudle MR, Svetlikova M, Upadhyaya NB (2004) Origin of germ cells and formation of new primary follicles in adult. Reprod Biol Endocrinol 2:20. http://www.rbej.com/content/2/1/20

  76. Kabashima K, Matsuzaki M, Suzuki H (2010) Intermediate filament keratin dynamics during oocyte maturation requires maturation/M-phase promoting factor and mitogen-activated protein kinase kinase activities in the hamster. Reprod Domest Anim 45:e184–e188

    CAS  PubMed  Google Scholar 

  77. Townson DH, Putnam AN, Sullivan BT, Guo L, Irving-Rodgers HF (2010) Expression and distribution of cytokeratin 8/18 intermediate filaments in bovine antral follicles and corpus luteum: an intrinsic mechanism of resistance to apoptosis? Histol Histopathol 25:889–900

    PubMed  Google Scholar 

  78. Mora JM, Fenwick MA, Castle L, Baithun M, Ryder TA, Mobberley M, Carzaniga R, Franks S, Hardy K (2012) Characterization and significance of adhesion and junction-related proteins in mouse ovarian follicles. Biol Reprod 86(153):1–14

    Google Scholar 

  79. Takahashi N, Ishizuka B (2012) The involvement of neurofilament heavy chain phosphorylation in the maturation and degeneration of rat oocytes. Endocrinology 153:1990–1998

    CAS  PubMed  Google Scholar 

  80. Wendl J, Ebach K, Rodler D, Kenngott RA (2012) Immunocytochemical localization of cytoplasmic and nuclear intermediate filaments in the bovine ovary during folliculogenesis. Anat Histol Embryol 41:190–201

    CAS  PubMed  Google Scholar 

  81. Hummitzsch K, Irving-Rodgers HF, Hatzirodos N, Bonner W, Sabatier L, Reinhardt DP, Sado Y, Ninomiya Y, Wilhelm D, Rodgers RJ (2013) A new model of development of the mammalian ovary and follicles. PLoS One 8, e55578. doi:10.1371/journal.pone.0055578

    PubMed Central  CAS  PubMed  Google Scholar 

  82. Eppig JJ (2001) Oocyte control of ovarian follicular development and function in mammals. Reproduction 122:829–838

    CAS  PubMed  Google Scholar 

  83. Matzuk MM, Burns KH, Viveiros MM, Eppig JJ (2002) Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science 296:2178–2180

    CAS  PubMed  Google Scholar 

  84. Da Silva-Buttkus P, van den Hurk R, te Velde ER, Taverne MAM (2003) Ovarian development in intrauterine growth-retarded and normally developed piglets originating from the same litter. Reproduction 126:249–258

    PubMed  Google Scholar 

  85. Helfand BT, Chou Y-H, Shumaker DK, Goldman RD (2005) Intermediate filament proteins participate in signal transduction. Trends Cell Biol 15:568–570

    CAS  PubMed  Google Scholar 

  86. Ivaska J, Pallari HM, Nevo J, Eriksson JE (2007) Novel functions of vimentin in cell adhesion, migration, and signaling. Exp Cell Res 313:2050–2062

    CAS  PubMed  Google Scholar 

  87. Mendez MG, Kojima S, Goldman RD (2010) Vimentin induces changes in cell shape, motility, and adhesion during the epithelial to mesenchymal transition. FASEB J 24:1838–1851

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Edson MA, Nagaraja AK, Matzuk MM (2009) The mammalian ovary from genesis to revelation. Endocr Rev 30:624–712. doi:10.1210/er.2009-0012

    PubMed Central  CAS  PubMed  Google Scholar 

  89. Hirshfield AN (1991) Development of follicles in the mammalian ovary. Int Rev Cytol 124:43–101

    CAS  PubMed  Google Scholar 

  90. Pincus G, Enzmann EV (1935) The comparative behavior of mammalian eggs in vivo and in vitro I. The activation of ovarian eggs. J Exp Med 62:655–675

    Google Scholar 

  91. Bridgham JT, Johnson AL (2001) Expression and regulation of Fas antigen and tumor necrosis factor receptor type I in hen granulosa cells. Biol Reprod 65:733–739

    CAS  PubMed  Google Scholar 

  92. Hu CL, Cowan RG, Harman RM, Porter DA, Quirk SM (2001) Apoptosis of bovine granulosa cells after serum withdrawal is mediated by Fas antigen (CD95) and Fas ligand. Biol Reprod 64:518–526

    CAS  PubMed  Google Scholar 

  93. Kim JM, Boone DL, Auyeung A, Tsang BK (1998) Granulosa cell apoptosis induced at the penultimate stage of follicular development is associated with increased levels of Fas and Fas ligand in the rat ovary. Biol Reprod 58:1170–1176

    CAS  PubMed  Google Scholar 

  94. Ortega HH, Salvetti NR, Müller LA, Amable P, Lorente JA, Barbeito CG, Gimeno EJ (2007) Characterization of cytoskeletal proteins in follicular structures of cows with cystic ovarian disease. J Comp Pathol 136:222–230

    CAS  PubMed  Google Scholar 

  95. van Wezel IL, Rodgers RJ, Krupa M (1999) Development of the membrana granulosa of bovine antral follicles: structure, location of mitosis and pyknosis, and immunolocalization of involucrin and vimentin. Reprod Fertil Dev 11:37–48

    PubMed  Google Scholar 

  96. Baravalle C, Salvetti NR, Mira GA, Pezzone N, Ortega HH (2006) Microscopic characterization of follicular structures in letrozole-induced polycystic ovarian syndrome in the rat. Arch Med Res 37:830–839

    CAS  PubMed  Google Scholar 

  97. Kim NH, Funahashi H, Prather RS, Schatten G, Day BN (1996) Microtubule and microfilament dynamics during meiotic maturation. Mol Reprod Dev 43:248–255

    CAS  PubMed  Google Scholar 

  98. Suzuki H, Jeong B-S, Yang X (2000) Dynamic changes of cumulus-oocyte cell communication during in vitro maturation of porcine oocytes. Biol Reprod 63:723–729

    CAS  PubMed  Google Scholar 

  99. Suzuki H, Satoh M, Toyokawa K (2005) Changes in distribution of active mitochondria during oocyte maturation and fertilization in the hamster. J Mamm Ova Res 22:163–169

    Google Scholar 

  100. Suzuki H, Satoh M, Kabashima K (2006) Distributions of mitochondria and the cytoskeleton in hamster embryos developed in vivo and in vitro. J Mamm Ova Res 23:128–134

    Google Scholar 

  101. Suzuki H, Saito Y (2006) Cumulus cells affect distribution and function of the cytoskeleton and organelles in porcine oocytes. Reprod Med Biol 5:183–194

    Google Scholar 

  102. van Blerkom J (1991) Microtubule mediation of cytoplasmic and nuclear maturation during the early stages of resumed meiosis in cultured mouse oocytes. Proc Natl Acad Sci U S A 88:5031–5035

    PubMed Central  PubMed  Google Scholar 

  103. Sun QY, Lai L, Park KW, Kuhholzer B, Prather RS, Schatten H (2001) Dynamic events are differently mediated by microfilaments, microtubules, and mitogen-activated protein kinase during porcine oocyte maturation and fertilization in vitro. Biol Reprod 64:879–889

    CAS  PubMed  Google Scholar 

  104. Sun QY, Wu GM, Lai L, Park KW, Cabot R, Cheng HT, Day BN, Prather RS, Schatten H (2001) Translocation of active mitochondria during pig oocyte maturation, fertilization and early embryo development in vitro. Reproduction 122:155–163

    CAS  PubMed  Google Scholar 

  105. Sun QY, Schatten H (2006) Regulation of dynamic events by microfilaments during oocyte maturation and fertilization. Reproduction 131:193–205

    CAS  PubMed  Google Scholar 

  106. Motta PM, Nottola SA, Makabe S, Heyn R (2000) Mitochondrial morphology in human fetal and adult female germ cells. Hum Reprod 15(Suppl 2):129–147

    PubMed  Google Scholar 

  107. Thibault C, Szölosi D, Gérard M (1987) Mammalian oocyte maturation. Reprod Nutr Dev 27:865–896

    CAS  PubMed  Google Scholar 

  108. Goldman RD, Grin B, Mendez MG, Kuczmarski ER (2008) Intermediate filaments: versatile building blocks of cell structure. Curr Opin Cell Biol 20:28–34. doi:10.1016/j.ceb.2007.11.003

    PubMed Central  CAS  PubMed  Google Scholar 

  109. Allworth AE, Albertini DF (1993) Meiotic maturation in cultured bovine oocytes is accompanied by remodeling of the cumulus cell cytoskeleton. Dev Biol 158:101–112

    CAS  PubMed  Google Scholar 

  110. Anderson E, Albertini DF (1976) Gap junctions between the oocyte and companion follicle cells in the mammalian ovary. J Cell Biol 71:680–686

    CAS  PubMed  Google Scholar 

  111. Gilula NB, Epstein ML, Beers WH (1978) Cell-to-cell communication and ovulation. A study of the cumulus-oocyte complex. J Cell Biol 78:58–75

    CAS  PubMed  Google Scholar 

  112. Hyttel P (1987) Bovine cumulus-oocyte disconnection in vitro. Anat Embryol 176:41–44

    CAS  PubMed  Google Scholar 

  113. Kruip TAM, Cran DG, van Beneden TH, Dieleman SJ (1983) Structural changes in bovine oocytes during final maturation in vivo. Gamete Res 8:29–47

    CAS  Google Scholar 

  114. Laurincík J, Kroslak P, Hyttel P, Pivko J, Sirotkin AV (1992) Bovine cumulus expansion and corona-oocyte disconnection during culture in vitro. Reprod Nutr Dev 32:151–161

    PubMed  Google Scholar 

  115. Moor RM, Smith MW, Dawson RM (1980) Measurement of intercellular coupling between oocytes and cumulus cells using intracellular markers. Exp Cell Res 126:15–29

    CAS  PubMed  Google Scholar 

  116. Zamboni L (1974) Fine morphology of the follicle wall and follicle cell-oocyte association. Biol Reprod 10:125–149

    CAS  PubMed  Google Scholar 

  117. Wulff C, Dickson SE, Duncan WC, Fraser HM (2001) Angiogenesis in the human corpus luteum: simulated early pregnancy by HCG treatment is associated with both angiogenesis and vessel stabilization. Hum Reprod 16:2515–2524

    CAS  PubMed  Google Scholar 

  118. Eyer J, Peterson A (1994) Neurofilament-deficient axons and perikaryal aggregates in viable transgenic mice expressing a neurofilament-beta-galactosidase fusion protein. Neuron 12:389–405

    CAS  PubMed  Google Scholar 

  119. Chung BM, Rotty JD, Coulombe PA (2013) Networking galore: intermediate filaments and cell migration. Curr Opin Cell Biol 25:600–612. doi:10.1016/j.ceb.2013.06.008

    PubMed Central  CAS  PubMed  Google Scholar 

  120. Seltmann K, Fritsch AW, Käs JA, Magin TM (2013) Keratins significantly contribute to cell stiffness and impact invasive behavior. Proc Natl Acad Sci U S A 110:18507–18512. doi:10.1073/pnas.1310493110

    PubMed Central  CAS  PubMed  Google Scholar 

  121. Chen CS, Tan J, Tien J (2004) Mechanotransduction at cell–matrix and cell–cell contacts. Annu Rev Biomed Eng 6:275–302

    CAS  PubMed  Google Scholar 

  122. Farge E (2011) Mechanotransduction in development. Curr Top Dev Biol 95:243–265. doi:10.1016/B978-0-12-385065-2.00008-6

    PubMed  Google Scholar 

  123. Herrmann H, Bär H, Kreplak L, Strelkov SV, Aebi U (2007) Intermediate filaments: from cell architecture to nanomechanics. Nat Rev Mol Cell Biol 8:562–573

    CAS  PubMed  Google Scholar 

  124. Tzur YB, Wilson KL, Gruenbaum Y (2006) SUN-domain proteins: ‘Velcro’ that links the nucleoskeleton to the cytoskeleton. Nat Rev Mol Cell Biol 7:782–788

    CAS  PubMed  Google Scholar 

  125. Kim S, Coulombe PA (2007) Intermediate filament scaffolds fulfill mechanical, organizational, and signaling functions in the cytoplasm. Genes Dev 21:1581–1597

    CAS  PubMed  Google Scholar 

  126. Marceau N, Schutte B, Gilbert S, Loranger A, Henfling ME, Broers JL, Mathew J, Ramaekers FC (2007) Dual roles of intermediate filaments in apoptosis. Exp Cell Res 313:2265–2281

    CAS  PubMed  Google Scholar 

  127. Margolis SS, Perry JA, Forester CM, Nutt LK, Guo Y, Jardim MJ, Thomenius MJ, Freel CD, Darbandi R, Ahn JH, Arroyo JD, Wang XF, Shenolikar S, Nairn AC, Dunphy WG, Hahn WC, Virshup DM, Kornbluth S (2006) Role for the PP2A/B56delta phosphatase in regulating 14-3-3 release from Cdc25 to control mitosis. Cell 127:759–773

    PubMed Central  CAS  PubMed  Google Scholar 

  128. Pallari HM, Lindqvist J, Torvaldson E, Ferraris SE, He T, Sahlgren C, Eriksson JE (2011) Nestin as a regulator of Cdk5 in differentiating myoblasts. Mol Biol Cell 22:1539–1549. doi:10.1091/mbc.E10-07-0568

    PubMed Central  CAS  PubMed  Google Scholar 

  129. Sahlgren CM, Mikhailov A, Vaittinen S, Pallari HM, Kalimo H, Pant HC, Eriksson JE (2003) Cdk5 regulates the organization of Nestin and its association with p35. Mol Cell Biol 23:5090–5106

    PubMed Central  CAS  PubMed  Google Scholar 

  130. Snider NT, Omary MB (2014) Post-translational modifications of intermediate filament proteins: mechanisms and functions. Nat Rev Mol Cell Biol 15:163–177

    PubMed Central  CAS  PubMed  Google Scholar 

  131. Toivola DM, Strnad P, Habtezion A, Omary MB (2010) Intermediate filaments take the heat as stress proteins. Trends Cell Biol 20:79–91. doi:10.1016/j.tcb.2009.11.004

    PubMed Central  CAS  PubMed  Google Scholar 

  132. Kim S, Coulombe PA (2010) Emerging role for the cytoskeleton as an organizer and regulator of translation. Nat Rev Mol Cell Biol 11:75–81. doi:10.1038/nrm2818

    PubMed  Google Scholar 

  133. Styers ML, Kowalczyk AP, Faundez V (2005) Intermediate filaments and vesicular membrane traffic: the odd couple’s first dance? Traffic 6:359–365

    CAS  PubMed  Google Scholar 

  134. Toivola DM, Tao GZ, Habtezion A, Liao J, Omary MB (2005) Cellular integrity plus: organelle-related and protein-targeting functions of intermediate filaments. Trends Cell Biol 15:608–617

    CAS  PubMed  Google Scholar 

  135. Chan KY, Bunt AH (1978) An association between mitochondria and microtubules in synaptosomes and axon terminals of cerebral cortex. J Neurocytol 7:137–143

    CAS  PubMed  Google Scholar 

  136. Couchman JR, Rees DA (1982) Organelle-cytoskeleton relationships in fibroblasts: mitochondria, Golgi apparatus, and endoplasmic reticulum in phases of movement and growth. Eur J Cell Biol 27:47–54

    CAS  PubMed  Google Scholar 

  137. Heggeness MH, Simon M, Singer SJ (1978) Association of mitochondria with microtubules in cultured cells. Proc Natl Acad Sci U S A 75:3863–3866

    PubMed Central  CAS  PubMed  Google Scholar 

  138. Krendel M, Sgourdas G, Bonder EM (1998) Disassembly of actin filaments leads to increased rate and frequency of mitochondrial movement along microtubules. Cell Motil Cytoskeleton 40:368–378

    CAS  PubMed  Google Scholar 

  139. Raine CS, Ghetti B, Shelanski ML (1971) On the association between microtubules and mitochondria within axons. Brain Res 34:389–393

    CAS  PubMed  Google Scholar 

  140. Mose-Larsen P, Bravo R, Fey SJ, Small JV, Celis JE (1982) Putative association of mitochondria with a subpopulation of intermediate-sized filaments in cultured human skin fibroblasts. Cell 31:681–692

    CAS  PubMed  Google Scholar 

  141. Toh BH, Lolait SJ, Mathy JP, Baum R (1980) Association of mitochondria with intermediate filaments and of polyribosomes with cytoplasmic actin. Cell Tissue Res 211:163–169

    CAS  PubMed  Google Scholar 

  142. Milner DJ, Mavroidis M, Weisleder N, Capetanaki Y (2000) Desmin cytoskeleton linked to muscle mitochondrial distribution and respiratory function. J Cell Biol 150:1283–1298

    PubMed Central  CAS  PubMed  Google Scholar 

  143. Reipert S, Steinbock F, Fischer I, Bittner RE, Zeold A, Wiche G (1999) Association of mitochondria with plectin and desmin intermediate filaments in striated muscle. Exp Cell Res 252:479–491

    CAS  PubMed  Google Scholar 

  144. Stone MR, O'Neill A, Lovering RM, Strong J, Resneck WG, Reed PW, Toivola DM, Ursitti JA, Omary MB, Bloch RJ (2007) Absence of keratin 19 in mice causes skeletal myopathy with mitochondrial and sarcolemmal reorganization. J Cell Sci 120:3999–4008

    CAS  PubMed  Google Scholar 

  145. Stromer MH, Bendayan M (1988) Arrangement of desmin intermediate filaments in smooth muscle cells as shown by high-resolution immunocytochemistry. Cell Motil Cytoskeleton 11:117–125

    CAS  PubMed  Google Scholar 

  146. Stromer MH, Bendayan M (1990) Immunocytochemical identification of cytoskeletal linkages to smooth muscle cell nuclei and mitochondria. Cell Motil Cytoskeleton 17:11–18

    CAS  PubMed  Google Scholar 

  147. Tokuyasu KT, Dutton AH, Singer SJ (1983) Immunoelectron microscopic studies of desmin (skeletin) localization and intermediate filament organization in chicken skeletal muscle. J Cell Biol 96:1727–1735

    CAS  PubMed  Google Scholar 

  148. Tokuyasu KT, Dutton AH, Singer SJ (1983) Immunoelectron microscopic studies of desmin (skeletin) localization and intermediate filament organization in chicken cardiac muscle. J Cell Biol 96:1736–1742

    CAS  PubMed  Google Scholar 

  149. Almahbobi G, Williams LJ, Han XG, Hall PF (1993) Binding of lipid droplets and mitochondria to intermediate filaments in rat Leydig cells. J Reprod Fertil 98:209–217

    CAS  PubMed  Google Scholar 

  150. Collier NC, Sheetz MP, Schlesinger MJ (1993) Concomitant changes in mitochondria and intermediate filaments during heat shock and recovery of chicken embryo fibroblasts. J Cell Biochem 52:297–307

    CAS  PubMed  Google Scholar 

  151. Nekrasova OE, Mendez MG, Chernoivanenko IS, Tyurin-Kuzmin PA, Kuczmarski ER, Gel-fand VI, Goldman RD, Minin AA (2011) Vimentin intermediate filaments modulate the motility of mitochondria. Mol Biol Cell 22:2282–2289. doi:10.1091/mbc.E10-09-0766

    PubMed Central  CAS  PubMed  Google Scholar 

  152. Summerhayes IC, Wong D, Chen LB (1983) Effect of microtubules and intermediate filaments on mitochondrial distribution. J Cell Sci 61:87–105

    CAS  PubMed  Google Scholar 

  153. Tao GZ, Looi KS, Toivola DM, Strnad P, Zhou Q, Liao J, Wei Y, Habtezion A, Omary MB (2009) Keratins modulate the shape and function of hepatocyte mitochondria: a mechanism for protection from apoptosis. J Cell Sci 122:3851–3855. doi:10.1242/jcs.051862

    PubMed Central  CAS  PubMed  Google Scholar 

  154. Tolstonog GV, Belichenko-Weitzmann IV, Lu JP, Hartig R, Shoeman RL, Traub U, Traub P (2005) Spontaneously immortalized mouse embryo fibroblasts: growth behavior of wild-type and vimentin-deficient cells in relation to mitochondrial structure and activity. DNA Cell Biol 24:680–709

    CAS  PubMed  Google Scholar 

  155. Capetanaki Y (2002) Desmin cytoskeleton: a potential regulator of muscle mitochondrial behavior and function. Trends Cardiovasc Med 12:339–348

    CAS  PubMed  Google Scholar 

  156. Capetanaki Y, Bloch RJ, Kouloumenta A, Mavroidis M, Psarras S (2007) Muscle intermediate filaments and their links to membranes and membranous organelles. Exp Cell Res 313:2063–2076

    CAS  PubMed  Google Scholar 

  157. Lindén M, Li Z, Paulin D, Gotow T, Leterrier JF (2001) Effects of desmin gene knockout on mice heart mitochondria. J Bioenerg Biomembr 33:333–341

    PubMed  Google Scholar 

  158. Perez-Olle R, Lopez-Toledano MA, Goryunov D, Cabrera-Poch N, Stefanis L, Brown K, Liem RK (2005) Mutations in the neurofilaments light gene linked to Charcot-Marie-Tooth disease cause defects in transport. J Neurochem 93:861–874

    CAS  PubMed  Google Scholar 

  159. Straube-West K, Loomis PA, Opal P, Goldman RD (1996) Alterations in neural intermediate filament organization: functional implications and the induction of pathological changes related to motor neuron disease. J Cell Sci 109:2319–2329

    CAS  PubMed  Google Scholar 

  160. Wagner OI, Lifshitz J, Janmey PA, Linden M, McIntosh TK, Leterrier JF (2003) Mechanisms of mitochondria–neurofilament interactions. J Neurosci 23:9046–9058

    CAS  PubMed  Google Scholar 

  161. Yaffe MP (1999) The machinery of mitochondrial inheritance and behavior. Science 283:1493–1497

    CAS  PubMed  Google Scholar 

  162. Rezniczek GA, Abrahamsberg C, Fuchs P, Spazierer D, Wiche G (2003) Plectin 5′-transcript diversity: short alternative sequences determine stability of gene products, initiation of translation and subcellular localization of isoforms. Hum Mol Genet 12:3181–3194

    CAS  PubMed  Google Scholar 

  163. Wiche G (1998) Role of plectin in cytoskeleton organization and dynamics. J Cell Sci 111:2477–2486

    CAS  PubMed  Google Scholar 

  164. Winter L, Abrahamsberg C, Wiche G (2008) Plectin isoform 1b mediates mitochondrion-intermediate filament network linkage and controls organelle shape. J Cell Biol 181:903–911

    PubMed Central  CAS  PubMed  Google Scholar 

  165. Anesti V, Scorrano L (2006) The relationship between mitochondrial shape and function and the cytoskeleton. Biochim Biophys Acta 1757:692–699

    CAS  PubMed  Google Scholar 

  166. Reynders E, Foulquier F, Annaert W, Matthijs G (2011) How Golgi glycosylation meets and needs trafficking: the case of the COG complex. Glycobiology 21:853–863. doi:10.1093/glycob/cwq179

    CAS  PubMed  Google Scholar 

  167. Ho WC, Allan VJ, van Meer G, Berger EG, Kreis TE (1989) Reclustering of scattered Golgi elements occurs along microtubules. Eur J Cell Biol 48:250–263

    CAS  PubMed  Google Scholar 

  168. Hoshino H, Tamaki A, Yagura T (1997) Process of dispersion and fragmentation of Golgi complex by microtubule bundles formed in taxol treated HeLa cells. Cell Struct Funct 22:325–334

    CAS  PubMed  Google Scholar 

  169. Rogalski AA, Singer SJ (1984) Associations of elements of the Golgi apparatus with microtubules. J Cell Biol 99:1092–1100

    CAS  PubMed  Google Scholar 

  170. Valderrama F, Babià T, Ayala I, Kok JW, Renau-Piqueras J, Egea G (1998) Actin microfilaments are essential for the cytological positioning and morphology of the Golgi complex. Eur J Cell Biol 76:9–17

    CAS  PubMed  Google Scholar 

  171. McCallum SJ, Erickson JW, Cerione RA (1998) Characterization of the association of the actin-binding protein, IQGAP, and activated Cdc42 with Golgi membranes. J Biol Chem 273:22537–22544

    CAS  PubMed  Google Scholar 

  172. Gao Y, Sztul E (2001) A novel interaction of the Golgi complex with the vimentin intermediate filament cytoskeleton. J Cell Biol 152:877–894

    PubMed Central  CAS  PubMed  Google Scholar 

  173. Gao YS, Vrielink A, MacKenzie R, Sztul E (2002) A novel type of regulation of the vimentin intermediate filament cytoskeleton by a Golgi protein. Eur J Cell Biol 81:391–401

    CAS  PubMed  Google Scholar 

  174. Iwatsuki H, Suda M (2010) Seven kinds of intermediate filament networks in the cytoplasm of polarized cells: structure and function. Acta Histochem Cytochem 43:19–31. doi:10.1267/ahc.10009

    PubMed Central  CAS  PubMed  Google Scholar 

  175. Hamasaki M, Furuta N, Matsuda A, Nezu A, Yamamoto A, Fujita N, Oomori H, Noda T, Hara-guchi T, Hiraoka Y, Amano A, Yoshimori T (2013) Autophagosomes form at ER-mitochondria contact sites. Nature 495:389–393. doi:10.1038/nature11910

    CAS  PubMed  Google Scholar 

  176. Cogli L, Progida C, Bramato R, Bucci C (2013) Vimentin phosphorylation and assembly are regulated by the small GTPase Rab7a. Biochim Biophys Acta 1833:1283–1293. doi:10.1016/j.bbamcr.2013.02.024

    PubMed Central  CAS  PubMed  Google Scholar 

  177. Styers ML, Salazar G, Love R, Peden AA, Kowalczyk AP, Faundez V (2004) The endo-lysosomal sorting machinery interacts with the intermediate filament cytoskeleton. Mol Biol Cell 15:5369–5382

    PubMed Central  CAS  PubMed  Google Scholar 

  178. Martin S, Parton RG (2006) Lipid droplets: a unified view of a dynamic organelle. Nat Rev Mol Cell Biol 7:373–378

    CAS  PubMed  Google Scholar 

  179. Brasaemle DL, Dolios G, Shapiro L, Wang R (2004) Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J Biol Chem 279:46835–46842

    CAS  PubMed  Google Scholar 

  180. Franke WW, Hergt M, Grund C (1987) Rearrangement of the vimentin cytoskeleton during adipose conversion: formation of an intermediate filament cage around lipid globules. Cell 49:131–141

    CAS  PubMed  Google Scholar 

  181. Heid H, Rickelt S, Zimbelmann R, Winter S, Schumacher H, Dörflinger Y, Kuhn C, Franke WW (2014) On the formation of lipid droplets in human adipocytes: the organization of the perilipin–vimentin cortex. PLoS One 9, e90386. doi:10.1371/journal.pone.0090386

    PubMed Central  PubMed  Google Scholar 

  182. St. Johnston D (2005) Moving messages: the intracellular localization of mRNAs. Nat Rev Mol Cell Biol 6:363–375

    CAS  PubMed  Google Scholar 

  183. Berciano MT, Andres MA, Calle E, Lafarga M (1995) Age-induced hypertrophy of astrocytes in rat supraoptic nucleus: a cytological, morphometric, and immunocytochemical study. Anat Rec 243:129–144

    CAS  PubMed  Google Scholar 

  184. Murti K, Goorha R (1989) Synthesis of frog virus 3 proteins occurs on intermediate filament-bound polyribosomes. Biol Cell 65:205–214

    CAS  PubMed  Google Scholar 

  185. Thornell LE, Eriksson A (1981) Filament systems in the Purkinje fibres of the heart. Am J Physiol 241:291–305

    Google Scholar 

  186. Grossi de Sa MF, Martins de Sa C, Harper F, Olink-Coux M, Huesca M, Scherrer K (1988) The association of prosomes with some of the intermediate filament networks of the animal cell. J Cell Biol 107:1517–1530

    CAS  PubMed  Google Scholar 

  187. Traub P, Bauer C, Hartig R, Grüb S, Stahl J (1998) Colocalization of single ribosomes with intermediate filaments in puromycin-treated and serum-starved mouse embryo fibroblasts. Biol Cell 90:319–337

    CAS  PubMed  Google Scholar 

  188. Gross SR, Kinzy TG (2005) Translation elongation factor 1A is essential for regulation of the actin cytoskeleton and cell morphology. Nat Struct Mol Biol 12:772–778

    CAS  PubMed  Google Scholar 

  189. Kim S, Kellner J, Lee CH, Coulombe PA (2007) Interaction between the keratin cytoskeleton and eEF1Bγ affects protein synthesis in epithelial cells. Nat Struct Mol Biol 14:982–983

    PubMed  Google Scholar 

  190. Kim S, Wong P, Coulombe PA (2006) A keratin cytoskeletal protein regulates protein synthesis and epithelial cell growth. Nature 41:362–365

    Google Scholar 

  191. Ku NO, Michie S, Resurreccion EZ, Broome RL, Omary MB (2002) Keratin binding to 14-3-3 proteins modulates keratin filaments and hepatocyte mitotic progression. Proc Natl Acad Sci U S A 99:4373–4378

    PubMed Central  CAS  PubMed  Google Scholar 

  192. Wang RC, Wei Y, An Z, Zou Z, Xiao G, Bhagat G, White M, Reichelt J, Levine B (2012) Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science 338:956–959. doi:10.1126/science.1225967

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI Grant Numbers 17580243, 21580340 and 24580403. The author thanks Mr. Taiki Sato, Mr. Yosuke Shiozaki and Ms. Manami Sumida for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Suzuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Suzuki, H. (2015). Possible Functions of Intermediate Filaments in Mammalian Ovarian Follicles and Oocytes. In: Schatten, H. (eds) The Cytoskeleton in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2904-7_13

Download citation

Publish with us

Policies and ethics