Skip to main content

How Do Glucocorticoids Regulate Lipid Metabolism?

  • Chapter
Glucocorticoid Signaling

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 872))

Abstract

Glucocorticoids (GCs) and their cognate, intracellular receptor, the glucocorticoid receptor (GR) have been characterized as critical checkpoints in the hormonal control of energy homeostasis in mammals. Whereas physiological levels of GCs are required for proper metabolic control, aberrant GC action has been linked to a variety of severe metabolic diseases, including type 2 diabetes and obesity. As a member of the nuclear receptor superfamily of transcription factors, the GR translocates into the cell nucleus upon GC binding where it serves as a transcriptional regulator of distinct GC-responsive target genes that are in many cases associated with lipid regulatory pathways and thereby intricately control both physiological and pathophysiological systemic lipid homeostasis. Thus, this chapter focuses on the current knowledge of GC/GR function in lipid handling and its implications for systemic metabolic dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nguyen P, Leray V, Diez M, et al. Liver lipid metabolism. J Anim Physiol Anim Nutr (Berl). 2008;92(3):272–83.

    CAS  Google Scholar 

  2. Werner A, Kuipers F, Verkade HJ. Fat absorption and lipid metabolism in cholestasis. Landes Biosci; 2000-2013.

    Google Scholar 

  3. Mead JR, Irvine SA, Ramji DP. Lipoprotein lipase: structure, function, regulation, and role in disease. J Mol Med (Berl). 2002;80(12):753–69.

    CAS  Google Scholar 

  4. Young SG, Davies BS, Voss CV, Gin P, Weinstein MM, Tontonoz P, Reue K, Bensadoun A, Fong LG, Beigneux AP. GPIHBP1, an endothelial cell transporter for lipoprotein lipase. J Lipid Res. 2011;52(11):1869–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Williams KJ, Fisher EA. Globular warming: how fat gets to the furnace. Nat Med. 2011;17(2):157–9.

    CAS  PubMed  Google Scholar 

  6. Ginsberg HN. Lipoprotein physiology in nondiabetic and diabetic states. Relationship to atherogenesis. Diabetes Care. 1991;14(9):839–55.

    CAS  PubMed  Google Scholar 

  7. Narvekar P, Berriel Diaz M, Krones-Herzig A, et al. Liver-specific loss of lipolysis-stimulated lipoprotein receptor triggers systemic hyperlipidemia in mice. Diabetes. 2009;58(5):1040–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Choi SH, Ginsberg HN. Increased very low density lipoprotein (VLDL) secretion, hepatic steatosis, and insulin resistance. Trends Endocrinol Metab. 2011;22(9):353–63.

    PubMed Central  PubMed  Google Scholar 

  9. Huff MW. Dietary cholesterol, cholesterol absorption, postprandial lipemia and atherosclerosis. Can J Clin Pharmacol. 2003;10 Suppl A:26A–32A.

    PubMed  Google Scholar 

  10. Mathews CK, van Holde KE, Ahern KG. Biochemistry. 3rd ed. Upper Saddle River, NJ: Prentice Hall; 1999.

    Google Scholar 

  11. Russell DW. Cholesterol biosynthesis and metabolism. Cardiovasc Drugs Ther. 1992;6(2):103–10.

    CAS  PubMed  Google Scholar 

  12. Desvergne B, Michalik L, Wahli W. Transcriptional regulation of metabolism. Physiol Rev. 2006;86(2):465–514.

    CAS  PubMed  Google Scholar 

  13. Grundy SM, Cleeman JI, Daniels SR, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement. Curr Opin Cardiol. 2006;21(1):1–6.

    PubMed  Google Scholar 

  14. Arnaldi G, Mancini T, Tirabassi G, Trementino L, Boscaro M. Advances in the epidemiology, pathogenesis, and management of Cushing’s syndrome complications. J Endocrinol Invest. 2012;35(4):434–48.

    CAS  PubMed  Google Scholar 

  15. Anagnostis P, Athyros VG, Tziomalos K, Karagiannis A, Mikhailidis DP. Clinical review: the pathogenetic role of cortisol in the metabolic syndrome: a hypothesis. J Clin Endocrinol Metab. 2009;94(8):2692–701.

    CAS  PubMed  Google Scholar 

  16. Masuzaki H, Paterson J, Shinyama H, et al. A transgenic model of visceral obesity and the metabolic syndrome. Science. 2001;294(5549):2166–70.

    CAS  PubMed  Google Scholar 

  17. Viengchareun S, Zennaro MC, Pascual-Le Tallec L, Lombes M. Brown adipocytes are novel sites of expression and regulation of adiponectin and resistin. FEBS Lett. 2002;532(3):345–50.

    CAS  PubMed  Google Scholar 

  18. Fasshauer M, Klein J, Neumann S, Eszlinger M, Paschke R. Hormonal regulation of adiponectin gene expression in 3T3-L1 adipocytes. Biochem Biophys Res Commun. 2002;290(3):1084–9.

    CAS  PubMed  Google Scholar 

  19. Masuzaki H, Yamamoto H, Kenyon CJ, et al. Transgenic amplification of glucocorticoid action in adipose tissue causes high blood pressure in mice. J Clin Invest. 2003;112(1):83–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Gregoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation. Physiol Rev. 1998;78(3):783–809.

    CAS  PubMed  Google Scholar 

  21. Pantoja C, Huff JT, Yamamoto KR. Glucocorticoid signaling defines a novel commitment state during adipogenesis in vitro. Mol Biol Cell. 2008;19(10):4032–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Hauner H, Schmid P, Pfeiffer EF. Glucocorticoids and insulin promote the differentiation of human adipocyte precursor cells into fat cells. J Clin Endocrinol Metab. 1987;64(4):832–5.

    CAS  PubMed  Google Scholar 

  23. Wiper-Bergeron NWD, Pope L, Schild-Poulter C, Hache RJ. Stimulation of preadipocyte differentiation by steroid through targeting of an HDAC1 complex. EMBO J. 2003;22(9):2135–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Floyd ZE, Stephens JM. STAT5A promotes adipogenesis in nonprecursor cells and associates with the glucocorticoid receptor during adipocyte differentiation. Diabetes. 2003;52(2):308–14.

    CAS  PubMed  Google Scholar 

  25. Liu Y, Sun WL, Sun Y, Hu G, Ding GX. Role of 11-beta-hydroxysteroid dehydrogenase type 1 in differentiation of 3T3-L1 cells and in rats with diet-induced obesity. Acta Pharmacol Sin. 2006;27(5):588–96.

    CAS  PubMed  Google Scholar 

  26. Liu Y, Yan C, Wang Y, et al. Liver X receptor agonist T0901317 inhibition of glucocorticoid receptor expression in hepatocytes may contribute to the amelioration of diabetic syndrome in db/db mice. Endocrinology. 2006;147(11):5061–8.

    CAS  PubMed  Google Scholar 

  27. Wu Z, Bucher NL, Farmer SR. Induction of peroxisome proliferator-activated receptor gamma during the conversion of 3T3 fibroblasts into adipocytes is mediated by C/EBPbeta, C/EBPdelta, and glucocorticoids. Mol Cell Biol. 1996;16(8):4128–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Shteyer E, Liao Y, Muglia LJ, Hruz PW, Rudnick DA. Disruption of hepatic adipogenesis is associated with impaired liver regeneration in mice. Hepatology. 2004;40(6):1322–32.

    CAS  PubMed  Google Scholar 

  29. Asada M, Rauch A, Shimizu H, et al. DNA binding-dependent glucocorticoid receptor activity promotes adipogenesis via Kruppel-like factor 15 gene expression. Lab Invest. 2011;91(2):203–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Rask E, Olsson T, Soderberg S, et al. Tissue-specific dysregulation of cortisol metabolism in human obesity. J Clin Endocrinol Metab. 2001;86(3):1418–21.

    CAS  PubMed  Google Scholar 

  31. Livingstone DE, Jones GC, Smith K, et al. Understanding the role of glucocorticoids in obesity: tissue-specific alterations of corticosterone metabolism in obese Zucker rats. Endocrinology. 2000;141(2):560–3.

    CAS  PubMed  Google Scholar 

  32. Baudrand R, Carvajal CA, Riquelme A, et al. Overexpression of 11beta-hydroxysteroid dehydrogenase type 1 in hepatic and visceral adipose tissue is associated with metabolic disorders in morbidly obese patients. Obes Surg. 2010;20(1):77–83.

    PubMed  Google Scholar 

  33. Peckett AJ, Wright DC, Riddell MC. The effects of glucocorticoids on adipose tissue lipid metabolism. Metabolism. 2011;60(11):1500–10.

    CAS  PubMed  Google Scholar 

  34. Yu CY, Mayba O, Lee JV, et al. Genome-wide analysis of glucocorticoid receptor binding regions in adipocytes reveal gene network involved in triglyceride homeostasis. PLoS One. 2010;5(12):e15188.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Campbell JE, Peckett AJ, D‘Souza AM, Hawke TJ, Riddell MC. Adipogenic and lipolytic effects of chronic glucocorticoid exposure. Am J Physiol Cell Physiol. 2011;300(1):C198–209.

    CAS  PubMed  Google Scholar 

  36. Slavin BG, Ong JM, Kern PA. Hormonal regulation of hormone-sensitive lipase activity and mRNA levels in isolated rat adipocytes. J Lipid Res. 1994;35(9):1535–41.

    CAS  PubMed  Google Scholar 

  37. Villena JA, Roy S, Sarkadi-Nagy E, Kim KH, Sul HS. Desnutrin, an adipocyte gene encoding a novel patatin domain-containing protein, is induced by fasting and glucocorticoids: ectopic expression of desnutrin increases triglyceride hydrolysis. J Biol Chem. 2004;279(45):47066–75.

    CAS  PubMed  Google Scholar 

  38. Ebbert JO, Jensen MD. Fat depots, free fatty acids, and dyslipidemia. Nutrients. 2013;5(2):498–508.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Vegiopoulos A, Herzig S. Glucocorticoids, metabolism and metabolic diseases. Mol Cell Endocrinol. 2007;275(1–2):43–61.

    CAS  PubMed  Google Scholar 

  40. Wang JC, Gray NE, Kuo T, Harris CA. Regulation of triglyceride metabolism by glucocorticoid receptor. Cell Biosci. 2012;2(1):19.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Macfarlane DP, Forbes S, Walker BR. Glucocorticoids and fatty acid metabolism in humans: fuelling fat redistribution in the metabolic syndrome. J Endocrinol. 2008;197(2):189–204.

    CAS  PubMed  Google Scholar 

  42. Carmen GY, Victor SM. Signalling mechanisms regulating lipolysis. Cell Signal. 2006;18(4):401–8.

    CAS  PubMed  Google Scholar 

  43. Holm C. Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Biochem Soc Trans. 2003;31(Pt 6):1120–4.

    CAS  PubMed  Google Scholar 

  44. Xu C, He J, Jiang H, et al. Direct effect of glucocorticoids on lipolysis in adipocytes. Mol Endocrinol. 2009;23(8):1161–70.

    CAS  PubMed  Google Scholar 

  45. Koliwad SK, Kuo T, Shipp LE, et al. Angiopoietin-like 4 (ANGPTL4, fasting-induced adipose factor) is a direct glucocorticoid receptor target and participates in glucocorticoid-regulated triglyceride metabolism. J Biol Chem. 2009;284(38):25593–601.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. van Raalte DH, Brands M, Serlie MJ, et al. Angiopoietin-like protein 4 is differentially regulated by glucocorticoids and insulin in vitro and in vivo in healthy humans. Exp Clin Endocrinol Diabetes. 2012;120(10):598–603.

    PubMed  Google Scholar 

  47. Le Jan S, Amy C, Cazes A, et al. Angiopoietin-like 4 is a proangiogenic factor produced during ischemia and in conventional renal cell carcinoma. Am J Pathol. 2003;162(5):1521–8.

    PubMed Central  PubMed  Google Scholar 

  48. Cazes A, Galaup A, Chomel C, et al. Extracellular matrix-bound angiopoietin-like 4 inhibits endothelial cell adhesion, migration, and sprouting and alters actin cytoskeleton. Circ Res. 2006;99(11):1207–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Mandard S, Zandbergen F, van Straten E, et al. The fasting-induced adipose factor/angiopoietin-like protein 4 is physically associated with lipoproteins and governs plasma lipid levels and adiposity. J Biol Chem. 2006;281(2):934–44.

    CAS  PubMed  Google Scholar 

  50. Lichtenstein L, Berbee JF, van Dijk SJ, et al. Angptl4 upregulates cholesterol synthesis in liver via inhibition of LPL- and HL-dependent hepatic cholesterol uptake. Arterioscler Thromb Vasc Biol. 2007;27(11):2420–7.

    CAS  PubMed  Google Scholar 

  51. Gray NE, Lam LN, Yang K, Zhou AY, Koliwad S, Wang JC. Angiopoietin-like 4 (Angptl4) protein is a physiological mediator of intracellular lipolysis in murine adipocytes. J Biol Chem. 2012;287(11):8444–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Mizutani N, Ozaki N, Seino Y, et al. Reduction of insulin signaling upregulates angiopoietin-like protein 4 through elevated free fatty acids in diabetic mice. Exp Clin Endocrinol Diabetes. 2012;120(3):139–44.

    CAS  PubMed  Google Scholar 

  53. Birkenhager JC, Timmermans HA, Lamberts SW. Depressed plasma FFA turnover rate in Cushing’s syndrome. J Clin Endocrinol Metab. 1976;42(1):28–32.

    CAS  PubMed  Google Scholar 

  54. Saunders J, Hall SE, Sonksen PH. Glucose and free fatty acid turnover in Cushing’s syndrome. J Endocrinol Invest. 1980;3(3):309–11.

    CAS  PubMed  Google Scholar 

  55. Miyoshi H, Shulman GI, Peters EJ, Wolfe MH, Elahi D, Wolfe RR. Hormonal control of substrate cycling in humans. J Clin Invest. 1988;81(5):1545–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Gravholt CH, Dall R, Christiansen JS, Moller N, Schmitz O. Preferential stimulation of abdominal subcutaneous lipolysis after prednisolone exposure in humans. Obes Res. 2002;10(8):774–81.

    CAS  PubMed  Google Scholar 

  57. Johnston DG, Gill A, Orskov H, Batstone GF, Alberti KG. Metabolic effects of cortisol in man—studies with somatostatin. Metabolism. 1982;31(4):312–7.

    CAS  PubMed  Google Scholar 

  58. Djurhuus CB, Gravholt CH, Nielsen S, et al. Effects of cortisol on lipolysis and regional interstitial glycerol levels in humans. Am J Physiol Endocrinol Metab. 2002;283(1):E172–7.

    CAS  PubMed  Google Scholar 

  59. Samra JS, Clark ML, Humphreys SM, MacDonald IA, Bannister PA, Frayn KN. Effects of physiological hypercortisolemia on the regulation of lipolysis in subcutaneous adipose tissue. J Clin Endocrinol Metab. 1998;83(2):626–31.

    CAS  PubMed  Google Scholar 

  60. Ferramosca A, Zara V. Modulation of hepatic steatosis by dietary fatty acids. World J Gastroenterol. 2014;20(7):1746–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Hillgartner FB, Salati LM, Goodridge AG. Physiological and molecular mechanisms involved in nutritional regulation of fatty acid synthesis. Physiol Rev. 1995;75(1):47–76.

    CAS  PubMed  Google Scholar 

  62. Williams BH, Berdanier CD. Effects of diet composition and adrenalectomy on the lipogenic responses of rats to starvation-refeeding. J Nutr. 1982;112(3):534–41.

    CAS  PubMed  Google Scholar 

  63. Wang Y, Jones Voy B, Urs S, et al. The human fatty acid synthase gene and de novo lipogenesis are coordinately regulated in human adipose tissue. J Nutr. 2004;134(5):1032–8.

    CAS  PubMed  Google Scholar 

  64. Gathercole LL, Morgan SA, Bujalska IJ, Hauton D, Stewart PM, Tomlinson JW. Regulation of lipogenesis by glucocorticoids and insulin in human adipose tissue. PLoS One. 2011;6(10):e26223.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Sul HS, Wang D. Nutritional and hormonal regulation of enzymes in fat synthesis: studies of fatty acid synthase and mitochondrial glycerol-3-phosphate acyltransferase gene transcription. Annu Rev Nutr. 1998;18:331–51.

    CAS  PubMed  Google Scholar 

  66. Lu Z, Gu Y, Rooney SA. Transcriptional regulation of the lung fatty acid synthase gene by glucocorticoid, thyroid hormone and transforming growth factor-beta 1. Biochim Biophys Acta. 2001;1532(3):213–22.

    CAS  PubMed  Google Scholar 

  67. Qi L, Heredia JE, Altarejos JY, et al. TRB3 links the E3 ubiquitin ligase COP1 to lipid metabolism. Science. 2006;312(5781):1763–6.

    CAS  PubMed  Google Scholar 

  68. Hala M, Hartmann BL, Bock G, Geley S, Kofler R. Glucocorticoid-receptor-gene defects and resistance to glucocorticoid-induced apoptosis in human leukemic cell lines. Int J Cancer. 1996;68(5):663–8.

    CAS  PubMed  Google Scholar 

  69. Tung S, Shi Y, Wong K, et al. PPARalpha and fatty acid oxidation mediate glucocorticoid resistance in chronic lymphocytic leukemia. Blood. 2013;122(6):969–80.

    CAS  PubMed  Google Scholar 

  70. Grygiel-Gorniak B. Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications—a review. Nutr J. 2014;13:17.

    PubMed Central  PubMed  Google Scholar 

  71. van den Berghe G. The role of the liver in metabolic homeostasis: implications for inborn errors of metabolism. J Inherit Metab Dis. 1991;14(4):407–20.

    PubMed  Google Scholar 

  72. Le Phuc P, Friedman JR, Schug J, et al. Glucocorticoid receptor-dependent gene regulatory networks. PLoS Genet. 2005;1(2):e16.

    Google Scholar 

  73. Legrand P, Catheline D, Hannetel JM, Lemarchal P. Stearoyl-CoA desaturase activity in primary culture of chicken hepatocytes. Influence of insulin, glucocorticoid, fatty acids and cordycepin. Int J Biochem. 1994;26(6):777–85.

    CAS  PubMed  Google Scholar 

  74. Dich J, Bro B, Grunnet N, Jensen F, Kondrup J. Accumulation of triacylglycerol in cultured rat hepatocytes is increased by ethanol and by insulin and dexamethasone. Biochem J. 1983;212(3):617–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Dolinsky VW, Douglas DN, Lehner R, Vance DE. Regulation of the enzymes of hepatic microsomal triacylglycerol lipolysis and re-esterification by the glucocorticoid dexamethasone. Biochem J. 2004;378(Pt 3):967–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Mangiapane EH, Brindley DN. Effects of dexamethasone and insulin on the synthesis of triacylglycerols and phosphatidylcholine and the secretion of very-low-density lipoproteins and lysophosphatidylcholine by monolayer cultures of rat hepatocytes. Biochem J. 1986;233(1):151–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Opherk C, Tronche F, Kellendonk C, et al. Inactivation of the glucocorticoid receptor in hepatocytes leads to fasting hypoglycemia and ameliorates hyperglycemia in streptozotocin-induced diabetes mellitus. Mol Endocrinol. 2004;18(6):1346–53.

    CAS  PubMed  Google Scholar 

  78. Lemke U, Krones-Herzig A, Berriel Diaz M, et al. The glucocorticoid receptor controls hepatic dyslipidemia through Hes1. Cell Metab. 2008;8(3):212–23.

    CAS  PubMed  Google Scholar 

  79. Nader N, Ng SS, Wang Y, Abel BS, Chrousos GP, Kino T. Liver x receptors regulate the transcriptional activity of the glucocorticoid receptor: implications for the carbohydrate metabolism. PLoS One. 2012;7(3):e26751.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Patel R, Patel M, Tsai R, et al. LXRbeta is required for glucocorticoid-induced hyperglycemia and hepatosteatosis in mice. J Clin Invest. 2011;121(1):431–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Jia Y, Viswakarma N, Fu T, et al. Conditional ablation of mediator subunit MED1 (MED1/PPARBP) gene in mouse liver attenuates glucocorticoid receptor agonist dexamethasone-induced hepatic steatosis. Gene Expr. 2009;14(5):291–306.

    PubMed Central  PubMed  Google Scholar 

  82. Zhang Y, Xiaoli, Zhao X, Yang Y. The mediator complex and lipid metabolism. J Biochem Pharmacol Res. 2013;1(1):51–5.

    PubMed Central  PubMed  Google Scholar 

  83. Bai L, Jia Y, Viswakarma N, et al. Transcription coactivator mediator subunit MED1 is required for the development of fatty liver in the mouse. Hepatology. 2011;53(4):1164–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Brennan-Speranza TC, Henneicke H, Gasparini SJ, et al. Osteoblasts mediate the adverse effects of glucocorticoids on fuel metabolism. J Clin Invest. 2012;122(11):4172–89.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Sundaram M, Yao Z. Recent progress in understanding protein and lipid factors affecting hepatic VLDL assembly and secretion. Nutr Metab (Lond). 2010;7:35.

    Google Scholar 

  86. Martin-Sanz P, Vance JE, Brindley DN. Stimulation of apolipoprotein secretion in very-low-density and high-density lipoproteins from cultured rat hepatocytes by dexamethasone. Biochem J. 1990;271(3):575–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Duerden JM, Bartlett SM, Gibbons GF. Long-term maintenance of high rates of very-low-density-lipoprotein secretion in hepatocyte cultures. A model for studying the direct effects of insulin and insulin deficiency in vitro. Biochem J. 1989;263(3):937–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Cole TG, Wilcox HG, Heimberg M. Effects of adrenalectomy and dexamethasone on hepatic lipid metabolism. J Lipid Res. 1982;23(1):81–91.

    CAS  PubMed  Google Scholar 

  89. Wang CN, Hobman TC, Brindley DN. Degradation of apolipoprotein B in cultured rat hepatocytes occurs in a post-endoplasmic reticulum compartment. J Biol Chem. 1995;270(42):24924–31.

    CAS  PubMed  Google Scholar 

  90. Bagdade JD, Yee E, Albers J, Pykalisto OJ. Glucocorticoids and triglyceride transport: effects on triglyceride secretion rates, lipoprotein lipase, and plasma lipoproteins in the rat. Metabolism. 1976;25(5):533–42.

    CAS  PubMed  Google Scholar 

  91. Taskinen MR, Nikkila EA, Pelkonen R, Sane T. Plasma lipoproteins, lipolytic enzymes, and very low density lipoprotein triglyceride turnover in Cushing’s syndrome. J Clin Endocrinol Metab. 1983;57(3):619–26.

    CAS  PubMed  Google Scholar 

  92. Chan DC, Watts GF, Barrett PH, Mamo JC, Redgrave TG. Markers of triglyceride-rich lipoprotein remnant metabolism in visceral obesity. Clin Chem. 2002;48(2):278–83.

    CAS  PubMed  Google Scholar 

  93. Foley EM, Gordts PL, Stanford KI, et al. Hepatic remnant lipoprotein clearance by heparan sulfate proteoglycans and low-density lipoprotein receptors depend on dietary conditions in mice. Arterioscler Thromb Vasc Biol. 2013;33(9):2065–74.

    CAS  PubMed  Google Scholar 

  94. Hazra A, Pyszczynski NA, DuBois DC, Almon RR, Jusko WJ. Modeling of corticosteroid effects on hepatic low-density lipoprotein receptors and plasma lipid dynamics in rats. Pharm Res. 2008;25(4):769–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Jansen H, van Tol A, Auwerx J, Skretting G, Staels B. Opposite regulation of hepatic lipase and lecithin: cholesterol acyltransferase by glucocorticoids in rats. Biochim Biophys Acta. 1992;1128(2–3):181–5.

    CAS  PubMed  Google Scholar 

  96. Wang X, Magkos F, Patterson BW, Reeds DN, Kampelman J, Mittendorfer B. Low-dose dexamethasone administration for 3 weeks favorably affects plasma HDL concentration and composition but does not affect very low-density lipoprotein kinetics. Eur J Endocrinol. 2012;167(2):217–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Ettinger WH, Klinefelter HF, Kwiterovitch PO. Effect of short-term, low-dose corticosteroids on plasma lipoprotein lipids. Atherosclerosis. 1987;63(2–3):167–72.

    CAS  PubMed  Google Scholar 

  98. Taylor AH, Raymond J, Dionne JM, et al. Glucocorticoid increases rat apolipoprotein A-I promoter activity. J Lipid Res. 1996;37(10):2232–43.

    CAS  PubMed  Google Scholar 

  99. Bocharov AV, Huang W, Vishniakova TG, et al. Glucocorticoids upregulate high-affinity, high-density lipoprotein binding sites in rat hepatocytes. Metabolism. 1995;44(6):730–8.

    CAS  PubMed  Google Scholar 

  100. Temel RE, Trigatti B, DeMattos RB, Azhar S, Krieger M, Williams DL. Scavenger receptor class B, type I (SR-BI) is the major route for the delivery of high density lipoprotein cholesterol to the steroidogenic pathway in cultured mouse adrenocortical cells. Proc Natl Acad Sci U S A. 1997;94(25):13600–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Cai L, Ji A, de Beer FC, Tannock LR, van der Westhuyzen DR. SR-BI protects against endotoxemia in mice through its roles in glucocorticoid production and hepatic clearance. J Clin Invest. 2008;118(1):364–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Hoekstra M, van der Sluis RJ, Van Eck M, Van Berkel TJ. Adrenal-specific scavenger receptor BI deficiency induces glucocorticoid insufficiency and lowers plasma very-low-density and low-density lipoprotein levels in mice. Arterioscler Thromb Vasc Biol. 2013;33(2):e39–46.

    CAS  PubMed  Google Scholar 

  103. Rose AJ, Berriel Diaz M, Reimann A, et al. Molecular control of systemic bile acid homeostasis by the liver glucocorticoid receptor. Cell Metab. 2011;14(1):123–30.

    CAS  PubMed  Google Scholar 

  104. Eloranta JJ, Jung D, Kullak-Ublick GA. The human Na+-taurocholate cotransporting polypeptide gene is activated by glucocorticoid receptor and peroxisome proliferator-activated receptor-gamma coactivator-1alpha, and suppressed by bile acids via a small heterodimer partner-dependent mechanism. Mol Endocrinol. 2006;20(1):65–79.

    CAS  PubMed  Google Scholar 

  105. Lu Y, Zhang Z, Xiong X, et al. Glucocorticoids promote hepatic cholestasis in mice by inhibiting the transcriptional activity of the farnesoid X receptor. Gastroenterology. 2012;143(6):1630–40. e1638.

    CAS  PubMed  Google Scholar 

  106. Wang X, Wei D, Song Z, Jiao H, Lin H. Effects of fatty acid treatments on the dexamethasone-induced intramuscular lipid accumulation in chickens. PLoS One. 2012;7(5):e36663.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Morgan S, Gathercole L, Stewart S, Smith D, Tomlinson J. Impact of glucocorticoids upon lipogenesis and β-oxidation in skeletal muscle. Paper presented at Society for Endocrinology BES 20102010; Manchester, UK.

    Google Scholar 

  108. Guillaume-Gentil C, Assimacopoulos-Jeannet F, Jeanrenaud B. Involvement of non-esterified fatty acid oxidation in glucocorticoid-induced peripheral insulin resistance in vivo in rats. Diabetologia. 1993;36(10):899–906.

    CAS  PubMed  Google Scholar 

  109. Venkatesan N, Davidson MB, Hutchinson A. Possible role for the glucose-fatty acid cycle in dexamethasone-induced insulin antagonism in rats. Metabolism. 1987;36(9):883–91.

    CAS  PubMed  Google Scholar 

  110. Dumas JF, Bielicki G, Renou JP, et al. Dexamethasone impairs muscle energetics, studied by (31)P NMR, in rats. Diabetologia. 2005;48(2):328–35.

    CAS  PubMed  Google Scholar 

  111. Petrichenko IE, Daret D, Kolpakova GV, Shakhov YA, Larrue J. Glucocorticoids stimulate cholesteryl ester formation in human smooth muscle cells. Arterioscler Thromb Vasc Biol. 1997;17(6):1143–51.

    CAS  PubMed  Google Scholar 

  112. Stein O, Dabach Y, Hollander G, Ben-Naim M, Halperin G, Stein Y. Dexamethasone impairs cholesterol egress from a localized lipoprotein depot in vivo. Atherosclerosis. 1998;137(2):303–10.

    CAS  PubMed  Google Scholar 

  113. Ayaori M, Sawada S, Yonemura A, et al. Glucocorticoid receptor regulates ATP-binding cassette transporter-A1 expression and apolipoprotein-mediated cholesterol efflux from macrophages. Arterioscler Thromb Vasc Biol. 2006;26(1):163–8.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Herzig Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

de Guia, R.M., Herzig, S. (2015). How Do Glucocorticoids Regulate Lipid Metabolism?. In: Wang, JC., Harris, C. (eds) Glucocorticoid Signaling. Advances in Experimental Medicine and Biology, vol 872. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2895-8_6

Download citation

Publish with us

Policies and ethics