Skip to main content

Glucocorticoids and the Brain: Neural Mechanisms Regulating the Stress Response

  • Chapter
Glucocorticoid Signaling

Abstract

In this chapter, we describe the central role of the brain in the glucocorticoid mediated stress response. We describe the mechanisms by which the brain gauges the severity of stress, mechanisms of hypothalamic-pituitary-adrenal axis (HPA) regulation, and how various sub-systems of the brain respond to glucocorticoid (GC) signaling to regulate stress behavior. In particular, we focus on the hippocampus, pre-frontal cortex, and amygdala, where GCs can induce a series of changes. Finally, we briefly discuss an apparent paradox in GC signaling: while exposure to glucocorticoids promotes the survival of an organism during acute stress, these same hormones in chronic excess can also cause damage and promote illness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Hans Selye, the father of modern stress research defined stress as the “non-specific response of the body to any demand made upon it” [96].

References

  1. Abdel-Malek ZA. Melanocortin receptors: their functions and regulation by physiological agonists and antagonists. Cell Mol Life Sci. 2001;58:434–41.

    CAS  PubMed  Google Scholar 

  2. Ahima RS, Harlan RE. Charting of type II glucocorticoid receptor-like immunoreactivity in the rat central nervous system. Neuroscience. 1990;39:579–604.

    CAS  PubMed  Google Scholar 

  3. Akana SF, Chu A, Soriano L, Dallman MF. Corticosterone exerts site-specific and state-dependent effects in prefrontal cortex and amygdala on regulation of adrenocorticotropic hormone, insulin and fat depots. J Neuroendocrinol. 2001;13:625–37.

    CAS  PubMed  Google Scholar 

  4. Akirav I, Richter-Levin G. Mechanisms of amygdala modulation of hippocampal plasticity. J Neurosci. 2002;22:9912–21.

    CAS  PubMed  Google Scholar 

  5. Andolina D, Maran D, Valzania A, Conversi D, Puglisi-Allegra S. Prefrontal/amygdalar system determines stress coping behavior through 5-HT/GABA connection. Neuropsycho-pharmacology. 2013;38:2057–67.

    CAS  Google Scholar 

  6. Arnsten AFT. Stress signalling pathways that impair prefrontal cortex structure and function. Nat Rev Neurosci. 2009;10:410–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Atkinson HC, Wood SA, Castrique ES, Kershaw YM, Wiles CC, Lightman SL. Corticosteroids mediate fast feedback of the rat hypothalamic-pituitary-adrenal axis via the mineralocorticoid receptor. Am J Physiol. 2008;294:E1011–22.

    CAS  Google Scholar 

  8. Bannerman DM, Rawlins JN, McHugh SB, Deacon RM, Yee BK, Bast T, Zhang WN, Pothuizen HH, Feldon J. Regional dissociations within the hippocampus–memory and anxiety. Neurosci Biobehav Rev. 2004;28:273–83.

    CAS  PubMed  Google Scholar 

  9. Bohannon 3rd JN. Flashbulb memories for the space shuttle disaster: a tale of two theories. Cognition. 1988;29:179–96.

    PubMed  Google Scholar 

  10. Brake WG, Flores G, Francis D, Meaney MJ, Srivastava LK, Gratton A. Enhanced nucleus accumbens dopamine and plasma corticosterone stress responses in adult rats with neonatal excitotoxic lesions to the medial prefrontal cortex. Neuroscience. 2000;96:687–95.

    CAS  PubMed  Google Scholar 

  11. Butts KA, Weinberg J, Young AH, Phillips AG. Glucocorticoid receptors in the prefrontal cortex regulate stress-evoked dopamine efflux and aspects of executive function. Proc Natl Acad Sci. 2011;108:18459–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Carlsen J. Immunocytochemical localization of glutamate decarboxylase in the rat basolateral amygdaloid nucleus, with special reference to GABAergic innervation of amygdalostriatal projection neurons. J Comp Neurol. 1988;273:513–26.

    CAS  PubMed  Google Scholar 

  13. Cerqueira JJ, Almeida OF, Sousa N. The stressed prefrontal cortex. Left? Right! Brain Behav Immun. 2008;22:630–8.

    CAS  PubMed  Google Scholar 

  14. Cerqueira JJ, Mailliet F, Almeida OF, Jay TM, Sousa N. The prefrontal cortex as a key target of the maladaptive response to stress. J Neurosci. 2007;27:2781–7.

    CAS  PubMed  Google Scholar 

  15. Cerqueira JJ, Pêgo JM, Taipa R, Bessa JM, Almeida OF, Sousa N. Morphological correlates of corticosteroid-induced changes in prefrontal cortex-dependent behaviors. J Neurosci. 2005;25:7792–800.

    CAS  PubMed  Google Scholar 

  16. Chameau P, Qin Y, Spijker S, Smit G, Joëls M. Glucocorticoids specifically enhance L-type calcium current amplitude and affect calcium channel subunit expression in the mouse hippocampus. J Neurophysiol. 2007;97:5–14.

    CAS  PubMed  Google Scholar 

  17. Chen J, Gomez-Sanchez CE, Penman A, May PJ, Gomez-Sanchez E. Expression of mineralocorticoid and glucocorticoid receptors in preautonomic neurons of the rat paraventricular nucleus. Am J Physiol. 2014;306:R328–40.

    CAS  Google Scholar 

  18. Chetty S, Friedman AR, Taravosh-Lahn K, Kirby ED, Mirescu C, Guo F, Krupik D, Nicholas A, Geraghty AC, Krishnamurthy A, Tsai MK, Covarrubias D, Wong AT, Francis DD, Sapolsky RM, Palmer TD, Pleasure D, Kaufer D. Stress and glucocorticoids promote oligodendrogenesis in the adult hippocampus. Mol Psychiatry. 2014;19(12):1275–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Conrad CD, LeDoux JE, Magarinos AM, McEwen BS. Repeated restraint stress facilitates fear conditioning independently of causing hippocampal CA3 dendritic atrophy. Behav Neurosci. 1999;113:902–13.

    CAS  PubMed  Google Scholar 

  20. Cook SC, Wellman CL. Chronic stress alters dendritic morphology in rat medial prefrontal cortex. J Neurobiol. 2004;60:236–48.

    PubMed  Google Scholar 

  21. Czeh B, Muller-Keuker JI, Rygula R, Abumaria N, Hiemke C, Domenici E, Fuchs E. Chronic social stress inhibits cell proliferation in the adult medial prefrontal cortex: hemispheric asymmetry and reversal by fluoxetine treatment. Neuropsychopharmacology. 2007;32:1490–503.

    CAS  PubMed  Google Scholar 

  22. Dagytė G, Van der Zee EA, Postema F, Luiten PGM, Den Boer JA, Trentani A, Meerlo P. Chronic but not acute foot-shock stress leads to temporary suppression of cell proliferation in rat hippocampus. Neuroscience. 2009;162:904–13.

    PubMed  Google Scholar 

  23. Davis M, Rainnie D, Cassell M. Neurotransmission in the rat amygdala related to fear and anxiety. Trends Neurosci. 1994;17:208–14.

    CAS  PubMed  Google Scholar 

  24. Di S, Malcher-Lopes R, Halmos KC, Tasker JG. Nongenomic glucocorticoid inhibition via endocannabinoid release in the hypothalamus: a fast feedback mechanism. J Neurosci. 2003;23:4850–7.

    CAS  PubMed  Google Scholar 

  25. Dias-Ferreira E, Sousa JC, Melo I, Morgado P, Mesquita AR, Cerqueira JJ, Costa RM, Sousa N. Chronic stress causes frontostriatal reorganization and affects decision-making. Science. 2009;325:621–5.

    CAS  PubMed  Google Scholar 

  26. Dilgen J, Tejeda HA, O’Donnell P. Amygdala inputs drive feedforward inhibition in the medial prefrontal cortex. J Neurophysiol. 2013;110:221–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Diorio D, Viau V, Meaney MJ. The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress. J Neurosci. 1993;13:3839–47.

    CAS  PubMed  Google Scholar 

  28. Duvarci S, Pare D. Glucocorticoids enhance the excitability of principal basolateral amygdala neurons. J Neurosci. 2007;27:4482–91.

    CAS  PubMed  Google Scholar 

  29. Evanson NK, Tasker JG, Hill MN, Hillard CJ, Herman JP. Fast feedback inhibition of the HPA axis by glucocorticoids is mediated by endocannabinoid signaling. Endocrinology. 2010;151:4811–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Fanselow MS, Dong HW. Are the dorsal and ventral hippocampus functionally distinct structures? Neuron. 2010;65:7–19.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Figueiredo HF, Bruestle A, Bodie B, Dolgas CM, Herman JP. The medial prefrontal cortex differentially regulates stress-induced c-fos expression in the forebrain depending on type of stressor. Eur J Neurosci. 2003;18:2357–64.

    PubMed  Google Scholar 

  32. Fisher PM, Meltzer CC, Price JC, Coleman RL, Ziolko SK, Becker C, Moses-Kolko EL, Berga SL, Hariri AR. Medial prefrontal cortex 5-HT2A density is correlated with amygdala reactivity, response habituation, and functional coupling. Cereb Cortex. 2009;19:2499–507.

    PubMed Central  PubMed  Google Scholar 

  33. Friedman AR, Kaufer D. Emerging roles for hippocampal adult neural stem cells in memory. Princeton: Biota Publishing; 2013.

    Google Scholar 

  34. Fuxe K, Härfstrand A, Agnati LF, Yu ZY, Cintra A, Wikström AC, Okret S, Cantoni E, Gustafsson JÅ. Immunocytochemical studies on the localization of glucocorticoid receptor immunoreactive nerve cells in the lower brain stem and spinal cord of the male rat using a monoclonal antibody against rat liver glucocorticoid receptor. Neurosci Lett. 1985;60:1–6.

    CAS  PubMed  Google Scholar 

  35. Gage FH. Mammalian neural stem cells. Science. 2000;287:1433–8.

    CAS  PubMed  Google Scholar 

  36. Garcia A, Steiner B, Kronenberg G, Bick-Sander A, Kempermann G. Age-dependent expression of glucocorticoid- and mineralocorticoid receptors on neural precursor cell populations in the adult murine hippocampus. Aging Cell. 2004;3:363–71.

    CAS  PubMed  Google Scholar 

  37. Ge S, Yang C-H, Hsu K-S, Ming G-L, Song H. A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron. 2007;54:559–66.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Giguère V, Hollenberg SM, Rosenfeld MG, Evans RM. Functional domains of the human glucocorticoid receptor. Cell. 1986;46:645–52.

    PubMed  Google Scholar 

  39. Goldwater DS, Pavlides C, Hunter RG, Bloss EB, Hof PR, McEwen BS, Morrison JH. Structural and functional alterations to rat medial prefrontal cortex following chronic restraint stress and recovery. Neuroscience. 2009;164:798–808.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Graybeal C, Feyder M, Schulman E, Saksida LM, Bussey TJ, Brigman JL, Holmes A. Paradoxical reversal learning enhancement by stress or prefrontal cortical damage: rescue with BDNF. Nat Neurosci. 2011;14:1507–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Graybeal C, Kiselycznyk C, Holmes A. Stress-induced impairments in prefrontal-mediated behaviors and the role of the N-methyl-D-aspartate receptor. Neuroscience. 2012;211:28–38.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Gu Y, Arruda-Carvalho M, Wang J, Janoschka SR, Josselyn SA, Frankland PW, Ge S. Optical controlling reveals time-dependent roles for adult-born dentate granule cells. Nat Neurosci. 2012;15:1700–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Hanson ND, Owens MJ, Boss-Williams KA, Weiss JM, Nemeroff CB. Several stressors fail to reduce adult hippocampal neurogenesis. Psychoneuroendocrinology. 2011;36:1520–9.

    PubMed Central  PubMed  Google Scholar 

  44. Herman JP. In situ hybridization analysis of vasopressin gene transcription in the paraventricular and supraoptic nuclei of the rat: regulation by stress and glucocorticoids. J Comp Neurol. 1995;363:15–27.

    CAS  PubMed  Google Scholar 

  45. Herman JP, Cullinan WE. Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci. 1997;20:78–84.

    CAS  PubMed  Google Scholar 

  46. Herman JP, Cullinan WE, Young EA, Akil H, Watson SJ. Selective forebrain fiber tract lesions implicate ventral hippocampal structures in tonic regulation of paraventricular nucleus corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP) mRNA expression. Brain Res. 1992;592:228–38.

    CAS  PubMed  Google Scholar 

  47. Herman JP, Spencer R. Regulation of hippocampal glucocorticoid receptor gene transcription and protein expression in vivo. J Neurosci. 1998;18:7462–73.

    CAS  PubMed  Google Scholar 

  48. Hill MN, McEwen BS. Involvement of the endocannabinoid system in the neurobehavioural effects of stress and glucocorticoids. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34:791–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Hill MN, McLaughlin RJ, Pan B, Fitzgerald ML, Roberts CJ, Lee TT, Karatsoreos IN, Mackie K, Viau V, Pickel VM, McEwen BS, Liu QS, Gorzalka BB, Hillard CJ. Recruitment of prefrontal cortical endocannabinoid signaling by glucocorticoids contributes to termination of the stress response. J Neurosci. 2011;31:10506–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Hinwood M, Tynan RJ, Day TA, Walker FR. Repeated social defeat selectively increases deltaFosB expression and histone H3 acetylation in the infralimbic medial prefrontal cortex. Cereb Cortex. 2011;21:262–71.

    PubMed  Google Scholar 

  51. Holmes A, Wellman CL. Stress-induced prefrontal reorganization and executive dysfunction in rodents. Neurosci Biobehav Rev. 2009;33:773–83.

    PubMed Central  PubMed  Google Scholar 

  52. Jacobson L, Sapolsky R. The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. Endocr Rev. 1991;12:118–34.

    CAS  PubMed  Google Scholar 

  53. Joels M, Baram TZ. The neuro-symphony of stress. Nat Rev Neurosci. 2009;10:459–66.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Karst H, Joëls M. Corticosterone slowly enhances miniature excitatory postsynaptic current amplitude in mice CA1 hippocampal cells. J Neurophysiol. 2005;94:3479–86.

    CAS  PubMed  Google Scholar 

  55. Karst H, Karten Y, Reichardt H, De Kloet E, Schütz G, Joels M. Corticosteroid actions in hippocampus require DNA binding of glucocorticoid receptor homodimers. Nat Neurosci. 2000;3:977–8.

    CAS  PubMed  Google Scholar 

  56. Keller-Wood ME, Dallman MF. Corticosteroid inhibition of ACTH secretion. Endocr Rev. 1984;5:1–24.

    CAS  PubMed  Google Scholar 

  57. Kirby ED, Kaufer D. Stress and adult neurogenesis in the mammalian central nervous system. In: Soreq H, Friedman A, Kaufer D, editors. Stress—from molecules to behavior: a comprehensive analysis of the neurobiology of stress responses. Darmstadt: Wiley-VCH; 2009. p. 71–91.

    Google Scholar 

  58. Kirby ED, Muroy SE, Sun WG, Covarrubias D, Leong MJ, Barchas LA, Kaufer D. Acute stress enhances adult rat hippocampal neurogenesis and activation of newborn neurons via secreted astrocytic FGF2. eLife. 2013;2:e00362.

    PubMed Central  PubMed  Google Scholar 

  59. Krugers HJ, Alfarez DN, Karst H, Parashkouhi K, van Gemert N, Joëls M. Corticosterone shifts different forms of synaptic potentiation in opposite directions. Hippocampus. 2005;15:697–703.

    CAS  PubMed  Google Scholar 

  60. Lapiz-Bluhm MD, Soto-Pina AE, Hensler JG, Morilak DA. Chronic intermittent cold stress and serotonin depletion induce deficits of reversal learning in an attentional set-shifting test in rats. Psychopharmacology (Berl). 2009;202:329–41.

    CAS  Google Scholar 

  61. Lemos JC, Wanat MJ, Smith JS, Reyes BAS, Hollon NG, Van Bockstaele EJ, Chavkin C, Phillips PEM. Severe stress switches CRF action in the nucleus accumbens from appetitive to aversive. Nature. 2012;490:402–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Liston C, Gan W-B. Glucocorticoids are critical regulators of dendritic spine development and plasticity in vivo. Proc Natl Acad Sci. 2011;108:16074–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Liston C, Miller MM, Goldwater DS, Radley JJ, Rocher AB, Hof PR, Morrison JH, McEwen BS. Stress-induced alterations in prefrontal cortical dendritic morphology predict selective impairments in perceptual attentional set-shifting. J Neurosci. 2006;26:7870–4.

    CAS  PubMed  Google Scholar 

  64. Maggio N, Segal M. Differential modulation of long-term depression by acute stress in the rat dorsal and ventral hippocampus. J Neurosci. 2009;29:8633–8.

    CAS  PubMed  Google Scholar 

  65. Maggio N, Segal M. Corticosteroid regulation of synaptic plasticity in the hippocampus. Scientific World J. 2010;10:462–9.

    CAS  Google Scholar 

  66. Maggio N, Segal M. Steroid modulation of hippocampal plasticity: switching between cognitive and emotional memories. Front Cell Neurosci. 2012;6:12.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Marín-Burgin A, Mongiat LA, Pardi MB, Schinder AF. Unique processing during a period of high excitation/inhibition balance in adult-born neurons. Science. 2012;335:1238–42.

    PubMed Central  PubMed  Google Scholar 

  68. McDonald AJ. Cytoarchitecture of the central amygdaloid nucleus of the rat. J Comp Neurol. 1982;208:401–18.

    CAS  PubMed  Google Scholar 

  69. McEwen BS. Stress, adaptation, and disease: allostasis and allostatic load. Ann N Y Acad Sci. 1998;840:33–44.

    CAS  PubMed  Google Scholar 

  70. McKlveen JM, Myers B, Flak JN, Bundzikova J, Solomon MB, Seroogy KB, Herman JP. Role of prefrontal cortex glucocorticoid receptors in stress and emotion. Biol Psychiatry. 2013;74:672–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Mirescu C, Gould E. Stress and adult neurogenesis. Hippocampus. 2006;16:233–8.

    CAS  PubMed  Google Scholar 

  72. Mitra R, Jadhav S, McEwen BS, Vyas A, Chattarji S. Stress duration modulates the spatiotemporal patterns of spine formation in the basolateral amygdala. Proc Natl Acad Sci U S A. 2005;102:9371–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Mitra R, Sapolsky RM. Acute corticosterone treatment is sufficient to induce anxiety and amygdaloid dendritic hypertrophy. Proc Natl Acad Sci U S A. 2008;105:5573–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Mizoguchi K, Ishige A, Aburada M, Tabira T. Chronic stress attenuates glucocorticoid negative feedback: involvement of the prefrontal cortex and hippocampus. Neuroscience. 2003;119:887–97.

    CAS  PubMed  Google Scholar 

  75. Mizoguchi K, Ishige A, Takeda S, Aburada M, Tabira T. Endogenous glucocorticoids are essential for maintaining prefrontal cortical cognitive function. J Neurosci. 2004;24:5492–9.

    CAS  PubMed  Google Scholar 

  76. Mizoguchi K, Yuzurihara M, Ishige A, Sasaki H, Chui D-H, Tabira T. Chronic stress induces impairment of spatial working memory because of prefrontal dopaminergic dysfunction. J Neurosci. 2000;20:1568–74.

    CAS  PubMed  Google Scholar 

  77. Neisser U, Winograd E, Bergman ET, Schreiber CA, Palmer SE, Weldon MS. Remembering the earthquake: direct experience vs. hearing the news. Memory. 1996;4:337–57.

    CAS  PubMed  Google Scholar 

  78. Patel PD, Lopez JF, Lyons DM, Burke S, Wallace M, Schatzberg AF. Glucocorticoid and mineralocorticoid receptor mRNA expression in squirrel monkey brain. J Psychiatr Res. 2000;34:383–92.

    CAS  PubMed  Google Scholar 

  79. Pentkowski NS, Blanchard DC, Lever C, Litvin Y, Blanchard RJ. Effects of lesions to the dorsal and ventral hippocampus on defensive behaviors in rats. Eur J Neurosci. 2006;23:2185–96.

    PubMed  Google Scholar 

  80. Pitts MW, Takahashi LK. The central amygdala nucleus via corticotropin-releasing factor is necessary for time-limited consolidation processing but not storage of contextual fear memory. Neurobiol Learn Mem. 2011;95:86–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Popescu AT, Saghyan AA, Pare D. NMDA-dependent facilitation of corticostriatal plasticity by the amygdala. Proc Natl Acad Sci U S A. 2007;104:341–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Popoli M, Yan Z, McEwen BS, Sanacora G. The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission. Nat Rev Neurosci. 2011;13:22–37.

    PubMed Central  PubMed  Google Scholar 

  83. Quirarte GL, Roozendaal B, McGaugh JL. Glucocorticoid enhancement of memory storage involves noradrenergic activation in the basolateral amygdala. Proc Natl Acad Sci U S A. 1997;94:14048–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Radley JJ, Arias CM, Sawchenko PE. Regional differentiation of the medial prefrontal cortex in regulating adaptive responses to acute emotional stress. J Neurosci. 2006;26:12967–76.

    CAS  PubMed  Google Scholar 

  85. Reul JM, de Kloet ER. Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology. 1985;117:2505–11.

    CAS  PubMed  Google Scholar 

  86. Ridder S, Chourbaji S, Hellweg R, Urani A, Zacher C, Schmid W, Zink M, Hortnagl H, Flor H, Henn FA, Schutz G, Gass P. Mice with genetically altered glucocorticoid receptor expression show altered sensitivity for stress-induced depressive reactions. J Neurosci. 2005;25:6243–50.

    CAS  PubMed  Google Scholar 

  87. Robertson DA, Beattie J, Reid I, Balfour D. Regulation of corticosteroid receptors in the rat brain: the role of serotonin and stress. Eur J Neurosci. 2005;21:1511–20.

    CAS  PubMed  Google Scholar 

  88. Roozendaal B. Glucocorticoids and the regulation of memory consolidation. Psychoneuro-endocrinology. 2000;25:213–38.

    CAS  Google Scholar 

  89. Roozendaal B, McEwen BS, Chattarji S. Stress, memory and the amygdala. Nat Rev Neurosci. 2009;10:423–33.

    CAS  PubMed  Google Scholar 

  90. Roozendaal B, McReynolds JR, McGaugh JL. The basolateral amygdala interacts with the medial prefrontal cortex in regulating glucocorticoid effects on working memory impairment. J Neurosci. 2004;24:1385–92.

    CAS  PubMed  Google Scholar 

  91. Sanchez MM, Young LJ, Plotsky PM, Insel TR. Distribution of coricosteriod receptors in the rhesus brain: relative absence of gluococorticoid receptors in the hippocampal formation. J Neurosci. 2000;20:4657–68.

    CAS  PubMed  Google Scholar 

  92. Sapolsky R. Stress and plasticity in the limbic system. Neurochem Res. 2003;28:1735–42.

    CAS  PubMed  Google Scholar 

  93. Sapolsky RM, Krey LC, McEwen BS. Glucocorticoid-sensitive hippocampal neurons are involved in terminating the adrenocortical stress response. Proc Natl Acad Sci. 1984;81:6174–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Schwabe L, Wolf OT. Stress prompts habit behavior in humans. J Neurosci. 2009;29:7191–8.

    CAS  PubMed  Google Scholar 

  95. Schwabe L, Wolf OT. Stress-induced modulation of instrumental behavior: from goal-directed to habitual control of action. Behav Brain Res. 2011;219:321–8.

    PubMed  Google Scholar 

  96. Selye H. Stress in health and disease. Boston: Butterworths; 1976.

    Google Scholar 

  97. Shepard JD, Barron KW, Myers DA. Stereotaxic localization of corticosterone to the amygdala enhances hypothalamo-pituitary–adrenal responses to behavioral stress. Brain Res. 2003;963:203–13.

    CAS  PubMed  Google Scholar 

  98. Smith Y, Pare D. Intra-amygdaloid projections of the lateral nucleus in the cat: PHA-L anterograde labeling combined with postembedding GABA and glutamate immunocytochemistry. J Comp Neurol. 1994;342:232–48.

    CAS  PubMed  Google Scholar 

  99. Snyder JS, Soumier A, Brewer M, Pickel J, Cameron HA. Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature. 2011;476:438–62.

    Google Scholar 

  100. Solano-Castiella E, Anwander A, Lohmann G, Weiss M, Docherty C, Geyer S, Reimer E, Friederici AD, Turner R. Diffusion tensor imaging segments the human amygdala in vivo. Neuroimage. 2010;49:2958–65.

    PubMed  Google Scholar 

  101. Stahn C, Buttgereit F. Genomic and nongenomic effects of glucocorticoids. Nature clinical practice. Rheumatology. 2008;4:525–33.

    CAS  PubMed  Google Scholar 

  102. Sullivan RM, Gratton A. Lateralized effects of medial prefrontal cortex lesions on neuroendocrine and autonomic stress responses in rats. J Neurosci. 1999;19:2834–40.

    CAS  PubMed  Google Scholar 

  103. Sullivan RM, Gratton A. Behavioral effects of excitotoxic lesions of ventral medial prefrontal cortex in the rat are hemisphere-dependent. Brain Res. 2002;927:69–79.

    CAS  PubMed  Google Scholar 

  104. Surget A, Tanti A, Leonardo ED, Laugeray A, Rainer Q, Touma C, Palme R, Griebel G, Ibarguen-Vargas Y, Hen R, Belzung C. Antidepressants recruit new neurons to improve stress response regulation. Mol Psychiatry. 2011;16:1177–88.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Tanapat P, Hastings NB, Rydel TA, Galea LA, Gould E. Exposure to fox odor inhibits cell proliferation in the hippocampus of adult rats via an adrenal hormone-dependent mechanism. J Comp Neurol. 2001;437:496–504.

    CAS  PubMed  Google Scholar 

  106. Tasker JG, Di S, Malcher-Lopes R. Minireview: rapid glucocorticoid signaling via membrane-associated receptors. Endocrinology. 2006;147:5549–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Thomas RM, Hotsenpiller G, Peterson DA. Acute psychosocial stress reduces cell survival in adult hippocampal neurogenesis without altering proliferation. J Neurosci. 2007;27:2734–43.

    CAS  PubMed  Google Scholar 

  108. Thomas RM, Urban JH, Peterson DA. Acute exposure to predator odor elicits a robust increase in corticosterone and a decrease in activity without altering proliferation in the adult rat hippocampus. Exp Neurol. 2006;201:308–15.

    CAS  PubMed  Google Scholar 

  109. Ulrich-Lai YM, Herman JP. Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci. 2009;10:397–409.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Uth RM, McKelvy JF, Harrison RW, Bohn MC. Demonstration of glucocorticoid receptor-like immunoreactivity in glucocorticoid-sensitive vasopressin and corticotropin-releasing factor neurons in the hypothalamic paraventricular nucleus. J Neurosci Res. 1988;19:405–11.

    Google Scholar 

  111. Uylings HBM, Groenewegen HJ, Kolb B. Do rats have a prefrontal cortex? Behav Brain Res. 2003;146:3–17.

    PubMed  Google Scholar 

  112. Wallis JD. Cross-species studies of orbitofrontal cortex and value-based decision-making. Nat Neurosci. 2012;15:13–9.

    CAS  Google Scholar 

  113. Wanat MJ, Bonci A, Phillips PEM. CRF acts in the midbrain to attenuate accumbens dopamine release to rewards but not their predictors. Nat Neurosci. 2013;16:383–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Watanabe Y, Gould E, Daniels DC, Cameron H, McEwen BS. Tianeptine attenuates stress-induced morphological changes in the hippocampus. Eur J Pharmacol. 1992;222:157–62.

    CAS  PubMed  Google Scholar 

  115. Wellman CL. Dendritic reorganization in pyramidal neurons in medial prefrontal cortex after chronic corticosterone administration. J Neurobiol. 2001;49:245–53.

    CAS  PubMed  Google Scholar 

  116. Wellman CL, Izquierdo A, Garrett JE, Martin KP, Carroll J, Millstein R, Lesch K-P, Murphy DL, Holmes A. Impaired stress-coping and fear extinction and abnormal corticolimbic morphology in serotonin transporter knock-out mice. J Neurosci. 2007;27:684–91.

    CAS  PubMed  Google Scholar 

  117. Wong EY, Herbert J. The corticoid environment: a determining factor for neural progenitors’ survival in the adult hippocampus. Eur J Neurosci. 2004;20:2491–8.

    PubMed Central  PubMed  Google Scholar 

  118. Wood GE, Norris EH, Waters E, Stoldt JT, McEwen BS. Chronic immobilization stress alters aspects of emotionality and associative learning in the rat. Behav Neurosci. 2008;122:282–92.

    PubMed  Google Scholar 

  119. Woolley CS, Gould E, McEwen BS. Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain Res. 1990;531:225–31.

    CAS  PubMed  Google Scholar 

  120. Yoshiya M, Komatsuzaki Y, Hojo Y, Ikeda M, Mukai H, Hatanaka Y, Murakami G, Kawata M, Kimoto T, Kawato S. Corticosterone rapidly increases thorns of CA3 neurons via synaptic/extranuclear glucocorticoid receptor in rat hippocampus. Front Neural Circuits. 2013;7:191.

    PubMed Central  PubMed  Google Scholar 

  121. Yuen EY, Liu W, Karatsoreos IN, Feng J, McEwen BS, Yan Z. Acute stress enhances glutamatergic transmission in prefrontal cortex and facilitates working memory. Proc Natl Acad Sci U S A. 2009;106:14075–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Bebbington P, Der G, MacCarthy B, Wykes T, Brugha T, Sturt P, Potter J. Stress incubation and the onset of affective disorders. Br J Psychiatry. 1993;162(3):358–62.

    Google Scholar 

  123. Brindley DN, Rolland Y. Possible connections between stress, diabetes, obesity, hypertension and altered lipoprotein metabolism that may result in atherosclerosis. Hypertension. 1989;23:33–351.

    Google Scholar 

  124. Cohen S, Herbert TB. Health psychology: psychological factors and physical disease from the perspective of human psychoneuroimmunology. Annu Rev Psychol. 1996;47(1):113–42.

    Google Scholar 

  125. Johnson EO, Kamilaris TC, Chrousos GP, Gold PW. Mechanisms of stress: a dynamic overview of hormonal and behavioral homeostasis. Neurosci Biobehav Rev. 1990;16:115–30.

    Google Scholar 

  126. Lupien SJ, McEwen BS, Gunnar MR, Heim C. Effects of stress throughout the lifespan on the brain, behavior and cognition. Nat Rev Neurosci. 2009;10:434–45.

    Google Scholar 

  127. Sternberg EM, Chrousos GP, Wilder RL, Gold PW. The stress response and the regulation of inflammatory disease. Ann Intern Med. 1992;117(10):854–66.

    Google Scholar 

  128. Dranovsky A, Hen R. Hippocampal neurogenesis: regulation by stress and antidepressants. Biol Psychiatry. 2006;59(12):1136–43. doi:10.1016/j.biopsych.2006.03.082.

  129. Wong EYH, Herbert J. The corticoid environment: a determining factor for neural progenitors’ survival in the adult hippocampus. Eur J Neurosci. 2006;20(10):2491–8. doi:10.1111/j.1460-9568.2004.03717.x.

  130. Gould TD, Dao DT, Kovacsics CE. Mood and anxiety related phenotypes in mice, vol. 42. New York: Humana Press; 2009. p. 1–20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniela Kaufer Ph.D. or Samuel A. Sakhai Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shirazi, S.N., Friedman, A.R., Kaufer, D., Sakhai, S.A. (2015). Glucocorticoids and the Brain: Neural Mechanisms Regulating the Stress Response. In: Wang, JC., Harris, C. (eds) Glucocorticoid Signaling. Advances in Experimental Medicine and Biology, vol 872. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2895-8_10

Download citation

Publish with us

Policies and ethics