Skip to main content

Molecular Pathology of HER Family of Oncogenes in Breast Cancer: HER-2 Evaluation and Role in Targeted Therapy

  • Chapter
  • First Online:
  • 1579 Accesses

Part of the book series: Molecular Pathology Library ((MPLB,volume 10))

Abstract

Human epidermal growth factor receptor-2 (HER2) is a well-studied member of epidermal growth factor receptor (EGFR) family. HER2 gene amplification and/or protein overexpression can be observed in many cancers of epithelial origin, including breast carcinoma. In breast carcinomas, HER2 gene amplification serves as a negative prognostic factor and its presence is usually associated with a more aggressive clinical behavior. Currently, there are several medications, including monoclonal antibodies or small molecules that target this receptor on the surface of tumoral cells. Targeted therapy improves patients’ response rates and survival and increase time to progression when used alone or in combination with other therapeutic modalities. As the accurate determination of HER2 gene status is very important for proper selection of treatment, this can be achieved by several methods, such as immunohistochemistry and/or in situ hybridization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Roskoski R Jr. The ErbB/HER receptor protein-tyrosine kinases and cancer. Biochem Biophys Res Commun. 2004;319(1):1–11.

    CAS  PubMed  Google Scholar 

  2. Roskoski R Jr. ErbB/HER protein-tyrosine kinases: structures and small molecule inhibitors. Pharmacol Res. 2014;87C:42–59.

    Google Scholar 

  3. Burgess AW. EGFR family: structure physiology signalling and therapeutic targets. Growth Factors. 2008;26(5):263–74.

    CAS  PubMed  Google Scholar 

  4. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001;2(2):127–37.

    CAS  PubMed  Google Scholar 

  5. Waterman H, et al. The C-terminus of the kinase-defective neuregulin receptor ErbB-3 confers mitogenic superiority and dictates endocytic routing. EMBO J. 1999;18(12):3348–58.

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Citri A, Skaria KB, Yarden Y. The deaf and the dumb: the biology of ErbB-2 and ErbB-3. Exp Cell Res. 2003;284(1):54–65.

    CAS  PubMed  Google Scholar 

  7. Wallasch C, et al. Heregulin-dependent regulation of HER2/neu oncogenic signaling by heterodimerization with HER3. EMBO J. 1995;14(17):4267–75.

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Seliger B, Kiessling R. The two sides of HER2/neu: immune escape versus surveillance. Trends Mol Med. 2013;19(11):677–84.

    CAS  PubMed  Google Scholar 

  9. Press MF, Cordon-Cardo C, Slamon DJ. Expression of the HER-2/neu proto-oncogene in normal human adult and fetal tissues. Oncogene. 1990;5(7):953–62.

    CAS  PubMed  Google Scholar 

  10. Seidman JD, Frisman DM, Norris HJ. Expression of the HER-2/neu proto-oncogene in serous ovarian neoplasms. Cancer. 1992;70(12):2857–60.

    CAS  PubMed  Google Scholar 

  11. Negro A, Brar BK, Lee KF. Essential roles of Her2/erbB2 in cardiac development and function. Recent Prog Horm Res. 2004;59:1–12.

    CAS  PubMed  Google Scholar 

  12. Suda Y, et al. Induction of a variety of tumors by c-erbB2 and clonal nature of lymphomas even with the mutated gene (Val659—Glu659). EMBO J. 1990;9(1):181–90.

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Ursini-Siegel J, et al. Insights from transgenic mouse models of ERBB2-induced breast cancer. Nat Rev Cancer. 2007;7(5):389–97.

    CAS  PubMed  Google Scholar 

  14. Burden S, Yarden Y. Neuregulins and their receptors: a versatile signaling module in organogenesis and oncogenesis. Neuron. 1997;18(6):847–55.

    CAS  PubMed  Google Scholar 

  15. Citri A, Yarden Y. EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol. 2006;7(7):505–16.

    CAS  PubMed  Google Scholar 

  16. Di Fiore PP, et al. erbB-2 is a potent oncogene when overexpressed in NIH/3T3 cells. Science. 1987;237(4811):178–82.

    PubMed  Google Scholar 

  17. Hudziak RM, Schlessinger J, Ullrich A. Increased expression of the putative growth factor receptor p185HER2 causes transformation and tumorigenesis of NIH 3T3 cells. Proc Natl Acad Sci USA. 1987;84(20):7159–63.

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Kokai Y, et al. Synergistic interaction of p185c-neu and the EGF receptor leads to transformation of rodent fibroblasts. Cell. 1989;58(2):287–92.

    CAS  PubMed  Google Scholar 

  19. Gonzaga IM, et al. Alterations in epidermal growth factor receptors 1 and 2 in esophageal squamous cell carcinomas. BMC Cancer. 2012;12:569.

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Cappuzzo F, Bemis L, Varella-Garcia M. HER2 mutation and response to trastuzumab therapy in non-small-cell lung cancer. N Engl J Med. 2006;354(24):2619–21.

    CAS  PubMed  Google Scholar 

  21. Boku N. HER2-positive gastric cancer. Gastric Cancer. 2014;17(1):1–12.

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Boku N. Molecular target for Her2 positive gastric cancer. Nihon Shokakibyo Gakkai Zasshi. 2012;109(12):2014–20.

    PubMed  Google Scholar 

  23. Bang YJ, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;376(9742):687–97.

    CAS  PubMed  Google Scholar 

  24. Yan M, et al. HER2 aberrations in cancer: implications for therapy. Cancer Treat Rev. 2014;40(6):770–80.

    CAS  PubMed  Google Scholar 

  25. Zhang HT, et al. New perspectives on anti-HER2/neu therapeutics. Drug News Perspect. 2000;13(6):325–9.

    CAS  PubMed  Google Scholar 

  26. Koeppen HK, et al. Overexpression of HER2/neu in solid tumours: an immunohistochemical survey. Histopathology. 2001;38(2):96–104.

    CAS  PubMed  Google Scholar 

  27. Chan DS, Twine CP, Lewis WG. Systematic review and meta-analysis of the influence of HER2 expression and amplification in operable oesophageal cancer. J Gastrointest Surg. 2012;16(10):1821–9.

    PubMed  Google Scholar 

  28. Ross JS, et al. The Her-2/neu gene and protein in breast cancer 2003: biomarker and target of therapy. Oncologist. 2003;8(4):307–25.

    CAS  PubMed  Google Scholar 

  29. Slamon DJ, et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235(4785):177–82.

    CAS  PubMed  Google Scholar 

  30. Stefano R, et al. Expression levels and clinical-pathological correlations of HER2/neu in primary and metastatic human breast cancer. Ann NY Acad Sci. 2004;1028:463–72.

    CAS  PubMed  Google Scholar 

  31. Yaziji H, Gown AM. Accuracy and precision in HER2/neu testing in breast cancer: are we there yet? Hum Pathol. 2004;35(2):143–6.

    PubMed  Google Scholar 

  32. Yu D, Hung MC. Overexpression of ErbB2 in cancer and ErbB2-targeting strategies. Oncogene. 2000;19(53):6115–21.

    CAS  PubMed  Google Scholar 

  33. Penault-Llorca F, Cayre A. Assessment of HER2 status in breast cancer. Bull Cancer. 2004;91(Suppl 4):S211–5.

    PubMed  Google Scholar 

  34. Varga Z, et al. Assessment of HER2 status in breast cancer: overall positivity rate and accuracy by fluorescence in situ hybridization and immunohistochemistry in a single institution over 12 years: a quality control study. BMC Cancer. 2013;13:615.

    PubMed Central  PubMed  Google Scholar 

  35. Dowsett M, et al. Assessment of HER2 status in breast cancer: why, when and how? Eur J Cancer. 2000;36(2):170–6.

    CAS  PubMed  Google Scholar 

  36. Yarden Y. Biology of HER2 and its importance in breast cancer. Oncology. 2001;61(Suppl 2):1–13.

    CAS  PubMed  Google Scholar 

  37. Eccles SA. The role of c-erbB-2/HER2/neu in breast cancer progression and metastasis. J Mammary Gland Biol Neoplasia. 2001;6(4):393–406.

    CAS  PubMed  Google Scholar 

  38. Pegram MD. Treating the HER2 pathway in early and advanced breast cancer. Hematol Oncol Clin North Am. 2013;27(4):751–65.

    PubMed  Google Scholar 

  39. Slamon DJ, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science. 1989;244(4905):707–12.

    CAS  PubMed  Google Scholar 

  40. Gown AM. Current issues in ER and HER2 testing by IHC in breast cancer. Mod Pathol. 2008;21(Suppl 2):S8–15.

    CAS  PubMed  Google Scholar 

  41. Garcia-Caballero T, et al. Determination of HER2 amplification in primary breast cancer using dual-colour chromogenic in situ hybridization is comparable to fluorescence in situ hybridization: a European multicentre study involving 168 specimens. Histopathology. 2010;56(4):472–80.

    PubMed Central  PubMed  Google Scholar 

  42. Owens MA, Horten BC, Da Silva MM. HER2 amplification ratios by fluorescence in situ hybridization and correlation with immunohistochemistry in a cohort of 6556 breast cancer tissues. Clin Breast Cancer. 2004;5(1):63–9.

    CAS  PubMed  Google Scholar 

  43. Peintinger F, et al. Hormone receptor status and pathologic response of HER2-positive breast cancer treated with neoadjuvant chemotherapy and trastuzumab. Ann Oncol. 2008;19(12):2020–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Paik S, Kim C, Wolmark N. HER2 status and benefit from adjuvant trastuzumab in breast cancer. N Engl J Med. 2008;358(13):1409–11.

    CAS  PubMed  Google Scholar 

  45. Robidoux A, et al. Lapatinib as a component of neoadjuvant therapy for HER2-positive operable breast cancer (NSABP protocol B-41): an open-label, randomised phase 3 trial. Lancet Oncol. 2013;14(12):1183–92.

    CAS  PubMed  Google Scholar 

  46. Slamon D, Pegram M. Rationale for trastuzumab (Herceptin) in adjuvant breast cancer trials. Semin Oncol. 2001;28(1 Suppl 3):13–9.

    CAS  PubMed  Google Scholar 

  47. Horton J. Trastuzumab use in breast cancer: clinical issues. Cancer Control. 2002;9(6):499–507.

    PubMed  Google Scholar 

  48. Tan-Chiu E, Piccart M. Moving forward: herceptin in the adjuvant setting. Oncology. 2002;63(Suppl 1):57–63.

    CAS  PubMed  Google Scholar 

  49. Vogel CL, et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol. 2002;20(3):719–26.

    CAS  PubMed  Google Scholar 

  50. Ferretti G, et al. Adjuvant trastuzumab with docetaxel or vinorelbine for HER-2-positive breast cancer. Oncologist. 2006;11(7):853–4.

    PubMed  Google Scholar 

  51. Joensuu H, et al. Adjuvant docetaxel or vinorelbine with or without trastuzumab for breast cancer. N Engl J Med. 2006;354(8):809–20.

    CAS  PubMed  Google Scholar 

  52. Piccart-Gebhart MJ, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med. 2005;353(16):1659–72.

    CAS  PubMed  Google Scholar 

  53. Untch M, et al. Neoadjuvant treatment with trastuzumab in HER2-positive breast cancer: results from the GeparQuattro study. J Clin Oncol. 2010;28(12):2024–31.

    CAS  PubMed  Google Scholar 

  54. Romond EH, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med. 2005;353(16):1673–84.

    CAS  PubMed  Google Scholar 

  55. Smith I, et al. 2-year follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer: a randomised controlled trial. Lancet. 2007;369(9555):29–36.

    CAS  PubMed  Google Scholar 

  56. Slamon DJ, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344(11):783–92.

    CAS  PubMed  Google Scholar 

  57. Pegram MD, et al. Rational combinations of trastuzumab with chemotherapeutic drugs used in the treatment of breast cancer. J Natl Cancer Inst. 2004;96(10):739–49.

    CAS  PubMed  Google Scholar 

  58. Tedesco KL, et al. Docetaxel combined with trastuzumab is an active regimen in HER-2 3+ overexpressing and fluorescent in situ hybridization-positive metastatic breast cancer: a multi-institutional phase II trial. J Clin Oncol. 2004;22(6):1071–7.

    CAS  PubMed  Google Scholar 

  59. Cobleigh MA, et al. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol. 1999;17(9):2639–48.

    CAS  PubMed  Google Scholar 

  60. Pegram M, Slamon D. Biological rationale for HER2/neu (c-erbB2) as a target for monoclonal antibody therapy. Semin Oncol. 2000;27(5 Suppl 9):13–9.

    CAS  PubMed  Google Scholar 

  61. Borley A, et al. Impact of HER2 copy number in IHC2+/FISH-amplified breast cancer on outcome of adjuvant trastuzumab treatment in a large UK cancer network. Br J Cancer. 2014;110(8):2139–43.

    PubMed Central  CAS  PubMed  Google Scholar 

  62. Dowsett M, et al. Disease-free survival according to degree of HER2 amplification for patients treated with adjuvant chemotherapy with or without 1 year of trastuzumab: the HERA Trial. J Clin Oncol. 2009;27(18):2962–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Sauter G, et al. Guidelines for human epidermal growth factor receptor 2 testing: biologic and methodologic considerations. J Clin Oncol. 2009;27(8):1323–33.

    CAS  PubMed  Google Scholar 

  64. Inoue T, et al. Clinical evaluation of lapatinib therapy in metastatic breast cancer using the Bayes meta-analysis. Gan Kagaku Ryoho. 2014;41(3):347–52.

    Google Scholar 

  65. Garcia-Munoz C, et al. Lapatinib plus transtuzumab for HER-2 positiva metastatic breast cancer: experience of use. Farm Hosp. 2014;38(2):130–4.

    CAS  PubMed  Google Scholar 

  66. Verma S, et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med. 2012;367(19):1783–91.

    CAS  PubMed  Google Scholar 

  67. Krop IE, et al. Trastuzumab emtansine versus treatment of physician’s choice for pretreated HER2-positive advanced breast cancer (TH3RESA): a randomised, open-label, phase 3 trial. Lancet Oncol. 2014;15(7):689–99.

    CAS  PubMed  Google Scholar 

  68. Corrigan PA, et al. Ado-trastuzumab Emtansine: A HER2-positive targeted antibody-drug conjugate. Ann Pharmacother. 2014;48:1484–93.

    CAS  PubMed  Google Scholar 

  69. Lynce F, Swain SM. Pertuzumab for the treatment of breast cancer. Cancer Invest. 2014;32:430–8.

    CAS  PubMed  Google Scholar 

  70. McCormack PL. Pertuzumab: a review of its use for first-line combination treatment of HER2-positive metastatic breast cancer. Drugs. 2013;73(13):1491–502.

    CAS  PubMed  Google Scholar 

  71. O’Sullivan CC, Connolly RM. Pertuzumab and its accelerated approval: evolving treatment paradigms and new challenges in the management of HER2-positive breast cancer. Oncology (Williston Park). 2014;28(3):186–94 196.

    Google Scholar 

  72. Gianni L, et al. Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): a randomised multicentre, open-label, phase 2 trial. Lancet Oncol. 2012;13(1):25–32.

    CAS  PubMed  Google Scholar 

  73. Schneeweiss A, et al. Pertuzumab plus trastuzumab in combination with standard neoadjuvant anthracycline-containing and anthracycline-free chemotherapy regimens in patients with HER2-positive early breast cancer: a randomized phase II cardiac safety study (TRYPHAENA). Ann Oncol. 2013;24(9):2278–84.

    CAS  PubMed  Google Scholar 

  74. Cho HS, et al. Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature. 2003;421(6924):756–60.

    CAS  PubMed  Google Scholar 

  75. Jhaveri K, Esteva FJ. Pertuzumab in the treatment of HER2+ breast cancer. J Natl Compr Canc Netw. 2014;12(4):591–8.

    CAS  PubMed  Google Scholar 

  76. Franklin MC, et al. Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell. 2004;5(4):317–28.

    CAS  PubMed  Google Scholar 

  77. Swain SM, et al. Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA study): overall survival results from a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol. 2013;14(6):461–71.

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Baselga J, et al. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med. 2012;366(2):109–19.

    CAS  PubMed  Google Scholar 

  79. de Azambuja E, et al. Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): survival outcomes of a randomised, open-label, multicentre, phase 3 trial and their association with pathological complete response. Lancet Oncol. 2014;15(10):1137–46.

    PubMed  Google Scholar 

  80. Baselga J, et al. Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): a randomised, open-label, multicentre, phase 3 trial. Lancet. 2012;379(9816):633–40.

    CAS  PubMed  Google Scholar 

  81. Baselga J, Swain SM. CLEOPATRA: a phase III evaluation of pertuzumab and trastuzumab for HER2-positive metastatic breast cancer. Clin Breast Cancer. 2010;10(6):489–91.

    PubMed  Google Scholar 

  82. Blackwell KL, et al. Randomized study of Lapatinib alone or in combination with trastuzumab in women with ErbB2-positive, trastuzumab-refractory metastatic breast cancer. J Clin Oncol. 2010;28(7):1124–30.

    CAS  PubMed  Google Scholar 

  83. Arteaga CL, Engelman JA. ERBB receptors: from oncogene discovery to basic science to mechanism-based cancer therapeutics. Cancer Cell. 2014;25(3):282–303.

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Engelman JA, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007;316(5827):1039–43.

    CAS  PubMed  Google Scholar 

  85. Nahta R, et al. Insulin-like growth factor-I receptor/human epidermal growth factor receptor 2 heterodimerization contributes to trastuzumab resistance of breast cancer cells. Cancer Res. 2005;65(23):11118–28.

    CAS  PubMed  Google Scholar 

  86. Lu Y, et al. Insulin-like growth factor-I receptor signaling and resistance to trastuzumab (Herceptin). J Natl Cancer Inst. 2001;93(24):1852–7.

    CAS  PubMed  Google Scholar 

  87. Berns K, et al. A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell. 2007;12(4):395–402.

    CAS  PubMed  Google Scholar 

  88. Nagata Y, et al. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell. 2004;6(2):117–27.

    CAS  PubMed  Google Scholar 

  89. Esteva FJ, et al. PTEN, PIK3CA, p-AKT, and p-p70S6 K status: association with trastuzumab response and survival in patients with HER2-positive metastatic breast cancer. Am J Pathol. 2010;177(4):1647–56.

    PubMed Central  CAS  PubMed  Google Scholar 

  90. Xia W, et al. A model of acquired autoresistance to a potent ErbB2 tyrosine kinase inhibitor and a therapeutic strategy to prevent its onset in breast cancer. Proc Natl Acad Sci USA. 2006;103(20):7795–800.

    PubMed Central  CAS  PubMed  Google Scholar 

  91. Valabrega G, et al. HER2-positive breast cancer cells resistant to trastuzumab and lapatinib lose reliance upon HER2 and are sensitive to the multitargeted kinase inhibitor sorafenib. Breast Cancer Res Treat. 2011;130(1):29–40.

    CAS  PubMed  Google Scholar 

  92. Oliveras-Ferraros C, et al. Inhibitor of Apoptosis (IAP) survivin is indispensable for survival of HER2 gene-amplified breast cancer cells with primary resistance to HER1/2-targeted therapies. Biochem Biophys Res Commun. 2011;407(2):412–9.

    CAS  PubMed  Google Scholar 

  93. Musolino A, et al. Immunoglobulin G fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer. J Clin Oncol. 2008;26(11):1789–96.

    CAS  PubMed  Google Scholar 

  94. Gennari R, et al. Pilot study of the mechanism of action of preoperative trastuzumab in patients with primary operable breast tumors overexpressing HER2. Clin Cancer Res. 2004;10(17):5650–5.

    CAS  PubMed  Google Scholar 

  95. Wolff AC, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of clinical oncology/college of American pathologists clinical practice guideline update. J Clin Oncol. 2013;31(31):3997–4013.

    PubMed  Google Scholar 

  96. Keefe DL. Trastuzumab-associated cardiotoxicity. Cancer. 2002;95(7):1592–600.

    CAS  PubMed  Google Scholar 

  97. Ewer SM, Ewer MS. Cardiotoxicity profile of trastuzumab. Drug Saf. 2008;31(6):459–67.

    CAS  PubMed  Google Scholar 

  98. Babar T, et al. Anti-HER2 cancer therapy and cardiotoxicity. Curr Pharm Des. 2014;20(30):4911–9.

    CAS  PubMed  Google Scholar 

  99. Moelans CB, et al. Current technologies for HER2 testing in breast cancer. Crit Rev Oncol Hematol. 2011;80(3):380–92.

    CAS  PubMed  Google Scholar 

  100. Pauletti G, et al. Assessment of methods for tissue-based detection of the HER-2/neu alteration in human breast cancer: a direct comparison of fluorescence in situ hybridization and immunohistochemistry. J Clin Oncol. 2000;18(21):3651–64.

    CAS  PubMed  Google Scholar 

  101. Xing WR, et al. FISH detection of HER-2/neu oncogene amplification in early onset breast cancer. Breast Cancer Res Treat. 1996;39(2):203–12.

    CAS  PubMed  Google Scholar 

  102. Persons DL, et al. Fluorescence in situ hybridization (FISH) for detection of HER-2/neu amplification in breast cancer: a multicenter portability study. Ann Clin Lab Sci. 2000;30(1):41–8.

    CAS  PubMed  Google Scholar 

  103. Susini T, et al. Preoperative assessment of HER-2/neu status in breast carcinoma: the role of quantitative real-time PCR on core-biopsy specimens. Gynecol Oncol. 2010;116(2):234–9.

    CAS  PubMed  Google Scholar 

  104. Wolff AC, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of clinical oncology/college of American pathologists clinical practice guideline update. Arch Pathol Lab Med. 2014;138(2):241–56.

    PubMed Central  PubMed  Google Scholar 

  105. Wolff AC, et al. American Society of clinical oncology/college of American pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. Arch Pathol Lab Med. 2007;131(1):18–43.

    CAS  PubMed  Google Scholar 

  106. Wolff AC, et al. American Society of clinical oncology/college of American pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol. 2007;25(1):118–45.

    CAS  PubMed  Google Scholar 

  107. Bartlett J, Mallon E, Cooke T. The clinical evaluation of HER-2 status: which test to use? J Pathol. 2003;199(4):411–7.

    CAS  PubMed  Google Scholar 

  108. Cornejo KM, et al. Theranostic and molecular classification of breast cancer. Arch Pathol Lab Med. 2014;138(1):44–56.

    PubMed  Google Scholar 

  109. Shak S. Overview of the trastuzumab (Herceptin) anti-HER2 monoclonal antibody clinical program in HER2-overexpressing metastatic breast cancer. Herceptin multinational investigator study group. Semin Oncol. 1999;26((4 Suppl 12)):71–7.

    CAS  PubMed  Google Scholar 

  110. Ross JS, et al. HER-2/neu testing in breast cancer. Am J Clin Pathol. 2003;120(Suppl):S53–71.

    PubMed  Google Scholar 

  111. Press MF, et al. Evaluation of HER-2/neu gene amplification and overexpression: comparison of frequently used assay methods in a molecularly characterized cohort of breast cancer specimens. J Clin Oncol. 2002;20(14):3095–105.

    CAS  PubMed  Google Scholar 

  112. Addition of trastuzumab to chemotherapy produces 50 % increase in survival in patients selected by FISH. Oncology (Williston Park), 2001; 15(10): 1345, 1364.

    Google Scholar 

  113. Dyhdalo KS, et al. Laboratory compliance with the american society of clinical oncology/college of american pathologists human epidermal growth factor receptor 2 testing guidelines: a 3-year comparison of validation procedures. Arch Pathol Lab Med. 2014;138(7):876–84.

    PubMed  Google Scholar 

  114. Grimm EE, et al. Achieving 95 % cross-methodological concordance in HER2 testing: causes and implications of discordant cases. Am J Clin Pathol. 2010;134(2):284–92.

    PubMed  Google Scholar 

  115. Moelans CB, de Weger RA, van Diest PJ. Absence of chromosome 17 polysomy in breast cancer: analysis by CEP17 chromogenic in situ hybridization and multiplex ligation-dependent probe amplification. Breast Cancer Res Treat. 2010;120(1):1–7.

    CAS  PubMed  Google Scholar 

  116. Yeh IT, et al. Clinical validation of an array CGH test for HER2 status in breast cancer reveals that polysomy 17 is a rare event. Mod Pathol. 2009;22(9):1169–75.

    CAS  PubMed  Google Scholar 

  117. Viale G. Be precise! The need to consider the mechanisms for CEP17 copy number changes in breast cancer. J Pathol. 2009;219(1):1–2.

    CAS  PubMed  Google Scholar 

  118. Vranic S, et al. Assessment of HER2 gene status in breast carcinomas with polysomy of chromosome 17. Cancer. 2011;117(1):48–53.

    PubMed  Google Scholar 

  119. Perez EA, et al. HER2 and chromosome 17 effect on patient outcome in the N9831 adjuvant trastuzumab trial. J Clin Oncol. 2010;28(28):4307–15.

    PubMed Central  PubMed  Google Scholar 

  120. Tse CH, et al. Determining true HER2 gene status in breast cancers with polysomy by using alternative chromosome 17 reference genes: implications for anti-HER2 targeted therapy. J Clin Oncol. 2011;29(31):4168–74.

    CAS  PubMed  Google Scholar 

  121. Clark BZ, Bhargava R. Bright-field microscopy for HER2 gene assessment: not just DISH-ful thinking? Am J Clin Pathol. 2013;139(2):137–9.

    PubMed  Google Scholar 

  122. Bhargava R, Lal P, Chen B. Chromogenic in situ hybridization for the detection of HER-2/neu gene amplification in breast cancer with an emphasis on tumors with borderline and low-level amplification: does it measure up to fluorescence in situ hybridization? Am J Clin Pathol. 2005;123(2):237–43.

    CAS  PubMed  Google Scholar 

  123. Isola J, et al. Interlaboratory comparison of HER-2 oncogene amplification as detected by chromogenic and fluorescence in situ hybridization. Clin Cancer Res. 2004;10(14):4793–8.

    CAS  PubMed  Google Scholar 

  124. Mayr D, et al. Chromogenic in situ hybridization for Her-2/neu-oncogene in breast cancer: comparison of a new dual-colour chromogenic in situ hybridization with immunohistochemistry and fluorescence in situ hybridization. Histopathology. 2009;55(6):716–23.

    PubMed  Google Scholar 

  125. Kato N, et al. Evaluation of HER2 gene amplification in invasive breast cancer using a dual-color chromogenic in situ hybridization (dual CISH). Pathol Int. 2010;60(7):510–5.

    PubMed  Google Scholar 

  126. Todorovic-Rakovic N, et al. Prognostic value of HER2 gene amplification detected by chromogenic in situ hybridization (CISH) in metastatic breast cancer. Exp Mol Pathol. 2007;82(3):262–8.

    CAS  PubMed  Google Scholar 

  127. Di Palma S, et al. Chromogenic in situ hybridisation (CISH) should be an accepted method in the routine diagnostic evaluation of HER2 status in breast cancer. J Clin Pathol. 2007;60(9):1067–8.

    PubMed Central  PubMed  Google Scholar 

  128. Arnould L, et al. Agreement between chromogenic in situ hybridisation (CISH) and FISH in the determination of HER2 status in breast cancer. Br J Cancer. 2003;88(10):1587–91.

    PubMed Central  CAS  PubMed  Google Scholar 

  129. Francis GD, et al. Bright-field in situ hybridization for HER2 gene amplification in breast cancer using tissue microarrays: correlation between chromogenic (CISH) and automated silver-enhanced (SISH) methods with patient outcome. Diagn Mol Pathol. 2009;18(2):88–95.

    CAS  PubMed  Google Scholar 

  130. Park K, et al. Silver-enhanced in situ hybridization as an alternative to fluorescence in situ hybridization for assaying HER2 amplification in clinical breast cancer. J Breast Cancer. 2011;14(4):276–82.

    PubMed Central  PubMed  Google Scholar 

  131. Schnitt SJ, Jacobs TW. Current status of HER2 testing: caught between a rock and a hard place. Am J Clin Pathol. 2001;116(6):806–10.

    CAS  PubMed  Google Scholar 

  132. Bae YK, et al. HER2 status by standardized immunohistochemistry and silver-enhanced in situ hybridization in Korean breast cancer. J Breast Cancer. 2012;15(4):381–7.

    PubMed Central  PubMed  Google Scholar 

  133. Koh YW, et al. Dual-color silver-enhanced in situ hybridization for assessing HER2 gene amplification in breast cancer. Mod Pathol. 2011;24(6):794–800.

    CAS  PubMed  Google Scholar 

  134. Unal B, et al. Determination of HER2 gene amplification in breast cancer using dual-color silver enhanced in situ hybridization (dc- SISH) and comparison with fluorescence ISH (FISH). Asian Pac J Cancer Prev. 2013;14(10):6131–4.

    PubMed  Google Scholar 

  135. Jacquemier J, et al. SISH/CISH or qPCR as alternative techniques to FISH for determination of HER2 amplification status on breast tumors core needle biopsies: a multicenter experience based on 840 cases. BMC Cancer. 2013;13:351.

    PubMed Central  CAS  PubMed  Google Scholar 

  136. Dowsett M, et al. Correlation between immunohistochemistry (HercepTest) and fluorescence in situ hybridization (FISH) for HER-2 in 426 breast carcinomas from 37 centres. J Pathol. 2003;199(4):418–23.

    CAS  PubMed  Google Scholar 

  137. Bilous M, et al. Current perspectives on HER2 testing: a review of national testing guidelines. Mod Pathol. 2003;16(2):173–82.

    PubMed  Google Scholar 

  138. Ridolfi RL, Jamehdor MR, Arber JM. HER-2/neu testing in breast carcinoma: a combined immunohistochemical and fluorescence in situ hybridization approach. Mod Pathol. 2000;13(8):866–73.

    CAS  PubMed  Google Scholar 

  139. Tubbs RR, Hicks DG. HER-2 testing in breast cancer. JAMA. 2004; 292(15): p 1817-8 (author reply 1818).

    Google Scholar 

  140. Lal P, et al. HER-2 testing in breast cancer using immunohistochemical analysis and fluorescence in situ hybridization: a single-institution experience of 2,279 cases and comparison of dual-color and single-color scoring. Am J Clin Pathol. 2004;121(5):631–6.

    PubMed  Google Scholar 

  141. Yaziji H, et al. HER-2 testing in breast cancer using parallel tissue-based methods. JAMA. 2004;291(16):1972–7.

    CAS  PubMed  Google Scholar 

  142. Elkin EB, et al. HER-2 testing and trastuzumab therapy for metastatic breast cancer: a cost-effectiveness analysis. J Clin Oncol. 2004;22(5):854–63.

    PubMed  Google Scholar 

  143. Zhang H, et al. HER-2 gene amplification by fluorescence in situ hybridization (FISH) compared with immunohistochemistry (IHC) in breast cancer: a study of 528 equivocal cases. Breast Cancer Res Treat. 2012;134(2):743–9.

    CAS  PubMed  Google Scholar 

  144. Goud KI, et al. Evaluation of HER-2/neu status in breast cancer specimens using immunohistochemistry (IHC) & fluorescence in-situ hybridization (FISH) assay. Indian J Med Res. 2012;135:312–7.

    PubMed Central  PubMed  Google Scholar 

  145. Kemp JD, Royer MC. 2+ HER-2/neu IHC results: positively equivocal. J Cutan Pathol. 2010; 37(8): p. 915; author reply 916.

    Google Scholar 

  146. Hammond ME, et al. American Society of clinical oncology/college of American pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer (unabridged version). Arch Pathol Lab Med. 2010;134(7):e48–72.

    CAS  PubMed  Google Scholar 

  147. Hammond ME, et al. American Society of clinical oncology/college of American pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol. 2010;28(16):2784–95.

    PubMed Central  PubMed  Google Scholar 

  148. Penault-Llorca F, et al. Optimization of immunohistochemical detection of ERBB2 in human breast cancer: impact of fixation. J Pathol. 1994;173(1):65–75.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ediz F. Cosar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sakhdari, A., Hutchinson, L., Cosar, E.F. (2015). Molecular Pathology of HER Family of Oncogenes in Breast Cancer: HER-2 Evaluation and Role in Targeted Therapy. In: Khan, A., Ellis, I., Hanby, A., Cosar, E., Rakha, E., Kandil, D. (eds) Precision Molecular Pathology of Breast Cancer. Molecular Pathology Library, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2886-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2886-6_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2885-9

  • Online ISBN: 978-1-4939-2886-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics