Skip to main content

Familial Breast Cancer and Genetic Predisposition in Breast Cancer

  • Chapter
  • First Online:
Precision Molecular Pathology of Breast Cancer

Part of the book series: Molecular Pathology Library ((MPLB,volume 10))

Abstract

Approximately 10 % of breast cancer patients are carriers of gene mutations susceptible for the development of breast cancer. BRCA1, BRCA2, and TP53 genes are associated with a high risk of developing breast cancer in carriers and hence are referred to as high-penetrance genes. ATM (Ataxia Telangiectasia Mutated Gene), CHEK2, BRIP1, PALB2, RAD50, PTEN, CDH1, STK11, etc. are examples of moderate penetrance genes, while single nucleotide polymorphisms (SNPs) are considered low penetrance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jemal A. et al. Cancer Statistics, 2010. CA Cancer. J Clin. 2010;60(5):277–300.

    Google Scholar 

  2. Claus EB, Schildkraut JM, Thompson WD, Risch NJ. The genetic attributable risk of breast and ovarian cancer. Cancer. 1996;77(11):2318–24.

    Article  CAS  PubMed  Google Scholar 

  3. Ford D, et al. Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. Am J Hum Genet. 1998;62(3):676–89.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Turnbull C, et al. Genome-wide association study identifies five new breast cancer susceptibility loci. Nat Genet. 2010;42(6):504–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Roy R, Chun J, Powell SN. BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat Rev Cancer. 2011;12(1):68–78.

    Article  PubMed  Google Scholar 

  6. Huen MS, Sy SM, Chen J. BRCA1 and its toolbox for the maintenance of genome integrity. Nat Rev Mol Cell Biol. 2010;11(2):138–48.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Mazoyer S. Genomic rearrangements in the BRCA1 and BRCA2 genes. Hum Mutat. 2005;25(5):415–22.

    Article  CAS  PubMed  Google Scholar 

  8. Hogervorst FB, Nederlof PM, Gille JJ, McElgunn CJ, Grippeling M, Pruntel R, et al. Large genomic deletions and duplications in the BRCA1 gene identified by a novel quantitative method. Cancer Res. 2003;63(7):1449–53.

    CAS  PubMed  Google Scholar 

  9. Hamel N, Feng BJ, Foretova L, Stoppa-Lyonnet D, Narod SA, et al. On the origin and diffusion of BRCA1 c.5266dupC (5382insC) in European populations. Eur J Hum Genet. 2011;19(3):300–6.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Lalloo F, Varley J, Ellis D, et al. Family history is predictive of pathogenic mutations in BRCA1, BRCA2 and TP53 with high penetrance in a population based study of very early onset breast cancer. Lancet. 2003;361:1101–2.

    Article  CAS  PubMed  Google Scholar 

  11. Evans DG, Shenton A, Woodward E, Lalloo F, Howell A, Maher ER. Penetrance estimates for BRCA1 and BRCA2 based on genetic testing in a clinical cancer genetics service setting. BMC Cancer. 2008;8(1):155.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Ford D, Easton DF, Stratton M, et al. Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. Am J Hum Genet. 1998;62(3):676–89.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Chen S, Iversen ES, Friebel T, et al. Characterization of BRCA1 and BRCA2 mutations in a large United States sample. J Clin Oncol. 2006;24(6):863–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Antoniou A, Pharoah PDP, Narod S, et al. Average risks of breast and ovarian cancer associated with mutations in BRCA1 or BRCA2 detected in case series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet. 2003;72(5):1117–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Lakhani SR, Gusterson BA, Jacquemier J, Sloane JP, Anderson TJ, et al. The pathology of familial breast cancer: histological features of cancers in families not attributable to mutations in BRCA1 or BRCA2. Clin Cancer Res. 2000;6(3):782–9.

    CAS  PubMed  Google Scholar 

  16. Lakhani SR, Jacquemier J, Sloane JP, Gusterson BA, Anderson TJ, et al. Multifactorial analysis of differences between sporadic breast cancers and cancers involving BRCA1 and BRCA2 mutations. J Natl Cancer Inst. 1998;90(15):1138–45.

    Article  CAS  PubMed  Google Scholar 

  17. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–52.

    Article  CAS  PubMed  Google Scholar 

  18. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001;98(19):10869–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Nielsen TO, Hsu FD, Jensen K, Cheang M, Karaca G, Hu Z, et al. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res. 2004;10(16):5367–74.

    Article  CAS  PubMed  Google Scholar 

  20. Rakha EA, Elsheikh SE, Aleskandarany MA, Habashi HO, Green AR, Powe DG, et al. Triple-negative breast cancer: distinguishing between basal and nonbasal subtypes. Clin Cancer Res. 2009;15(7):2302–10.

    Article  CAS  PubMed  Google Scholar 

  21. Jensen RB, et al. Purified human BRCA2 stimulates RAD51- mediated recombination. Nature. 2010;467(7316):678–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Tischkowitz M, Xia B. PALB2/FANCN: recombining cancer and Fanconi anemia. Cancer Res. 2010;70(19):7353–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Howlett NG, et al. Biallelic inactivation of BRCA2 in Fanconi anemia. Science. 2002;297(5581):606–9.

    Article  CAS  PubMed  Google Scholar 

  24. Tai YC, Domchek S, Parmigiani G, Chen S. Breast cancer risk among male BRCA1 and BRCA2 mutation carriers. J Natl Cancer Inst. 2007;99(23):1811–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Gallagher DJ, Gaudet MM, Pal P, Kirchhoff T, Balistreri L, et al. Germline BRCA mutations denote a clinicopathologic subset of prostate cancer. Clin Cancer Res. 2010;16(7):2115–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Hahn SA, Greenhalf B, Ellis I, et al. BRCA2 germline mutations in familial pancreatic carcinoma. J Natl Cancer Inst. 2003;95:214–21.

    Article  CAS  PubMed  Google Scholar 

  27. Canto MI, Harinck F, Hruban HR, Offerhaus GJ, Poley JW, et al. International Cancer of the Pancreas Screening (CAPS) Consortium summit on the management of patients with increased risk for familial pancreatic cancer. Gut. 2013;62(3):339–47.

    Article  PubMed Central  PubMed  Google Scholar 

  28. van Asperen CJ, Brohet RM, Meijers-Heijboer EJ, et al. Cancer risks in BRCA2 families: estimates for sites other than breast and ovary. J Med Genet. 2005;42(9):711–9.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Moran A, O’Hara C, Khan S, Shack L, Woodward E, et al. Risk of cancer other than breast or ovarian in individuals with BRCA1 and BRCA2 mutations. Fam Cancer. 2012;11(2):235–42.

    Article  CAS  PubMed  Google Scholar 

  30. Petitjean A, Achatz MI, Borresen-Dale AL, Hainaut P, Olivier M. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene. 2007;26:2157–65.

    Article  CAS  PubMed  Google Scholar 

  31. Olivier M, Eeles R, Hollstein M, Khan MA, Harris CC, Hainaut P. The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat. 2002;19:607–14.

    Article  CAS  PubMed  Google Scholar 

  32. Gonzalez KD, et al. Beyond Li Fraumeni syndrome: clinical characteristics of families with p53 germline mutations. J Clin Oncol. 2009;27(8):1250–6.

    Article  CAS  PubMed  Google Scholar 

  33. Paglia LL, Lauge A, Weber J, Champ J, Cavaciuti E, Russo A, et al. ATM germline mutations in women with familial breast cancer and a relative with haematological malignancy. Breast Cancer Res Treat. 2010;119(2):443–5233.

    Article  PubMed  Google Scholar 

  34. Shiloh Y. ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer. 2003;3:155–68.

    Article  CAS  PubMed  Google Scholar 

  35. Swift M, Reitnauer PJ, Morrell D, Chase CL. Breast and other cancers in families with ataxia-telangiectasia. N Engl J Med. 1987;316(21):1289–94.

    Article  CAS  PubMed  Google Scholar 

  36. Thompson D, Duedal S, Kirner J, McGuffog L, Last J, et al. Cancer risks and mortality in heterozygous ATM mutation carriers. J Natl Cancer Inst. 2005;97(11):813–22.

    Article  CAS  PubMed  Google Scholar 

  37. Renwick A, et al. ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nat Genet. 2006;38(8):873–5.

    Article  CAS  PubMed  Google Scholar 

  38. Cybulski C, et al. CHEK2 is a multiorgan cancer susceptibility gene. Am J Hum Genet. 2004;75(6):1131–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Stolz A, et al. The CHK2-BRCA1 tumour suppressor pathway ensures chromosomal stability in human somatic cells. Nat Cell Biol. 2010;12(5):492–9.

    Article  CAS  PubMed  Google Scholar 

  40. Bell DW, et al. Heterozygous germ line hCHK2 Mutations in Li-Fraumeni syndrome. Science. 1999;286(5449):2528–31.

    Article  CAS  PubMed  Google Scholar 

  41. Weischer M, Bojesen SE, Ellervik C, et al. CHEK2*1100delC genotyping for clinical assessment of breast cancer risk: Meta-analyses of 26,000 patient cases and 27,000 controls. J Clin Oncol. 2008;26:542–8.

    Article  PubMed  Google Scholar 

  42. Zhang B, Beeghly-Fadiel A, Long J, et al. Genetic variants associated with breast-cancer risk: comprehensive research synopsis, meta-analysis, and epidemiological evidence. Lancet Oncol. 2011;12:477–88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Weischer M, Nordestgaard BG, Pharoah P, et al. CHEK2*1100delC heterozygosity in women with breast cancer associated with early death, breast cancer-specific death, and increased risk of a second breast cancer. J Clin Oncol. 2012;30(35):4308–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Cantor S, Drapkin R, Zhang F, Lin Y, Han J, Pamidi S, Livingston DM. The BRCA1-associated protein BACH1 is a DNA helicase targeted by clinically relevant inactivating mutations. Proc Natl Acad Sci USA. 2004;101(8):2357–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Seal S, Thompson D, Renwick A, et al. Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles. Nat Genet. 2006;38(11):1239–41.

    Article  CAS  PubMed  Google Scholar 

  46. Rafnar T, Gudbjartsson DF, Sulem P, et al. Mutations in BRIP1 confer high risk of ovarian cancer. Nat Genet. 2011;43(11):1104–7.

    Article  CAS  PubMed  Google Scholar 

  47. Ma XD, Cai GQ, Zou W, Huang YH, Zhang JR, Wang DT, Chen BL. First evidence for the contribution of the genetic variations of BRCA1-interacting protein 1 (BRIP1) to the genetic susceptibility of cervical cancer. Gene. 2013;524(2):208–13.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang F, et al. PALB2 functionally connects the breast cancer susceptibility proteins BRCA1 and BRCA2. Mol Cancer Res. 2009;7(7):1110–8.

    Article  CAS  PubMed  Google Scholar 

  49. Sy SM, Huen MS, Chen J. PALB2 is an integral component of the BRCA complex required for homologous recombination repair. Proc Natl Acad Sci USA. 2009;106(17):7155–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Dray E, et al. Enhancement of RAD51 recombinase activity by the tumor suppressor PALB2. Nat Struct Mol Biol. 2010;17(10):1255–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Jones S, et al. Exomic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene. Science. 2009;324(5924):217.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Pharoah PD, Guilford P, Caldas C. Incidence of gastric cancer and breast cancer in CDH1 (E-cadherin) mutation carriers from hereditary diffuse gastric cancer families. Gastroenterology. 2001;121(6):1348–53.

    Article  CAS  PubMed  Google Scholar 

  53. Suriano G, Yew S, Ferreira P, Senz J, Kaurah P, Ford JM, et al. Characterization of a recurrent germ line mutation of the E-cadherin gene: implications for genetic testing and clinical management. Clin Cancer Res. 2005;11(15):5401–9.

    Article  CAS  PubMed  Google Scholar 

  54. Kaurah P, MacMillan A, Boyd N, Senz J, De Luca A, Chun N, et al. Founder and recurrent CDH1 mutations in families with hereditary diffuse gastric cancer. JAMA. 2007;297(21):2360–72.

    Article  CAS  PubMed  Google Scholar 

  55. Pharoah PD, Guilford P, Caldas C. International Gastric Cancer Linkage Consortium. Incidence of gastric cancer and breast cancer in CDH1 (E-cadherin) mutation carriers from hereditary diffuse gastric cancer families. Gastroenterology. 2001;121(6):1348–53.

    Article  CAS  PubMed  Google Scholar 

  56. Boardman LA, Thibodeau SN, Schaid DJ, et al. Increased risk for cancer in patients with the Peutz-Jeghers syndrome. Ann Intern Med. 1998;128(11):896–9.

    Article  CAS  PubMed  Google Scholar 

  57. Gage M, Wattendorf D, Henry LR. Translational advances regarding hereditary breast cancer syndromes. J Surg Oncol. 2012;105(5):444–51.

    Article  CAS  PubMed  Google Scholar 

  58. Nusbaum R, Vogel KJ, Ready K. Susceptibility to breast cancer: hereditary syndromes and low penetrance genes. Breast Dis. 2006;27:21–50.

    PubMed  Google Scholar 

  59. Stracker TH, Petrini JH. The MRE11 complex: starting from the ends. Nat Rev Mol Cell Biol. 2011;12(2):90–103.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Williams RS, Williams JS, Tainer JA. Mre11-Rad50-Nbs1 is a keystone complex connecting DNA repair machinery, double-strand break signaling, and the chromatin template. Biochem Cell Biol. 2007;85(4):509–20.

    Article  CAS  PubMed  Google Scholar 

  61. Heikkinen K, et al. RAD50 and NBS1 are breast cancer susceptibility genes associated with genomic instability. Carcinogenesis. 2006;27(8):1593–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. NCCN Guidelines Version 1.2014 Lynch Syndrome. http://www.nccn.org/professionals/physician_gls/pdf/genetics_colon.pdf. Accessed 20 Mar 2014.

  63. Easton DF, Pooley KA, Dunning AM, et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature. 2007;447(7148):1087–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Stacey SN, Manolescu A, Sulem P, et al. Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor positive breast cancer. Nat Genet. 2007;39(7):865–9.

    Article  CAS  PubMed  Google Scholar 

  65. Cox A, Dunning AM, Garcia-Closas M, et al. A common coding variant in CASP8 is associated with breast cancer risk. Nat Genet. 2007;39(3):352–8.

    Article  CAS  PubMed  Google Scholar 

  66. Ahmed S, Thomas G, Ghoussaini M, et al. Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2. Nat Genet. 2009;41(5):585–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Milne RL, Benítez J, Nevanlinna H, et al. Risk of estrogen receptor positive and negative breast cancer and single-nucleotide polymorphism 2q35-rs13387042. J Natl Cancer Inst. 2009;101(14):1012–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Thomas G, Jacobs KB, Kraft P, et al. A multistage genome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24.1 (RAD51L1). Nat Genet. 2009;41(5):579–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Stacey SN, Manolescu A, Sulem P, et al. Common variants on chromosome 5p12 confer susceptibility to estrogen receptor-positive breast cancer. Nat Genet. 2008;40(6):703–6.

    Article  CAS  PubMed  Google Scholar 

  70. Zheng W, Long J, Gao YT, et al. Genome-wide association study identifies a new breast cancer susceptibility locus at 6q25.1. Nat Genet. 2009;41(3):324–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Byrnes GB, Southey MC, Hopper JL. Are the so-called low penetrance breast cancer genes, ATM, BRIP1, PALB2 and CHEK2, high risk for women with strong family histories? Breast Cancer Res. 2008;10(3):208.

    Article  PubMed Central  PubMed  Google Scholar 

  72. NCCN Guidelines Version 1.2014 Breast and/or Ovarian Cancer Genetic Assessment. http://www.nccn.org/professionals/physician_gls/pdf/genetics_screening.pdf. Accessed 20 Mar 2014.

  73. Nelson HD, Fu R, Goddard K, Mitchell JP, Okinaka-Hu L, Pappas M, Zakher B. Risk assessment, genetic counseling, and genetic testing for BRCA-related cancer: systematic review to update the U.S. preventive services task force recommendation (Internet). Rockville (MD): Agency for Healthcare Research and Quality (US); 2013.

    Google Scholar 

  74. Li FP, Fraumeni JF Jr, Mulvihill JJ, et al. A cancer family syndrome in twenty-four kindreds. Cancer Res. 1988;48(18):5358–62.

    CAS  PubMed  Google Scholar 

  75. Tinat J, Bougeard G, Baert-Desurmont S, et al. 2009 version of the Chompret criteria for Li Fraumeni syndrome. J Clin Oncol. 2009;27(26):e108–9.

    Article  PubMed  Google Scholar 

  76. Pilarski R, Burt R, Kohlman W, Pho L, Shannon KM, Swisher E. Cowden syndrome and the PTEN hamartoma tumor syndrome: systematic review and revised diagnostic criteria. J Natl Cancer Inst. 2013;105(21):1607–16.

    Article  CAS  PubMed  Google Scholar 

  77. Parmigiani G, Chen S, Iversen ES Jr, et al. Validity of models for predicting BRCA1 and BRCA2 mutations. Ann Intern Med. 2007;147:441–50.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Nelson HD, Fu R, Goddard K, Mitchell JP, Okinaka-Hu L, Pappas M, Zakher B. Risk assessment, genetic counseling, and genetic testing for BRCA-related cancer: systematic review to update the U.S. Preventive services task force recommendation (Internet). Rockville (MD): Agency for Healthcare Research and Quality (US); 2013.

    Google Scholar 

  79. MyriadGeneticsLaboratories. http://www.myriad.com/lib/technical-specifications/BRACAnalysis-Technical-Specifications.pdf. Accessed 20 Mar 2014.

  80. United States Supreme Court. http://www.supremecourt.gov/opinions/12pdf/12-398_1b7d.pdf. Accessed 20 Mar 2014.

  81. State of Utah Federal Court. https://ecf.utd.uscourts.gov/cgi-bin/show_public_doc?214md2510-7. Accessed 20 Mar 2014.

  82. Lowry KP, Lee JM, Kong CY, et al. Annual screening strategies in BRCA1 and BRCA2 gene mutation carriers: a comparative effectiveness analysis. Cancer. 2012;118(8):2021–30.

    Article  PubMed Central  PubMed  Google Scholar 

  83. Cott Chubiz JE, Lee JM, Gilmore ME, Kong CY, et al. Cost-effectiveness of alternating magnetic resonance imaging and digital mammography screening in BRCA1 and BRCA2 gene mutation carriers. Cancer. 2013;119(6):1266–76.

    Article  PubMed Central  PubMed  Google Scholar 

  84. Le-Petross HT, Whitman GJ, Atchley DP, et al. Effectiveness of alternating mammography and magnetic resonance imaging for screening women with deleterious BRCA mutations at high risk of breast cancer. Cancer. 2011;117(17):3900–7.

    Article  PubMed  Google Scholar 

  85. Spiegel TN, Esplen MJ, Hill KA, et al. Psychological impact of recall on women with BRCA mutations undergoing MRI surveillance. Breast. 2011;20(5):424–30.

    Article  PubMed  Google Scholar 

  86. Hermsen BB, Olivier RI, Verheijen RH, et al. No efficacy of annual gynaecological screening in BRCA1/2 mutation carriers: an observational follow-up study. Br J Cancer. 2007;96:1335–42.

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Bourne TH, Campell S, Reynolds KM, et al. Screening for early familial ovarian cancer with transvaginal ultrasonography and colour blood flow imaging. BMJ. 1993;306(3884):1025–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Fisher B, Costantino J, Wickerham DL, et al. Tamoxifen for the prevention of breast cancer: current status of the national surgical adjuvant breast and bowel project P-1 study. J Natl Cancer Inst. 2005;97(22):1652–62.

    Article  CAS  PubMed  Google Scholar 

  89. Vogel VG, Costantino JP, Wickerham DL, et al. Update of the national surgical adjuvant breast and bowel project study of tamoxifen and raloxifene (STAR) P-2 trial: preventing breast cancer. Cancer Prev Res (Phila). 2010;3(6):696–706.

    Article  CAS  Google Scholar 

  90. Hartmann LC, Sellers TA, Schaid DJ, et al. Efficacy of bilateral prophylactic mastectomy in BRCA1 and BRCA2 gene mutation carriers. J Natl Cancer Inst. 2001;93(21):1633–7.

    Article  CAS  PubMed  Google Scholar 

  91. Domchek SM, Friebel TM, Singer CF, et al. Association of risk-reducing surgery in BRCA1 or BRCA2 mutation carriers with cancer risk and mortality. JAMA. 2010;304(9):967–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Turner N, Tutt A, Ashworth A. Targeting the DNA repair defect of BRCA tumours. Curr Opin Pharmacol. 2005;5:388–93.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dina Kandil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Walavalkar, V., Khan, A., Kandil, D. (2015). Familial Breast Cancer and Genetic Predisposition in Breast Cancer. In: Khan, A., Ellis, I., Hanby, A., Cosar, E., Rakha, E., Kandil, D. (eds) Precision Molecular Pathology of Breast Cancer. Molecular Pathology Library, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2886-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2886-6_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2885-9

  • Online ISBN: 978-1-4939-2886-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics