Skip to main content

Role of MicroRNAs in Breast Cancer

  • Chapter
  • First Online:
Book cover Precision Molecular Pathology of Breast Cancer

Part of the book series: Molecular Pathology Library ((MPLB,volume 10))

  • 1581 Accesses

Abstract

MicroRNAs (miRNAs) are short noncoding RNAs involved in post-transcriptional gene silencing. Deregulation of miRNA expression has been implicated in the initiation and progression of many human cancers, including breast. Expression profiling in many breast cancer subtypes and characterization of deranged miRNA expression has lead to the development of multiple miRNA expression signatures with implications for diagnosis, treatment, and prognostication. These small RNAs will be important targets in the development of novel molecular classification systems for the individualized treatment of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambros V. microRNAs: tiny regulators with great potential. Cell. 2001;107(7):823–6.

    CAS  PubMed  Google Scholar 

  2. Ambros V, et al. A uniform system for microRNA annotation. RNA. 2003;9(3):277–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol. 2005;6(5):376–85.

    CAS  PubMed  Google Scholar 

  4. Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42(1):D68–73.

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Lau NC, et al. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science. 2001;294(5543):858–62.

    CAS  PubMed  Google Scholar 

  6. Lewis BP, et al. Prediction of mammalian microRNA targets. Cell. 2003;115(7):787–98.

    CAS  PubMed  Google Scholar 

  7. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    CAS  PubMed  Google Scholar 

  8. Lee Y, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425(6956):415–9.

    CAS  PubMed  Google Scholar 

  9. Lund E, et al. Nuclear export of microRNA precursors. Science. 2004;303(5654):95–8.

    CAS  PubMed  Google Scholar 

  10. Yi R, et al. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003;17(24):3011–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Bohnsack MT, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA. 2004;10(2):185–91.

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Tang G. siRNA and miRNA: an insight into RISCs. Trends Biochem Sci. 2005;30(2):106–14.

    CAS  PubMed  Google Scholar 

  13. Doridot L, et al. Trophoblasts, invasion, and microRNA. Front Genet. 2013;4:248.

    PubMed Central  PubMed  Google Scholar 

  14. Kasinski AL, Slack FJ. Epigenetics and genetics. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer. 2011;11(12):849–64.

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Taganov KD, et al. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA. 2006;103(33):12481–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Sassen S, Miska EA, Caldas C. MicroRNA: implications for cancer. Virchows Arch. 2008;452(1):1–10.

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Medina PP, Nolde M, Slack FJ. OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature. 2010;467(7311):86–90.

    CAS  PubMed  Google Scholar 

  18. Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 2005;65(14):6029–33.

    CAS  PubMed  Google Scholar 

  19. Landgraf P, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 2007;129(7):1401–14.

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Volinia S, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA. 2006;103(7):2257–61.

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Hatley ME, et al. Modulation of K-Ras-dependent lung tumorigenesis by MicroRNA-21. Cancer Cell. 2010;18(3):282–93.

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Ma X, et al. Loss of the miR-21 allele elevates the expression of its target genes and reduces tumorigenesis. Proc Natl Acad Sci USA. 2011;108(25):10144–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Meng F, et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007;133(2):647–58.

    PubMed Central  CAS  PubMed  Google Scholar 

  24. He L, et al. A microRNA polycistron as a potential human oncogene. Nature. 2005;435(7043):828–33.

    CAS  PubMed  Google Scholar 

  25. Hayashita Y, et al. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res. 2005;65(21):9628–32.

    CAS  PubMed  Google Scholar 

  26. Rinaldi A, et al. Concomitant MYC and microRNA cluster miR-17-92 (C13orf25) amplification in human mantle cell lymphoma. Leuk Lymphoma. 2007;48(2):410–2.

    PubMed  Google Scholar 

  27. Reichek JL, et al. Genomic and clinical analysis of amplification of the 13q31 chromosomal region in alveolar rhabdomyosarcoma: a report from the Children’s Oncology Group. Clin Cancer Res. 2011;17(6):1463–73.

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Xiao C, et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol. 2008;9(4):405–14.

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Calin GA, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 2002;99(24):15524–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Deshpande A, et al. 3′UTR mediated regulation of the cyclin D1 proto-oncogene. Cell Cycle. 2009;8(21):3584–92.

    Google Scholar 

  31. Salerno E, et al. Correcting miR-15a/16 genetic defect in New Zealand Black mouse model of CLL enhances drug sensitivity. Mol Cancer Ther. 2009;8(9):2684–92.

    CAS  PubMed  Google Scholar 

  32. Klein U, et al. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell. 2010;17(1):28–40.

    CAS  PubMed  Google Scholar 

  33. Pekarsky Y, et al. Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res. 2006;66(24):11590–3.

    CAS  PubMed  Google Scholar 

  34. Pekarsky Y, Croce CM. Is miR-29 an oncogene or tumor suppressor in CLL? Oncotarget. 2010;1(3):224–7.

    PubMed Central  PubMed  Google Scholar 

  35. Santanam U, et al. Chronic lymphocytic leukemia modeled in mouse by targeted miR-29 expression. Proc Natl Acad Sci USA. 2010;107(27):12210–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Kumar MS, et al. Dicer1 functions as a haploinsufficient tumor suppressor. Genes Dev. 2009;23(23):2700–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Tokumaru S, et al. let-7 regulates Dicer expression and constitutes a negative feedback loop. Carcinogenesis. 2008;29(11):2073–7.

    CAS  PubMed  Google Scholar 

  38. Pampalakis G, et al. Down-regulation of dicer expression in ovarian cancer tissues. Clin Biochem. 2010;43(3):324–7.

    CAS  PubMed  Google Scholar 

  39. Wu JF, et al. Down-regulation of Dicer in hepatocellular carcinoma. Med Oncol. 2011;28(3):804–9.

    CAS  PubMed  Google Scholar 

  40. Dedes KJ, et al. Down-regulation of the miRNA master regulators Drosha and Dicer is associated with specific subgroups of breast cancer. Eur J Cancer. 2011;47(1):138–50.

    CAS  PubMed  Google Scholar 

  41. Torres A, et al. Major regulators of microRNAs biogenesis Dicer and Drosha are down-regulated in endometrial cancer. Tumour Biol. 2011;32(4):769–76.

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Faggad A, et al. Down-regulation of the microRNA processing enzyme Dicer is a prognostic factor in human colorectal cancer. Histopathology. 2012;61(4):552–61.

    PubMed  Google Scholar 

  43. Zhu DX, et al. Downregulated Dicer expression predicts poor prognosis in chronic lymphocytic leukemia. Cancer Sci. 2012;103(5):875–81.

    CAS  PubMed  Google Scholar 

  44. Wu D, et al. Downregulation of Dicer, a component of the microRNA machinery, in bladder cancer. Mol Med Rep. 2012;5(3):695–9.

    CAS  PubMed  Google Scholar 

  45. Kitagawa N, et al. Downregulation of the microRNA biogenesis components and its association with poor prognosis in hepatocellular carcinoma. Cancer Sci. 2013;104(5):543–51.

    CAS  PubMed  Google Scholar 

  46. Lambertz I, et al. Monoallelic but not biallelic loss of Dicer1 promotes tumorigenesis in vivo. Cell Death Differ. 2010;17(4):633–41.

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Liu H. MicroRNAs in breast cancer initiation and progression. Cell Mol Life Sci. 2012;69(21):3587–99.

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Piao HL, Ma L. Non-coding RNAs as regulators of mammary development and breast cancer. J Mammary Gland Biol Neoplasia. 2012;17(1):33–42.

    PubMed Central  PubMed  Google Scholar 

  49. Jiang S, et al. MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene. Cancer Res. 2010;70(8):3119–27.

    CAS  PubMed  Google Scholar 

  50. Wang Y, et al. Transforming growth factor-beta regulates the sphere-initiating stem cell-like feature in breast cancer through miRNA-181 and ATM. Oncogene. 2011;30(12):1470–80.

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Yan LX, et al. MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA. 2008;14(11):2348–60.

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Qian B, et al. High miR-21 expression in breast cancer associated with poor disease-free survival in early stage disease and high TGF-beta1. Breast Cancer Res Treat. 2009;117(1):131–40.

    CAS  PubMed  Google Scholar 

  53. Buscaglia LE, Li Y. Apoptosis and the target genes of microRNA-21. Chin J Cancer. 2011;30(6):371–80.

    PubMed Central  PubMed  Google Scholar 

  54. Johnson SM, et al. RAS is regulated by the let-7 microRNA family. Cell. 2005;120(5):635–47.

    CAS  PubMed  Google Scholar 

  55. Ibarra I, et al. A role for microRNAs in maintenance of mouse mammary epithelial progenitor cells. Genes Dev. 2007;21(24):3238–43.

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Shimono Y, et al. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell. 2009;138(3):592–603.

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Park SM, et al. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008;22(7):894–907.

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Korpal M, et al. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem. 2008;283(22):14910–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Gregory PA, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008;10(5):593–601.

    CAS  PubMed  Google Scholar 

  60. Hyun S, et al. Conserved MicroRNA miR-8/miR-200 and its target USH/FOG2 control growth by regulating PI3K. Cell. 2009;139(6):1096–108.

    CAS  PubMed  Google Scholar 

  61. Scott GK, et al. Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or miR-125b. J Biol Chem. 2007;282(2):1479–86.

    CAS  PubMed  Google Scholar 

  62. Yu Z, et al. A cyclin D1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation. J Cell Biol. 2008;182(3):509–17.

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Yu Z, et al. microRNA 17/20 inhibits cellular invasion and tumor metastasis in breast cancer by heterotypic signaling. Proc Natl Acad Sci USA. 2010;107(18):8231–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Li H, et al. miR-17-5p promotes human breast cancer cell migration and invasion through suppression of HBP1. Breast Cancer Res Treat. 2011;126(3):565–75.

    CAS  PubMed  Google Scholar 

  65. Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007;449(7163):682–8.

    CAS  PubMed  Google Scholar 

  66. Tavazoie SF, et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature. 2008;451(7175):147–52.

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Di Leva G, et al. Estrogen mediated-activation of miR-191/425 cluster modulates tumorigenicity of breast cancer cells depending on estrogen receptor status. PLoS Genet. 2013;9(3):e1003311.

    PubMed Central  PubMed  Google Scholar 

  68. Nagpal N, et al. MicroRNA-191, an estrogen-responsive microRNA, functions as an oncogenic regulator in human breast cancer. Carcinogenesis. 2013;34(8):1889–99.

    CAS  PubMed  Google Scholar 

  69. Network TCGA. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70.

    Google Scholar 

  70. Volinia S, Croce CM. Prognostic microRNA/mRNA signature from the integrated analysis of patients with invasive breast cancer. Proc Natl Acad Sci USA. 2013;110(18):7413–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  71. Volinia S, et al. Breast cancer signatures for invasiveness and prognosis defined by deep sequencing of microRNA. Proc Natl Acad Sci USA. 2012;109(8):3024–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Lerebours F, et al. miRNA expression profiling of inflammatory breast cancer identifies a 5-miRNA signature predictive of breast tumor aggressiveness. Int J Cancer. 2013;133(7):1614–23.

    CAS  PubMed  Google Scholar 

  73. Wang L, et al. A microRNA expression signature characterizing the properties of tumor-initiating cells for breast cancer. Oncol Lett. 2012;3(1):119–24.

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Sethi S, et al. Clinical implication of MicroRNAs in molecular pathology. Clin Lab Med. 2013;33(4):773–86.

    PubMed  Google Scholar 

  75. Gallo A, et al. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS ONE. 2012;7(3):e30679.

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Cuk K, et al. Plasma microRNA panel for minimally invasive detection of breast cancer. PLoS ONE. 2013;8(10):e76729.

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Asaga S, et al. Direct serum assay for microRNA-21 concentrations in early and advanced breast cancer. Clin Chem. 2011;57(1):84–91.

    CAS  PubMed  Google Scholar 

  78. Wang B, Zhang Q. The expression and clinical significance of circulating microRNA-21 in serum of five solid tumors. J Cancer Res Clin Oncol. 2012;138(10):1659–66.

    CAS  PubMed  Google Scholar 

  79. Gao J, et al. Clinical significance of serum miR-21 in breast cancer compared with CA153 and CEA. Chin J Cancer Res. 2013;25(6):743–8.

    PubMed Central  PubMed  Google Scholar 

  80. Kumar S, et al. Overexpression of circulating miRNA-21 and miRNA-146a in plasma samples of breast cancer patients. Indian J Biochem Biophys. 2013;50(3):210–4.

    CAS  PubMed  Google Scholar 

  81. Si H, et al. Circulating microRNA-92a and microRNA-21 as novel minimally invasive biomarkers for primary breast cancer. J Cancer Res Clin Oncol. 2013;139(2):223–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  82. Jung EJ, et al. Plasma microRNA 210 levels correlate with sensitivity to trastuzumab and tumor presence in breast cancer patients. Cancer. 2012;118(10):2603–14.

    CAS  PubMed  Google Scholar 

  83. Wang H, et al. Circulating MiR-125b as a marker predicting chemoresistance in breast cancer. PLoS ONE. 2012;7(4):e34210.

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Sun Y, et al. Serum microRNA-155 as a potential biomarker to track disease in breast cancer. PLoS ONE. 2012;7(10):e47003.

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Chen W, et al. The level of circulating miRNA-10b and miRNA-373 in detecting lymph node metastasis of breast cancer: potential biomarkers. Tumour Biol. 2013;34(1):455–62.

    CAS  PubMed  Google Scholar 

  86. Zeng RC, et al. Down-regulation of miRNA-30a in human plasma is a novel marker for breast cancer. Med Oncol. 2013;30(1):477.

    PubMed  Google Scholar 

  87. Eichelser C, et al. Deregulated serum concentrations of circulating cell-free microRNAs miR-17, miR-34a, miR-155, and miR-373 in human breast cancer development and progression. Clin Chem. 2013;59(10):1489–96.

    CAS  PubMed  Google Scholar 

  88. Wang PY, et al. Higher expression of circulating miR-182 as a novel biomarker for breast cancer. Oncol Lett. 2013;6(6):1681–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  89. Salter KH, et al. An integrated approach to the prediction of chemotherapeutic response in patients with breast cancer. PLoS ONE. 2008;3(4):e1908.

    PubMed Central  PubMed  Google Scholar 

  90. Kovalchuk O, et al. Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther. 2008;7(7):2152–9.

    CAS  PubMed  Google Scholar 

  91. Miller TE, et al. MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J Biol Chem. 2008;283(44):29897–903.

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Zhao JJ, et al. MicroRNA-221/222 negatively regulates estrogen receptor alpha and is associated with tamoxifen resistance in breast cancer. J Biol Chem. 2008;283(45):31079–86.

    PubMed Central  CAS  PubMed  Google Scholar 

  93. Kong W, et al. MicroRNA-155 regulates cell survival, growth, and chemosensitivity by targeting FOXO3a in breast cancer. J Biol Chem. 2010;285(23):17869–79.

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Pogribny IP, et al. Alterations of microRNAs and their targets are associated with acquired resistance of MCF-7 breast cancer cells to cisplatin. Int J Cancer. 2010;127(8):1785–94.

    CAS  PubMed  Google Scholar 

  95. Zhou M, et al. MicroRNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) expression. J Biol Chem. 2010;285(28):21496–507.

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Weidhaas JB, et al. MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy. Cancer Res. 2007;67(23):11111–6.

    CAS  PubMed  Google Scholar 

  97. Ma L, et al. Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat Biotechnol. 2010;28(4):341–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  98. Zhao D, et al. In vivo monitoring of angiogenesis inhibition via down-regulation of mir-21 in a VEGFR2-luc murine breast cancer model using bioluminescent imaging. PLoS ONE. 2013;8(8):e71472.

    PubMed Central  CAS  PubMed  Google Scholar 

  99. Fontana L, et al. Antagomir-17-5p abolishes the growth of therapy-resistant neuroblastoma through p21 and BIM. PLoS ONE. 2008;3(5):e2236.

    PubMed Central  PubMed  Google Scholar 

  100. Ge YF, et al. AntagomiR-27a targets FOXO3a in glioblastoma and suppresses U87 cell growth in vitro and in vivo. Asian Pac J Cancer Prev. 2013;14(2):963–8.

    PubMed  Google Scholar 

  101. Care A, et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med. 2007;13(5):613–8.

    CAS  PubMed  Google Scholar 

  102. Liang Z, et al. MicroRNA-302 replacement therapy sensitizes breast cancer cells to ionizing radiation. Pharm Res. 2013;30(4):1008–16.

    PubMed Central  CAS  PubMed  Google Scholar 

  103. Kota J, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell. 2009;137(6):1005–17.

    PubMed Central  CAS  PubMed  Google Scholar 

  104. Ibrahim AF, et al. MicroRNA replacement therapy for miR-145 and miR-33a is efficacious in a model of colon carcinoma. Cancer Res. 2011;71(15):5214–24.

    CAS  PubMed  Google Scholar 

  105. Trang P, et al. Regression of murine lung tumors by the let-7 microRNA. Oncogene. 2010;29(11):1580–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Wiggins JF, et al. Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res. 2010;70(14):5923–30.

    PubMed Central  CAS  PubMed  Google Scholar 

  107. Mraz M, et al. MicroRNA isolation and stability in stored RNA samples. Biochem Biophys Res Commun. 2009;390(1):1–4.

    CAS  PubMed  Google Scholar 

  108. Lagendijk AK, Moulton JD, Bakkers J. Revealing details: whole mount microRNA in situ hybridization protocol for zebrafish embryos and adult tissues. Biol Open. 2012;1(6):566–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  109. Iliopoulos D, Hirsch HA, Struhl K. An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell. 2009;139(4):693–706.

    PubMed Central  CAS  PubMed  Google Scholar 

  110. Iorio MV, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005;65(16):7065–70.

    CAS  PubMed  Google Scholar 

  111. Quesne JL, et al. Biological and prognostic associations of miR-205 and let-7b in breast cancer revealed by in situ hybridization analysis of micro-RNA expression in arrays of archival tumour tissue. J Pathol. 2012;227(3):306–14.

    CAS  PubMed  Google Scholar 

  112. Zhao Y, et al. Let-7 family miRNAs regulate estrogen receptor alpha signaling in estrogen receptor positive breast cancer. Breast Cancer Res Treat. 2011;127(1):69–80.

    CAS  PubMed  Google Scholar 

  113. Moriarty CH, Pursell B, Mercurio AM. miR-10b targets Tiam1: implications for Rac activation and carcinoma migration. J Biol Chem. 2010;285(27):20541–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  114. Cittelly DM, et al. Oncogenic HER2Δ16 suppresses miR-15a/16 and deregulates BCL-2 to promote endocrine resistance of breast tumors. Carcinogenesis. 2010;31(12):2049–57.

    PubMed Central  CAS  PubMed  Google Scholar 

  115. Chung EY, et al. c-Myb oncoprotein is an essential target of the dleu2 tumor suppressor microRNA cluster. Cancer Biol Ther. 2008;7(11):1758–64.

    PubMed Central  CAS  PubMed  Google Scholar 

  116. Zhang X, et al. Oncogenic Wip1 phosphatase is inhibited by miR-16 in the DNA damage signaling pathway. Cancer Res. 2010;70(18):7176–86.

    PubMed Central  CAS  PubMed  Google Scholar 

  117. Zhang L, et al. microRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci USA. 2006;103(24):9136–41.

    PubMed Central  CAS  PubMed  Google Scholar 

  118. Janssen EA, et al. Biologic profiling of lymph node negative breast cancers by means of microRNA expression. Mod Pathol. 2010;23(12):1567–76.

    CAS  PubMed  Google Scholar 

  119. Taguchi A, et al. Identification of hypoxia-inducible factor-1 alpha as a novel target for miR-17-92 microRNA cluster. Cancer Res. 2008;68(14):5540–5.

    CAS  PubMed  Google Scholar 

  120. Brock M, et al. Interleukin-6 modulates the expression of the bone morphogenic protein receptor type II through a novel STAT3-microRNA cluster 17/92 pathway. Circ Res. 2009;104(10):1184–91.

    CAS  PubMed  Google Scholar 

  121. Hossain A, Kuo MT, Saunders GF. Mir-17-5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. Mol Cell Biol. 2006;26(21):8191–201.

    PubMed Central  CAS  PubMed  Google Scholar 

  122. Shen J, Ambrosone CB, Zhao H. Novel genetic variants in microRNA genes and familial breast cancer. Int J Cancer. 2009;124(5):1178–82.

    CAS  PubMed  Google Scholar 

  123. Castellano L, et al. The estrogen receptor-alpha-induced microRNA signature regulates itself and its transcriptional response. Proc Natl Acad Sci USA. 2009;106(37):15732–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  124. Huang GL, et al. Clinical significance of miR-21 expression in breast cancer: SYBR-Green I-based real-time RT-PCR study of invasive ductal carcinoma. Oncol Rep. 2009;21(3):673–9.

    CAS  PubMed  Google Scholar 

  125. Frankel LB, et al. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem. 2008;283(2):1026–33.

    CAS  PubMed  Google Scholar 

  126. Song B, et al. MicroRNA-21 regulates breast cancer invasion partly by targeting tissue inhibitor of metalloproteinase 3 expression. J Exp Clin Cancer Res. 2010;29:29.

    PubMed Central  CAS  PubMed  Google Scholar 

  127. Connolly EC, et al. Overexpression of miR-21 promotes an in vitro metastatic phenotype by targeting the tumor suppressor RHOB. Mol Cancer Res. 2010;8(5):691–700.

    CAS  PubMed  Google Scholar 

  128. Si ML, et al. miR-21-mediated tumor growth. Oncogene. 2007;26(19):2799–803.

    CAS  PubMed  Google Scholar 

  129. Gao J, et al. MiR-26a inhibits proliferation and migration of breast cancer through repression of MCL-1. PLoS ONE. 2013;8(6):e65138.

    PubMed Central  CAS  PubMed  Google Scholar 

  130. Zhang B, et al. Pathologically decreased miR-26a antagonizes apoptosis and facilitates carcinogenesis by targeting MTDH and EZH2 in breast cancer. Carcinogenesis. 2011;32(1):2–9.

    CAS  PubMed  Google Scholar 

  131. Tang W, et al. MiR-27 as a prognostic marker for breast cancer progression and patient survival. PLoS ONE. 2012;7(12):e51702.

    PubMed Central  CAS  PubMed  Google Scholar 

  132. Guttilla IK, White BA. Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells. J Biol Chem. 2009;284(35):23204–16.

    PubMed Central  CAS  PubMed  Google Scholar 

  133. Tsuchiya Y, et al. MicroRNA regulates the expression of human cytochrome P450 1B1. Cancer Res. 2006;66(18):9090–8.

    CAS  PubMed  Google Scholar 

  134. Gebeshuber CA, Zatloukal K, Martinez J. miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Rep. 2009;10(4):400–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  135. Gerson KD, et al. Integrin beta4 regulates SPARC protein to promote invasion. J Biol Chem. 2012;287(13):9835–44.

    PubMed Central  CAS  PubMed  Google Scholar 

  136. Sandhu R, et al. Dysregulation of microRNA expression drives aberrant DNA hypermethylation in basal-like breast cancer. Int J Oncol. 2014;44(2):563–72.

    PubMed Central  CAS  PubMed  Google Scholar 

  137. Wu F, et al. MicroRNA-mediated regulation of Ubc9 expression in cancer cells. Clin Cancer Res. 2009;15(5):1550–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  138. Yu F, et al. Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells. Oncogene. 2010;29(29):4194–204.

    CAS  PubMed  Google Scholar 

  139. Ouzounova M, et al. MicroRNA miR-30 family regulates non-attachment growth of breast cancer cells. BMC Genom. 2013;14:139.

    CAS  Google Scholar 

  140. Rajabi H, et al. Mucin 1 oncoprotein expression is suppressed by the miR-125b oncomir. Genes Cancer. 2010;1(1):62–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  141. Zhu N, et al. Endothelial-specific intron-derived miR-126 is down-regulated in human breast cancer and targets both VEGFA and PIK3R2. Mol Cell Biochem. 2011;351(1–2):157–64.

    CAS  PubMed  Google Scholar 

  142. Zhang J, et al. The cell growth suppressor, mir-126, targets IRS-1. Biochem Biophys Res Commun. 2008;377(1):136–40.

    CAS  PubMed  Google Scholar 

  143. Sachdeva M, Mo YY. MicroRNA-145 suppresses cell invasion and metastasis by directly targeting mucin 1. Cancer Res. 2010;70(1):378–87.

    PubMed Central  CAS  PubMed  Google Scholar 

  144. Spizzo R, et al. miR-145 participates with TP53 in a death-promoting regulatory loop and targets estrogen receptor-alpha in human breast cancer cells. Cell Death Differ. 2010;17(2):246–54.

    PubMed Central  CAS  PubMed  Google Scholar 

  145. Bhaumik D, et al. Expression of microRNA-146 suppresses NF-kappaB activity with reduction of metastatic potential in breast cancer cells. Oncogene. 2008;27(42):5643–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  146. Garcia AI, et al. Down-regulation of BRCA1 expression by miR-146a and miR-146b-5p in triple negative sporadic breast cancers. EMBO Mol Med. 2011;3(5):279–90.

    PubMed Central  CAS  PubMed  Google Scholar 

  147. Shen J, et al. A functional polymorphism in the miR-146a gene and age of familial breast/ovarian cancer diagnosis. Carcinogenesis. 2008;29(10):1963–6.

    CAS  PubMed  Google Scholar 

  148. Kong W, et al. MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol. 2008;28(22):6773–84.

    PubMed Central  CAS  PubMed  Google Scholar 

  149. Imam JS, et al. MicroRNA-185 suppresses tumor growth and progression by targeting the Six1 oncogene in human cancers. Oncogene. 2010;29(35):4971–9.

    CAS  PubMed  Google Scholar 

  150. Sempere LF, et al. Altered MicroRNA expression confined to specific epithelial cell subpopulations in breast cancer. Cancer Res. 2007;67(24):11612–20.

    CAS  PubMed  Google Scholar 

  151. Wu H, Zhu S, Mo YY. Suppression of cell growth and invasion by miR-205 in breast cancer. Cell Res. 2009;19(4):439–48.

    PubMed Central  CAS  PubMed  Google Scholar 

  152. Kondo N, et al. miR-206 expression is down-regulated in estrogen receptor alpha-positive human breast cancer. Cancer Res. 2008;68(13):5004–8.

    CAS  PubMed  Google Scholar 

  153. Adams BD, Furneaux H, White BA. The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-alpha (ERalpha) and represses ERalpha messenger RNA and protein expression in breast cancer cell lines. Mol Endocrinol. 2007;21(5):1132–47.

    CAS  PubMed  Google Scholar 

  154. Adams BD, Cowee DM, White BA. The role of miR-206 in the epidermal growth factor (EGF) induced repression of estrogen receptor-alpha (ERalpha) signaling and a luminal phenotype in MCF-7 breast cancer cells. Mol Endocrinol. 2009;23(8):1215–30.

    PubMed Central  CAS  PubMed  Google Scholar 

  155. Radojicic J, et al. MicroRNA expression analysis in triple-negative (ER, PR and Her2/neu) breast cancer. Cell Cycle. 2011;10(3):507–17.

    CAS  PubMed  Google Scholar 

  156. Zhang Z, et al. MicroRNA miR-210 modulates cellular response to hypoxia through the MYC antagonist MNT. Cell Cycle. 2009;8(17):2756–68.

    CAS  PubMed  Google Scholar 

  157. Crosby ME, et al. MicroRNA regulation of DNA repair gene expression in hypoxic stress. Cancer Res. 2009;69(3):1221–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  158. Rothe F, et al. Global microRNA expression profiling identifies MiR-210 associated with tumor proliferation, invasion and poor clinical outcome in breast cancer. PLoS ONE. 2011;6(6):e20980.

    PubMed Central  CAS  PubMed  Google Scholar 

  159. Hui AB, et al. Robust global micro-RNA profiling with formalin-fixed paraffin-embedded breast cancer tissues. Lab Invest. 2009;89(5):597–606.

    CAS  PubMed  Google Scholar 

  160. Stinson S, et al. TRPS1 targeting by miR-221/222 promotes the epithelial-to-mesenchymal transition in breast cancer. Sci Signal. 2011;4(177):ra41.

    PubMed  Google Scholar 

  161. Liang Z, et al. Involvement of miR-326 in chemotherapy resistance of breast cancer through modulating expression of multidrug resistance-associated protein 1. Biochem Pharmacol. 2010;79(6):817–24.

    PubMed Central  CAS  PubMed  Google Scholar 

  162. Negrini M, Calin GA. Breast cancer metastasis: a microRNA story. Breast Cancer Res. 2008;10(2):203.

    PubMed Central  PubMed  Google Scholar 

  163. Huang Q, et al. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol. 2008;10(2):202–10.

    CAS  PubMed  Google Scholar 

  164. Yan GR, et al. Global identification of miR-373-regulated genes in breast cancer by quantitative proteomics. Proteomics. 2011;11(5):912–20.

    CAS  PubMed  Google Scholar 

  165. Giricz O, et al. Hsa-miR-375 is differentially expressed during breast lobular neoplasia and promotes loss of mammary acinar polarity. J Pathol. 2012;226(1):108–19.

    CAS  PubMed  Google Scholar 

  166. Ward A, et al. Re-expression of microRNA-375 reverses both tamoxifen resistance and accompanying EMT-like properties in breast cancer. Oncogene. 2013;32(9):1173–82.

    CAS  PubMed  Google Scholar 

  167. de Simonini PSR, et al. Epigenetically deregulated microRNA-375 is involved in a positive feedback loop with estrogen receptor alpha in breast cancer cells. Cancer Res. 2010;70(22):9175–84.

    CAS  Google Scholar 

  168. Keklikoglou I, et al. MicroRNA-520/373 family functions as a tumor suppressor in estrogen receptor negative breast cancer by targeting NF-kappaB and TGF-beta signaling pathways. Oncogene. 2012;31(37):4150–63.

    CAS  PubMed  Google Scholar 

  169. Heneghan HM, et al. Circulating microRNAs as novel minimally invasive biomarkers for breast cancer. Ann Surg. 2010;251(3):499–505.

    PubMed  Google Scholar 

  170. Roth C, et al. Circulating microRNAs as blood-based markers for patients with primary and metastatic breast cancer. Breast Cancer Res. 2010;12(6):R90.

    PubMed Central  CAS  PubMed  Google Scholar 

  171. Zhao FL, et al. Serum overexpression of microRNA-10b in patients with bone metastatic primary breast cancer. J Int Med Res. 2012;40(3):859–66.

    CAS  PubMed  Google Scholar 

  172. Anfossi S, et al. High serum miR-19a levels are associated with inflammatory breast cancer and are predictive of favorable clinical outcome in patients with metastatic HER2(+) inflammatory breast cancer. PLoS ONE. 2014;9(1):e83113.

    PubMed Central  PubMed  Google Scholar 

  173. Wu X, et al. De novo sequencing of circulating miRNAs identifies novel markers predicting clinical outcome of locally advanced breast cancer. J Transl Med. 2012;10:42.

    PubMed Central  CAS  PubMed  Google Scholar 

  174. Zhu W, et al. Circulating microRNAs in breast cancer and healthy subjects. BMC Res Notes. 2009;2:89.

    PubMed Central  PubMed  Google Scholar 

  175. Guo LJ, Zhang QY. Decreased serum miR-181a is a potential new tool for breast cancer screening. Int J Mol Med. 2012;30(3):680–6.

    CAS  PubMed  Google Scholar 

  176. Heneghan HM, et al. Systemic miRNA-195 differentiates breast cancer from other malignancies and is a potential biomarker for detecting noninvasive and early stage disease. Oncologist. 2010;15(7):673–82.

    PubMed Central  PubMed  Google Scholar 

  177. Schwarzenbach H, et al. Diagnostic potential of PTEN-targeting miR-214 in the blood of breast cancer patients. Breast Cancer Res Treat. 2012;134(3):933–41.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashraf Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Clark, J.L., Kandil, D., Cosar, E.F., Khan, A. (2015). Role of MicroRNAs in Breast Cancer. In: Khan, A., Ellis, I., Hanby, A., Cosar, E., Rakha, E., Kandil, D. (eds) Precision Molecular Pathology of Breast Cancer. Molecular Pathology Library, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2886-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2886-6_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2885-9

  • Online ISBN: 978-1-4939-2886-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics