Skip to main content

Triple-Negative Breast Cancer: Subtypes with Clinical Implications

  • Chapter
  • First Online:
Precision Molecular Pathology of Breast Cancer

Part of the book series: Molecular Pathology Library ((MPLB,volume 10))

Abstract

Triple-negative breast cancers (TNBC) are a heterogeneous group of malignant breast tumors traditionally defined by their lack of expression of estrogen receptor (ER), progesterone receptor (PR), and over-expression of human epidermal growth factor receptor 2 (HER-2). TNBC accounts for about 10–15 % of all breast cancers. Population-based studies show that women with high body mass index and those who reported no recreational physical activity are at a higher risk for developing TNBC than women who are physically active and those with low body mass index. Interestingly, some factors that are known to decrease the risk of breast cancer in general, do increase the risk of TNBC. These include first childbirth at an early age and multiparity. Racial disparity is also well documented with African-American women having the highest incidence rates for TNBC, followed by Hispanic women. The negativity of these tumors for ER and PR as well as their lack of HER-2 over-expression, render them resistant to hormonal and trastuzumab (Herceptin) therapy, making treatment a challenging task. Although, by DNA microarray analysis, most TNBC will fall into the basal-like category of breast cancers, and therefore will theoretically have a poor prognosis compared to other subtypes, basal-like breast cancer is one of several “faces” of TNBC, albeit the “ugly face.” In this chapter, we will discuss the different subtypes of TNBC, their morphological features, immunophenotype, molecular background, and the clinical implications of these subtypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Trivers KF, Lund MJ, Porter PL, Liff JM, Flagg EW, Coates RJ, Eley JW. The epidemiology of triple-negative breast cancer, including race. Cancer Causes Control. 2009;20:1071–82.

    Article  PubMed  Google Scholar 

  2. Phipps AI, Chlebowski RT, Prentice R, McTiernan A, Stefanick ML, Wactawski-Wende J, Kuller LH, Adams-Campbell LL, Lane D, Vitolins M, Kabat GC, Rohan TE, Li CI. Body size, physical activity, and risk of triple-negative and estrogen receptor-positive breast cancer. Cancer Epidemiol Biomark Prev. 2011;20:454–63 (a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology).

    Google Scholar 

  3. Bauer KR, Brown M, Cress RD, Parise CA, Caggiano V. Descriptive analysis of estrogen receptor (er)-negative, progesterone receptor (pr)-negative, and her2-negative invasive breast cancer, the so-called triple-negative phenotype: A population-based study from the california cancer registry. Cancer. 2007;109:1721–8.

    Article  PubMed  Google Scholar 

  4. Sumpio BE, Jennings TA, Merino MJ, Sullivan PD. Adenoid cystic carcinoma of the breast. Data from the connecticut tumor registry and a review of the literature. Ann Surg. 1987;205:295–301.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Ghabach B, Anderson WF, Curtis RE, Huycke MM, Lavigne JA, Dores GM. Adenoid cystic carcinoma of the breast in the united states (1977 to 2006): A population-based cohort study. Breast Cancer Res. 2010;12:R54.

    Google Scholar 

  6. Rabban JT, Swain RS, Zaloudek CJ, Chase DR, Chen YY. Immunophenotypic overlap between adenoid cystic carcinoma and collagenous spherulosis of the breast: Potential diagnostic pitfalls using myoepithelial markers. Modern Pathol. 2006;19:1351–1357 (an official journal of the United States and Canadian Academy of Pathology, Inc).

    Google Scholar 

  7. Pastolero G, Hanna W, Zbieranowski I, Kahn HJ. Proliferative activity and p53 expression in adenoid cystic carcinoma of the breast. Modern Pathol. 1996;9:215–219 (an official journal of the United States and Canadian Academy of Pathology, Inc).

    Google Scholar 

  8. Vranic S, Frkovic-Grazio S, Lamovec J, Serdarevic F, Gurjeva O, Palazzo J, Bilalovic N, Lee LM, Gatalica Z. Adenoid cystic carcinomas of the breast have low topo IIα expression but frequently overexpress EGFR protein without EGFR gene amplification. Hum Pathol. 2010;41:1617–23.

    Article  CAS  PubMed  Google Scholar 

  9. Persson M, Andren Y, Mark J, Horlings HM, Persson F, Stenman G. Recurrent fusion of MYB and NFIB transcription factor genes in carcinomas of the breast and head and neck. Proc Natl Acad Sci USA. 2009;106:18740–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Dunne B, Lee AH, Pinder SE, Bell JA, Ellis IO. An immunohistochemical study of metaplastic spindle cell carcinoma, phyllodes tumor and fibromatosis of the breast. Hum Pathol. 2003;34:1009–15.

    Article  CAS  PubMed  Google Scholar 

  11. Teixeira MR, Qvist H, Bohler PJ, Pandis N, Heim S. Cytogenetic analysis shows that carcinosarcomas of the breast are of monoclonal origin. Genes Chromosom Cancer. 1998;22:145–51.

    Article  CAS  PubMed  Google Scholar 

  12. Wada H, Enomoto T, Tsujimoto M, Nomura T, Murata Y, Shroyer KR. Carcinosarcoma of the breast: Molecular-biological study for analysis of histogenesis. Hum Pathol. 1998;29:1324–8.

    Article  CAS  PubMed  Google Scholar 

  13. Hennessy BT, Gonzalez-Angulo AM, Stemke-Hale K, Gilcrease MZ, Krishnamurthy S, Lee JS, Fridlyand J, Sahin A, Agarwal R, Joy C, Liu W, Stivers D, Baggerly K, Carey M, Lluch A, Monteagudo C, He X, Weigman V, Fan C, Palazzo J, Hortobagyi GN, Nolden LK, Wang NJ, Valero V, Gray JW, Perou CM, Mills GB. Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Res. 2009;69:4116–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Eusebi V, Millis RR, Cattani MG, Bussolati G, Azzopardi JG. Apocrine carcinoma of the breast. A morphologic and immunocytochemical study. Am J Pathol. 1986;123:532–41.

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Niemeier LA, Dabbs DJ, Beriwal S, Striebel JM, Bhargava R. Androgen receptor in breast cancer: Expression in estrogen receptor-positive tumors and in estrogen receptor-negative tumors with apocrine differentiation. Modern Pathol. 2010;23:205–212 (an official journal of the United States and Canadian Academy of Pathology, Inc).

    Google Scholar 

  16. Jones C, Damiani S, Wells D, Chaggar R, Lakhani SR, Eusebi V. Molecular cytogenetic comparison of apocrine hyperplasia and apocrine carcinoma of the breast. Am J Pathol. 2001;158:207–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Silver SA, Tavassoli FA. Pleomorphic carcinoma of the breast: Clinicopathological analysis of 26 cases of an unusual high-grade phenotype of ductal carcinoma. Histopathology. 2000;36:505–14.

    Article  CAS  PubMed  Google Scholar 

  18. Lae M, Freneaux P, Sastre-Garau X, Chouchane O, Sigal-Zafrani B, Vincent-Salomon A. Secretory breast carcinomas with ETV6-NTRK3 fusion gene belong to the basal-like carcinoma spectrum. Modern Pathol. 2009;22:291–298 (an official journal of the United States and Canadian Academy of Pathology, Inc).

    Google Scholar 

  19. Tognon C, Knezevich SR, Huntsman D, Roskelley CD, Melnyk N, Mathers JA, Becker L, Carneiro F, MacPherson N, Horsman D, Poremba C, Sorensen PH. Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell. 2002;2:367–76.

    Article  CAS  PubMed  Google Scholar 

  20. Stratton M. RPathology of familial breast cancer: Differences between breast cancers in carriers of BRCA1 or BRCA2 mutations and sporadic cases. Breast cancer linkage consortium. Lancet. 1997;349:1505–1510.

    Google Scholar 

  21. Bonnet M, Guinebretiere JM, Kremmer E, Grunewald V, Benhamou E, Contesso G, Joab I. Detection of epstein-barr virus in invasive breast cancers. J Natl Cancer Inst. 1999;91:1376–81.

    Article  CAS  PubMed  Google Scholar 

  22. Lespagnard L, Cochaux P, Larsimont D, Degeyter M, Velu T, Heimann R. Absence of epstein-barr virus in medullary carcinoma of the breast as demonstrated by immunophenotyping, in situ hybridization and polymerase chain reaction. Am J Clin Pathol. 1995;103:449–52.

    CAS  PubMed  Google Scholar 

  23. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D. Molecular portraits of human breast tumours. Nature. 2000;406:747–52.

    Article  CAS  PubMed  Google Scholar 

  24. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Eystein Lonning P, Borresen-Dale AL. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001;98:10869–10874.

    Google Scholar 

  25. Kirsh VA, Chiarelli AM, Edwards SA, O’Malley FP, Shumak RS, Yaffe MJ, Boyd NF. Tumor characteristics associated with mammographic detection of breast cancer in the ontario breast screening program. J Natl Cancer Inst. 103:942–950.

    Google Scholar 

  26. Collins LC, Martyniak A, Kandel MJ, Stadler ZK, Masciari S, Miron A, Richardson AL, Schnitt SJ, Garber JE. Basal cytokeratin and epidermal growth factor receptor expression are not predictive of BRCA1 mutation status in women with triple-negative breast cancers. Am J Surg Pathol. 2009;33:1093–7.

    Article  PubMed  Google Scholar 

  27. Jiang Z, Chu PG, Woda BA, Rock KL, Liu Q, Hsieh CC, Li C, Chen W, Duan HO, McDougal S, Wu CL. Analysis of rna-binding protein IMP3 to predict metastasis and prognosis of renal-cell carcinoma: A retrospective study. Lancet Oncol. 2006;7:556–64.

    Article  CAS  PubMed  Google Scholar 

  28. Walter O, Prasad M, Lu S, Quinlan RM, Edmiston KL, Khan A. IMP3 is a novel biomarker for triple negative invasive mammary carcinoma associated with a more aggressive phenotype. Hum Pathol. 2009;40:1528–33.

    Article  CAS  PubMed  Google Scholar 

  29. Lu S, Simin K, Khan A, Mercurio AM. Analysis of integrin beta4 expression in human breast cancer: Association with basal-like tumors and prognostic significance. Clin Cancer Res. 2008;14:1050–8.

    Article  CAS  PubMed  Google Scholar 

  30. Ryden L, Jirstrom K, Haglund M, Stal O, Ferno M. Epidermal growth factor receptor and vascular endothelial growth factor receptor 2 are specific biomarkers in triple-negative breast cancer. Results from a controlled randomized trial with long-term follow-up. Breast Cancer Res Treat. 120:491–498.

    Google Scholar 

  31. Elsheikh SE, Green AR, Rakha EA, Samaka RM, Ammar AA, Powe D, Reis-Filho JS, Ellis IO. Caveolin 1 and caveolin 2 are associated with breast cancer basal-like and triple-negative immunophenotype. Br J Cancer. 2008;99:327–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Umekita YD, Ohi YD, Souda MD, Rai YD, Sagara YD, Sagara YD, Tamada SD, Tanimoto AD. Maspin expression is frequent and correlates with basal markers in triple-negative breast cancer. Diagn Pathol. 6:36.

    Google Scholar 

  33. Wang X, Chao L, Ma G, Chen L, Tian B, Zang Y, Sun J. Increased expression of osteopontin in patients with triple-negative breast cancer. Eur J Clin Invest. 2008;38:438–46.

    Article  CAS  PubMed  Google Scholar 

  34. Nielsen TO, Hsu FD, Jensen K, Cheang M, Karaca G, Hu Z, Hernandez-Boussard T, Livasy C, Cowan D, Dressler L, Akslen LA, Ragaz J, Gown AM, Gilks CB, van de Rijn M, Perou CM. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res. 2004;10:5367–74.

    Article  CAS  PubMed  Google Scholar 

  35. Hollstein M, Sidransky D, Vogelstein B, Harris CC. P53 mutations in human cancers. Science. 1991;253:49–53.

    Article  CAS  PubMed  Google Scholar 

  36. Borresen-Dale AL. TP53 and breast cancer. Hum Mutat. 2003;21:292–300.

    Article  CAS  PubMed  Google Scholar 

  37. Waddell N, Arnold J, Cocciardi S, da Silva L, Marsh A, Riley J, Johnstone CN, Orloff M, Assie G, Eng C, Reid L, Keith P, Yan M, Fox S, Devilee P, Godwin AK, Hogervorst FB, Couch F, Grimmond S, Flanagan JM, Khanna K, Simpson PT, Lakhani SR, Chenevix-Trench G. Subtypes of familial breast tumours revealed by expression and copy number profiling. Breast Cancer Res Treat. 2010;123:661–77.

    Article  PubMed  Google Scholar 

  38. Schneider BP, Winer EP, Foulkes WD, Garber J, Perou CM, Richardson A, Sledge GW, Carey LA. Triple-negative breast cancer: Risk factors to potential targets. Clinical Cancer Res. 2008;14:8010–8 (an official journal of the American Association for Cancer Research).

    Article  CAS  Google Scholar 

  39. Valentin MD, da Silva SD, Privat M, Alaoui-Jamali M, Bignon YJ. Molecular insights on basal-like breast cancer. Breast Cancer Res Treat. 2012;1:21–30.

    Google Scholar 

  40. Turner N, Tutt A, Ashworth A. Hallmarks of ‘brcaness’ in sporadic cancers. Nat Rev Cancer. 2004;4:814–9.

    Article  CAS  PubMed  Google Scholar 

  41. Krausz T, Jenkins D, Grontoft O, Pollock DJ, Azzopardi JG. Secretory carcinoma of the breast in adults: Emphasis on late recurrence and metastasis. Histopathology. 1989;14:25–36.

    Article  CAS  PubMed  Google Scholar 

  42. Van den Eynden GG, Smid M, Van Laere SJ, Colpaert CG, Van der Auwera I, Bich TX, van Dam P, den Bakker MA, Dirix LY, Van Marck EA, Vermeulen PB, Foekens JA. Gene expression profiles associated with the presence of a fibrotic focus and the growth pattern in lymph node-negative breast cancer. Clin Cancer Res. 2008;14:2944–52.

    Article  PubMed  Google Scholar 

  43. Hicks DG, Short SM, Prescott NL, Tarr SM, Coleman KA, Yoder BJ, Crowe JP, Choueiri TK, Dawson AE, Budd GT, Tubbs RR, Casey G, Weil RJ. Breast cancers with brain metastases are more likely to be estrogen receptor negative, express the basal cytokeratin CK 5/6, and overexpress HER2 or EGFR. Am J Surg Pathol. 2006;30:1097–104.

    Article  PubMed  Google Scholar 

  44. van de Rijn M, Perou CM, Tibshirani R, Haas P, Kallioniemi O, Kononen J, Torhorst J, Sauter G, Zuber M, Kochli OR, Mross F, Dieterich H, Seitz R, Ross D, Botstein D, Brown P. Expression of cytokeratins 17 and 5 identifies a group of breast carcinomas with poor clinical outcome. Am J Pathol. 2002;161:1991–6.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Liu D, He J, Yuan Z, Wang S, Peng R, Shi Y, Teng X, Qin T. EGFR expression correlates with decreased disease-free survival in triple-negative breast cancer: A retrospective analysis based on a tissue microarray. Med Oncol. 2012;29:401–405.

    Google Scholar 

  46. Rouzier R, Perou CM, Symmans WF, Ibrahim N, Cristofanilli M, Anderson K, Hess KR, Stec J, Ayers M, Wagner P, Morandi P, Fan C, Rabiul I, Ross JS, Hortobagyi GN, Pusztai L. Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin Cancer Res. 2005;11:5678–85 (an official journal of the American Association for Cancer Research).

    Article  CAS  PubMed  Google Scholar 

  47. Silver DP, Richardson AL, Eklund AC, Wang ZC, Szallasi Z, Li Q, Juul N, Leong CO, Calogrias D, Buraimoh A, Fatima A, Gelman RS, Ryan PD, Tung NM, De Nicolo A, Ganesan S, Miron A, Colin C, Sgroi DC, Ellisen LW, Winer EP, Garber JE. Efficacy of neoadjuvant cisplatin in triple-negative breast cancer. J Clin Oncol. 2010;28:1145–53 (official journal of the American Society of Clinical Oncology).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature. 2001;411:366–74.

    Article  CAS  PubMed  Google Scholar 

  49. Schultz N, Lopez E, Saleh-Gohari N, Helleday T. Poly(ADP-ribose) polymerase (PARP-1) has a controlling role in homologous recombination. Nucleic Acids Res. 2003;31:4959–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C, Martin NM, Jackson SP, Smith GC, Ashworth A. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434:917–21.

    Article  CAS  PubMed  Google Scholar 

  51. Ashworth A. A synthetic lethal therapeutic approach: Poly(ADP) ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair. J Clin Oncol. 2008;26:3785–90 (official journal of the American Society of Clinical Oncology).

    Article  CAS  PubMed  Google Scholar 

  52. Miller K, Wang M, Gralow J, Dickler M, Cobleigh M, Perez EA, Shenkier T, Cella D, Davidson NE. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med. 2007;357:2666–76.

    Article  CAS  PubMed  Google Scholar 

  53. Ivy SP, Wick JY, Kaufman BM. An overview of small-molecule inhibitors of VEGFR signaling. Nat Rev Clin Oncol. 2009;6:569–79.

    Article  CAS  PubMed  Google Scholar 

  54. Burstein HJ, Elias AD, Rugo HS, Cobleigh MA, Wolff AC, Eisenberg PD, Lehman M, Adams BJ, Bello CL, DePrimo SE, Baum CM, Miller KD. Phase ii study of sunitinib malate, an oral multitargeted tyrosine kinase inhibitor, in patients with metastatic breast cancer previously treated with an anthracycline and a taxane. J Clin Oncol. 2008;26:1810–6 (official journal of the American Society of Clinical Oncology).

    Article  CAS  PubMed  Google Scholar 

  55. Moreno-Aspitia A, Morton RF, Hillman DW, Lingle WL, Rowland KM Jr, Wiesenfeld M, Flynn PJ, Fitch TR, Perez EA. Phase ii trial of sorafenib in patients with metastatic breast cancer previously exposed to anthracyclines or taxanes: North central cancer treatment group and mayo clinic trial n0336. J Clin Oncol. 2009;27(11):15 (official journal of the American Society of Clinical Oncology).

    Google Scholar 

  56. Finn RS, Press MF, Dering J, Arbushites M, Koehler M, Oliva C, Williams LS, Di Leo A. Estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2 (her2), and epidermal growth factor receptor expression and benefit from lapatinib in a randomized trial of paclitaxel with lapatinib or placebo as first-line treatment in HER2-negative or unknown metastatic breast cancer. J Clin Oncol. 2009;27:3908–15 (official journal of the American Society of Clinical Oncology).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Geyer CE, Forster J, Lindquist D, Chan S, Romieu CG, Pienkowski T, Jagiello-Gruszfeld A, Crown J, Chan A, Kaufman B, Skarlos D, Campone M, Davidson N, Berger M, Oliva C, Rubin SD, Stein S, Cameron D. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med. 2006;355:2733–43.

    Article  CAS  PubMed  Google Scholar 

  58. Mirzoeva OK, Das D, Heiser LM, Bhattacharya S, Siwak D, Gendelman R, Bayani N, Wang NJ, Neve RM, Guan Y, Hu Z, Knight Z, Feiler HS, Gascard P, Parvin B, Spellman PT, Shokat KM, Wyrobek AJ, Bissell MJ, McCormick F, Kuo WL, Mills GB, Gray JW, Korn WM. Basal subtype and MAPK/ERK kinase (MEK)-phosphoinositide 3-kinase feedback signaling determine susceptibility of breast cancer cells to mek inhibition. Cancer Res. 2009;69:565–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Adeyinka A, Nui Y, Cherlet T, Snell L, Watson PH, Murphy LC. Activated mitogen-activated protein kinase expression during human breast tumorigenesis and breast cancer progression. Clin Cancer Res. 2002;8:1747–53 (an official journal of the American Association for Cancer Research).

    CAS  PubMed  Google Scholar 

  60. Rinehart J, Adjei AA, Lorusso PM, Waterhouse D, Hecht JR, Natale RB, Hamid O, Varterasian M, Asbury P, Kaldjian EP, Gulyas S, Mitchell DY, Herrera R, Sebolt-Leopold JS, Meyer MB. Multicenter phase II study of the oral MEK inhibitor, CI-1040, in patients with advanced non-small-cell lung, breast, colon, and pancreatic cancer. J Clin Oncol. 2004;22:4456–62 (official journal of the American Society of Clinical Oncology).

    Article  CAS  PubMed  Google Scholar 

  61. Adjei AA, Cohen RB, Franklin W, Morris C, Wilson D, Molina JR, Hanson LJ, Gore L, Chow L, Leong S, Maloney L, Gordon G, Simmons H, Marlow A, Litwiler K, Brown S, Poch G, Kane K, Haney J, Eckhardt SG. Phase i pharmacokinetic and pharmacodynamic study of the oral, small-molecule mitogen-activated protein kinase kinase 1/2 inhibitor AZD6244 (ARRY-142886) in patients with advanced cancers. J Clin Oncol. 2008;26:2139–46 (official journal of the American Society of Clinical Oncology).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashraf Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kandil, D., Khan, A. (2015). Triple-Negative Breast Cancer: Subtypes with Clinical Implications. In: Khan, A., Ellis, I., Hanby, A., Cosar, E., Rakha, E., Kandil, D. (eds) Precision Molecular Pathology of Breast Cancer. Molecular Pathology Library, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2886-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2886-6_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2885-9

  • Online ISBN: 978-1-4939-2886-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics