Skip to main content

Part of the book series: Food Engineering Series ((FSES))

Abstract

Image analysis is used as a fundamental tool for recognizing, differentiating, and quantifying diverse types of images, including grayscale and color images, multispectral images for a few discrete spectral channels or wavebands (normally less than 10), and hyperspectral images with a sequence of contiguous wavebands covering a specific spectral region (e.g., visible and near-infrared). Earlier works on image analysis were primarily confined to the computer science community, and they mainly dealt with simple images for such applications as defect detection, segmentation and classification. Nowadays, image analysis is becoming increasingly important and widespread because it can be done more conveniently, rapidly and cost effectively (Prats-Montalbán et al. 2011). Image analysis relies heavily on machine vision technology (Aguilera and Stanley 1999). The explosive growth in both hardware platforms and software frameworks has led to significant advances in the analysis of digital images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilera JM, Stanley DW (1999) Microstructural principles of food processing and engineering, 2nd edn. Aspen, Gaithersburg

    Google Scholar 

  • Allain C, Cloitre M (1991) Characterizing the lacunarity of random and deterministic fractal sets. Phys Rev A 44(6):3552–3558

    Article  Google Scholar 

  • Brosnan T, Sun D-W (2004) Improving quality inspection of food products by computer vision—a review. J Food Eng 61:3–16

    Article  Google Scholar 

  • Castleman KR (1979) Digital image processing. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Cernadas E, Carrión P, Rodriguez PG, Muriel E, Antequera T (2005) Analyzing magnetic resonance images of Iberian pork loin to predict its sensorial characteristics. Comput Vis Image Und 98:344–360

    Article  Google Scholar 

  • CIE (1986) Colorimetry, Official recommendations of the International Commission on Illumination, CIE Publication No. 15.2. CIE Central Bureau, Vienna

    Google Scholar 

  • Dougherty G, Henebry GM (2001) Fractal signature and lacunarity in the measurement of the texture of trabecular bone in clinical CT images. Med Eng Phys 23:369–380

    Article  CAS  Google Scholar 

  • Du C-J, Sun D-W (2004) Recent developments in the applications of image processing techniques for food quality evaluation. Trends Food Sci Technol 15:230–249

    Article  CAS  Google Scholar 

  • Du C-J, Sun D-W (2005) Comparison of three methods for classification of pizza topping using different color space transformations. J Food Eng 68:277–287

    Article  Google Scholar 

  • Du C-J, Sun D-W (2007) Quality measurement of cooked meats. In: Sun D-W (ed) Computer vision technology for food quality evaluation. Elsevier/Academic, London, pp 139–156

    Google Scholar 

  • Evertsz CJG, Mandelbrot BB (1992) Multifractal measures. In: Peitgen H-O, Jurgens H, Saupe D (eds) Chaos and fractals. New frontiers of science. Springer, New York, pp 921–953

    Google Scholar 

  • Fardet A, Baldwin PM, Bertrand D, Bouchet B, Gallant DJ, Barry J-L (1998) Textural images analysis of pasta protein networks to determine influence of technological processes. Cereal Chem 75:699–704

    Article  CAS  Google Scholar 

  • Galloway MM (1975) Texture analysis using grey level run lengths. Comput Graph Image Process 4:172–179

    Article  Google Scholar 

  • Geraets WGM, Van der Stelt PF (2000) Fractal properties of bone. Dentomaxillofac Radiol 29:144–153

    Article  CAS  Google Scholar 

  • Gonzales RC, Woods RE (2008) Digital image processing. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Gunasekaran S, Ding K (1994) Using computer vision for food quality evaluation. Food Technol 6:151–154

    Google Scholar 

  • Haralick RM, Shanmugan K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 3:610–621

    Article  Google Scholar 

  • Hunt RWG (1991) Measuring of color, 2nd edn. Ellis Horwood, New York

    Google Scholar 

  • Klinger T (2003) Image processing with LabVIEW and IMAQ vision. Prentice Hall Professional Technical Reference, Upper Saddle River

    Google Scholar 

  • Klonowski W (2000) Signal and image analysis using chaos theory and fractal geometry. Mach Graphics Vis 9(1/2):403–431

    Google Scholar 

  • Krasowska M, Borys P, Grzywna ZJ (2004) Lacunarity as a measure of texture. Acta Phys Pol B 35:1519–1534

    CAS  Google Scholar 

  • Kube P, Pentland A (1988) On the imaging of fractal surfaces. IEEE Trans Pattern Anal Mach Intell 10:704–707

    Article  Google Scholar 

  • Mallat S (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11:674–693

    Article  Google Scholar 

  • Mandelbrot BB (1983) The fractal geometry of nature. W.H. Freeman, New York

    Google Scholar 

  • Marchant JA (2006) Machine vision in the agricultural context. In: Munack A (ed CIGR) Precision agriculture, CIGR handbook of agricultural engineering, vol VI. Information technology. The International Commission of Agricultural Engineering, St. Joseph, MI (Chapter 5)

    Google Scholar 

  • Mardia KV, Hainsworth TJ (1988) A spatial thresholding method for image segmentation. IEEE Trans Pattern Anal Mach Intell 6:919–927

    Article  Google Scholar 

  • Macaire L, Postaire JG (1989) Real-time adaptive thresholding for on-line evaluation with line-scan cameras. In: Proceedings of computer vision for industry, Society of Photooptical Instrumentation Engineers, Boston, MA, pp 1425

    Google Scholar 

  • Mendoza F, Dejmek P, Aguilera JM (2006) Calibrated color measurements of agricultural foods using image analysis. Postharvest Biol Tech 41:285–295

    Article  Google Scholar 

  • Mendoza F, Dejmek P, Aguilera JM (2007a) Color and texture image analysis in classification of commercial potato chips. Food Res Int 40:1146–1154

    Article  Google Scholar 

  • Mendoza F, Verboven P, Mebatsion HK, Kerckhofs G, Wevers M, Nicolaï B (2007b) Three-dimensional pore space quantification of apple tissue using X-ray computed microtomography. Planta 226:559–570

    Article  CAS  Google Scholar 

  • Mendoza F, Valous NA, Allen P, Kenny TA, Ward P, Sun D-W (2009) Analysis and classification of commercial ham slice images using directional fractal dimension features. Meat Sci 81:313–320

    Article  Google Scholar 

  • Oh W, Lindquist W (1999) Image thresholding by indicator kriging. IEEE Trans Pattern Anal Mach Intell 21:590–602

    Article  Google Scholar 

  • Piñuela JA, Andina D, McInnes KJ, Tarquis AM (2007) Wavelet analysis in a structured clay soil using 2-D images. Nonlin Process Geophys 14:425–434

    Article  Google Scholar 

  • Puglia S (2000) Technical primer. In: Sitts MK (ed) Handbook for digital projects: a management tool for preservation and access, 1st edn. Northeast Document Conservation Center, Andover

    Google Scholar 

  • Papadakis S, Abdul-Malek S, Kamdem RE, Jam KL (2000) A versatile and inexpensive technique for measuring color of foods. Food Technol 54:48–51

    Google Scholar 

  • Prats-Montalbán JM, de Juan A, Ferrer A (2011) Multivariate image analysis: a review with applications. Chemometr Intell Lab 107:1–23

    Article  Google Scholar 

  • Rec. ITU-R BT.709-5 (2002) Parameter values for the HDTV standards for production and international programme exchange (1990, revised 2002). International Telecommunication Union, 1211 Geneva 20, Switzerland

    Google Scholar 

  • Robertson AL (1976) The CIE 1976 color difference formulae. Color Res Appl 2:7–11

    Article  Google Scholar 

  • Russ JC (2005) Image analysis of food microstructure. CRC, New York

    Google Scholar 

  • Segnini S, Dejmek P, Öste R (1999) A low cost video technique for color measurement of potato chips. Lebensm-Wiss U-Technol 32:216–222

    Article  CAS  Google Scholar 

  • Shapiro LG, Stockman GC (2001) Computer vision. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Soille P (1999) Morphological image analysis. Springer, Berlin

    Book  Google Scholar 

  • Sonka M, Hlavac V, Boyle R (1999) Image processing, analysis, and machine vision. PWS, Pacific Grove

    Google Scholar 

  • Sun D-W (2000) Inspecting pizza topping percentage and distribution by a computer vision method. J Food Eng 44:245–249

    Article  Google Scholar 

  • Tolle CR, McJunkin TR, Gorsich DJ (2008) An efficient implementation of the gliding box lacunarity algorithm. Phys D 237:306–315

    Article  Google Scholar 

  • Valous NA, Mendoza F, Sun D-W, Allen P (2009a) Colour calibration of a laboratory computer vision system for quality evaluation of pre-sliced hams. Meat Sci 42:353–362

    Google Scholar 

  • Valous NA, Mendoza F, Sun D-W, Allen P (2009b) Texture appearance characterization of pre–sliced pork ham images using fractal metrics: Fourier analysis dimension and lacunarity. Food Res Int 42:353–362

    Article  Google Scholar 

  • Valous NA, Sun D-W, Mendoza F, Allen P (2010) The use of lacunarity for visual texture characterization of pre-sliced cooked pork ham surface intensities. Food Res Int 43(3):87–395

    Google Scholar 

  • Wikipedia (2012) Binary image. http://en.wikipedia.org/wiki/Binary_image. Accessed 12 Dec 2012

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renfu Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mendoza, F., Lu, R. (2015). Basics of Image Analysis. In: Park, B., Lu, R. (eds) Hyperspectral Imaging Technology in Food and Agriculture. Food Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2836-1_2

Download citation

Publish with us

Policies and ethics