Skip to main content

Part of the book series: Food Engineering Series ((FSES))

Abstract

One of the major applications for hyperspectral imaging is plant health detection and monitoring. In this chapter, various ground-based, airborne and spaceborne sensing systems are described. Different applications are discussed such as detection of plant water status, plant nutrient and disease, insect damage, weeds, fruit quality, number of mature and immature fruit, and fruit maturity status. Some of the major techniques used include equivalent water thickness (EWT) and normalized difference water index (NDWI) for monitoring plant water status; derivative chlorophyll index, natural chlorophyll fluorescence emission, and vegetation indices (VI) for plant nutrient status; and fluorescence, thermography, spectral library, mixture tuned match filtering (MTMF), spectral angle mapping (SAM), and spectral feature fitting (SFF) for plant disease detection. One of the key observations in these applications is that remote sensing could be better applied to assess damages by plant diseases than to detect early disease infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen WA, Gausman HW, Richardson AJ, Thomas JR (1969) Interaction of isotropic light with a compact leaf. J Opt Soc Am 58(8):1023–1028

    Article  Google Scholar 

  • Balasundaram D, Burks TF, Bulanon DM, Schubert T, Lee WS (2009) Spectral reflectance characteristics of citrus canker and other peel conditions of grapefruit. Postharvest Biol Technol 51(2):220–226

    Article  Google Scholar 

  • Blackburn GA (2007) Hyperspectral remote sensing of plant pigments. J Exp Bot 58(4):855–867

    Article  CAS  Google Scholar 

  • Carroll MW, Glaser JA, Hellmich RL, Hunt TE, Sappington TW, Calvin D, Copenhaver K, Fridgen J (2008) Use of spectral vegetation indices derived from airborne hyperspectral imagery for detection of European corn borer infestation in Iowa corn plots. J Econ Entomol 101(5):1614–1623

    Article  Google Scholar 

  • Champagne CM, Staenz K, Bannari A, McNairn H, Deguise J-C (2003) Validation of a hyperspectral curve-fitting model for the estimation of plant water content of agricultural canopies. Remote Sens Environ 87:148–160

    Article  Google Scholar 

  • Cheng Y-B, Zarco-Tejada PJ, Riaño D, Rueda CA, Ustin SL (2006) Estimating vegetation water content with hyperspectral data for different canopy scenarios: relationships between AVIRIS and MODIS indexes. Remote Sens Environ 105:354–366

    Article  Google Scholar 

  • Delalieux S, Somers B, Verstraeten W, van Aardt JAN, Keulemans W, Coppin P (2009) Hyperspectral indices to diagnose leaf biotic stress of apple plants, considering leaf phenology. Int J Remote Sens 30(8):1887–1912

    Article  Google Scholar 

  • Goel PK (2003) Hyper-spectral remote sensing for weed and nitrogen stress detection. Ph.D. Dissertation, McGill University, Montreal

    Google Scholar 

  • Haboudane D, Miller JR, Pattey E, Zarco-Tejada PJ, Strachan I (2004) Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture. Remote Sens Environ 90(3):337–352

    Article  Google Scholar 

  • Huang W, Lamb DW, Niu Z, Zhang Y, Liu L, Wang J (2007) Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging. Precis Agric 8:187–197

    Article  Google Scholar 

  • Jacquemoud S, Baret F (1990) PROSPECT: a model of leaf optical properties spectra. Remote Sens Environ 34:75–91

    Article  Google Scholar 

  • Jones CD, Jones JB, Lee WS (2010) Diagnosis of bacterial spot of tomato using spectral signatures. Comput Electron Agric 74(2):329–335

    Article  Google Scholar 

  • Kim Y, Glenn DM, Park J, Ngugi HK, Lehman BL (2010) Hyperspectral image analysis for plant stress detection. ASABE Paper No. 1009114. ASABE, St. Joseph

    Google Scholar 

  • Kumar A, Lee WS, Ehsani R, Albrigo LG (2009) Airborne hyperspectral imaging for citrus greening disease detection. In: Proceedings of the 3rd Asian conference on precision agriculture (ACPA), Beijing

    Google Scholar 

  • Kumar A, Lee WS, Ehsani R, Albrigo LG, Yang C, Mangan RL (2010) Citrus greening disease detection using airborne multispectral and hyperspectral imaging. In: 10th international conference on precision agriculture, Hyatt Regency Tech Center, Denver, 18–21 July 2010

    Google Scholar 

  • Laudien R, Bareth G, Doluschitz R (2003) Analysis of hyperspectral field data for detection of sugar beet diseases. In: EFITA 2003 conference 5–9, Debrecen

    Google Scholar 

  • Lee WS, Ehsani R, Albrigo LG (2008) Citrus greening disease (Huanglongbing) detection using aerial hyperspectral imaging. In: Proceedings of the 9th international conference on precision agriculture, Denver, 20–23 July

    Google Scholar 

  • Lee WS, Alchanatis V, Yang C, Hirafuji M, Moshou D, Li C (2010) Sensing technologies for precision specialty crop production. Comput Electron Agric 74(1):2–33

    Article  Google Scholar 

  • Lenk S, Chaerle L, Pfündel EE, Langsdorf G, Hagenbeek D, Lichtenthaler HK, van Der Straeten D, Buschmann C (2007) Multispectral fluorescence and reflectance imaging at the leaf level and its possible applications. J Exp Bot 58(4):807–814

    Article  CAS  Google Scholar 

  • Li X, Lee WS, Li M, Ehsani R, Mishra A, Yang C, Mangan R (2011) Comparison of different detection methods for citrus greening disease based on airborne multispectral and hyperspectral imagery. ASABE Paper No. 1110570. ASABE, St. Joseph

    Google Scholar 

  • Liu Z-Y, Huang J-F, Shi J-J, Tao R-X, Zhou W, Zhang L-L (2007) Characterizing and estimating rice brown spot disease severity using stepwise regression, principal component regression and partial least-square regression. J Zhejiang Univ Sci B 8(10):738–744

    Article  Google Scholar 

  • Liu Z-Y, Wu H-F, Huang J-F (2010a) Application of neural networks to discriminate fungal infection levels in rice panicles using hyperspectral reflectance and principal components analysis. Comput Electron Agric 72(2):99–106

    Article  Google Scholar 

  • Liu Z-Y, Shi J-J, Zhang L-W, Huang J-F (2010b) Discrimination of rice panicles by hyperspectral reflectance data based on principal component analysis and support vector classification. J Zhejiang Univ Sci B 11(1):71–78

    Article  Google Scholar 

  • Mahlein A-K, Steiner U, Dehne HW, Oerke EC (2010) Spectral signatures of sugar beet leaves for the detection and differentiation of diseases. Precis Agric 11:413–431

    Article  Google Scholar 

  • Mehl PM, Chao K, Kim M, Chen YR (2002) Detection of defects on selected apple cultivars using hyperspectral and multispectral image analysis. Appl Eng Agric 18(2):219–226

    Google Scholar 

  • Min M, Lee WS (2005) Determination of significant wavelengths and prediction of nitrogen content for orange. Trans ASAE 48(2):455–461

    Article  CAS  Google Scholar 

  • Min M, Lee WS, Burks TF, Jordan JD, Schumann AW, Schueller JK, Xie H (2008) Design of a hyperspectral nitrogen sensing system for citrus. Comput Electron Agric 63(2):215–226

    Article  Google Scholar 

  • Mishra A, Ehsani R, Albrigo LG, Lee WS (2007) Spectroscopic study to identify citrus greening from other nutrient deficiencies. ASABE Paper No. 073056. ASABE, St. Joseph

    Google Scholar 

  • Moshou D, Bravo C, Oberti R, West J, Bodria L, McCartney A, Ramon H (2005) Plant disease detection based on data fusion of hyper-spectral and multi-spectral fluorescence imaging using Kohonen maps. Real Time Imag 11:75–83

    Article  Google Scholar 

  • Muhammed HH (2002) Using hyperspectral reflectance data for discrimination between healthy and diseased plants, and determination of damage level in diseased plants. In: Proceedings of the 31st applied imagery pattern recognition workshop, Washington

    Google Scholar 

  • Okamoto H, Lee WS (2009) Green citrus detection using hyperspectral imaging. Comput Electron Agric 66(2):201–208

    Article  Google Scholar 

  • Qin J, Burks TF, Kim MS, Chao K, Ritenour MA (2008) Citrus canker detection using hyperspectral reflectance imaging and PCA-based image classification method. Sens Instrum Food Qual 2:168–177

    Article  Google Scholar 

  • Qin J, Burks TF, Ritenour MA, Bonn WG (2009) Detection of citrus canker using hyperspectral reflectance imaging with spectral information divergence. J Food Eng 93:183–191

    Article  Google Scholar 

  • Ray SS, Jain N, Arora R, Chavan S, Panigrahy S (2011) Utility of hyperspectral data for potato late blight disease detection. J Indian Soc Remote Sens 39(2):161–169

    Article  Google Scholar 

  • Rumpf T, Mahlein A-K, Steiner U, Oerke E-C, Dehne H-W, Plümer L (2010) Early detection and classification of plant diseases with Support Vector Machines based on hyperspectral reflectance. Comput Electron Agric 74(1):91–99

    Article  Google Scholar 

  • Sankaran S, Mishra A, Ehsani R, Davis C (2010) A review of advanced techniques for detecting plant diseases. Comput Electron Agric 72(1):1–13

    Article  Google Scholar 

  • Schuerger AC, Capelle GA, Di Benedetto JA, Maoc C, Thai CN, Evans MD, Richards JT, Blank TA, Stryjewski EC (2003) Comparison of two hyperspectral imaging and two laser-induced fluorescence instruments for the detection of zinc stress and chlorophyll concentration in bahia grass (Paspalum notatum Flugge.). Remote Sens Environ 84(4):572–588

    Article  Google Scholar 

  • Singh CB, Jayas DS, Paliwal J, White NDG (2009) Detection of insect-damaged wheat kernels using near-infrared hyperspectral imaging. J Stored Prod Res 45:151–158

    Article  Google Scholar 

  • Song X, Jiang H, Yu S, Zhou G (2008) Detection of acid rain stress effect on plant using hyperspectral data in Three Gorges region, China. Chin Geogr Sci 18(3):249–254

    Article  Google Scholar 

  • Ustin SL, Roberts DA, Gamon JA, Asner GP, Green RO (2004) Using imaging spectroscopy to study ecosystem processes and properties. Bioscience 54(6):523–534

    Article  Google Scholar 

  • Vigier BJ, Pattey E, Strachan IB (2004) Narrowband vegetation indexes and detection of disease damage in soybeans. IEEE Geosci Remote Sens Lett 1(4):255–259

    Article  Google Scholar 

  • Williams AEP, Hunt ER Jr (2004) Accuracy assessment for detection of leafy spurge with hyperspectral imagery. J Range Manage 57(1):106–112

    Article  Google Scholar 

  • Wilson MD, Ustin SL, Rocke DM (2004) Classification of contamination in salt marsh plants using hyperspectral reflectance. IEEE Trans Geosci Remote Sens 42(5):1088–1095

    Article  Google Scholar 

  • Xing J, Symons S, Shahin M, Hatcher D (2010) Detection of sprout damage in Canada Western Red Spring wheat with multiple wavebands using visible/near-infrared hyperspectral imaging. Biosyst Eng 106:188–194

    Article  Google Scholar 

  • Yang C, Lee WS, Williamson JG (2012) Classification of blueberry fruit and leaves based on spectral signatures. Biosyst Eng 113(4):351–362

    Article  Google Scholar 

  • Zarco-Tejada PJ, Miller JR, Mohammed GH, Noland TL, Sampson PH (2002) Vegetation stress detection through chlorophyll a+b estimation and fluorescence effects on hyperspectral imagery. J Environ Qual 31:1433–1441

    Article  CAS  Google Scholar 

  • Zarco-Tejada PJ, Pushnik JC, Dobrowski S, Ustin SL (2003) Steady-state chlorophyll a fluorescence detection from canopy derivative reflectance and double-peak red edge effects. Remote Sens Environ 84:283–294

    Article  Google Scholar 

  • Zhang M, Qin Z, Liu X, Ustin SL (2003) Detection of stress in tomatoes induced by late blight disease in California, USA, using hyperspectral remote sensing. Int J Appl Earth Obs Geoinf 4(4):295–310

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won Suk Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lee, W.S. (2015). Plant Health Detection and Monitoring. In: Park, B., Lu, R. (eds) Hyperspectral Imaging Technology in Food and Agriculture. Food Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2836-1_11

Download citation

Publish with us

Policies and ethics