Skip to main content

Part of the book series: Food Engineering Series ((FSES))

Abstract

The meat industry is the largest food industry in the United States. There exists a need for objective, non-invasive systems for sorting meat based on quality traits to facilitate marketing. Hyperspectral imaging has a great potential to fulfill the need, as it can collect both spatial (structural) and spectral (biochemical) information on the meat surface. This section will focus on hyperspectral imaging of beef and pork.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barbin D, Elmasry G, Sun DW, Allen P (2011) Prediction of pork sensory attributes using NIR hyperspectral imaging technique. In: The sixteenth annual biosystems engineering research review, University College Dublin

    Google Scholar 

  • Barbin D, Elmasry G, Sun DW, Allen P (2012) Near-infrared hyperspectral imaging for grading and classification of pork. Meat Sci 90:259–268

    Article  Google Scholar 

  • Barbin D, Valous N, Sun DW (2013) Tenderness prediction in porcine longissimus dorsi muscles using instrumental measurements along with NIR hyperspectral and computer vision imagery. Innov Food Sci Emerg Technol 20:335–342

    Article  Google Scholar 

  • Belk KE, Scanga JA, Wyle AM, Wulf DM, Tatum JD, Reagan JO (2000) The use of video image analysis and instrumentation to predict beef palatability. Proc Recip Meat Conf 53:10–15

    Google Scholar 

  • Burns DA, Ciurczak EW (eds) (2001) Handbook of near-infrared analysis, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  • Byrne CE, Downey G, Troy DJ, Buckley DJ (1998) Non-destructive prediction of selected quality attributes of beef by near-infrared reflectance spectroscopy between 750 and 1098 nm. Meat Sci 49(4):399–409

    Article  CAS  Google Scholar 

  • Hildrum KI, Nilsen BN, Mielnik M, Næs T (1994) Prediction of sensory characteristics of beef by near-infrared spectroscopy. Meat Sci 38(1):67–80

    Article  CAS  Google Scholar 

  • Hildrum KI, Isaksson T, Næs T, Nilsen BN, Rodbotten M, Lea P (1995) Near infrared reflectance spectroscopy in the prediction of sensory properties of beef. J Near Infrared Spectrosc 3:81–87

    Article  CAS  Google Scholar 

  • Kauffman RG, Cassens RG, Scherer A, Meeker DL (1993) Variations in pork quality: history, definition, extent, resolution. Swine Health Prod 1:28–34

    Google Scholar 

  • Konda Naganathan G, Grimes LM, Subbiah J, Calkins CR (2006a) Predicting beef tenderness using hyperspectral imaging. In: 2006 ASABE annual international meeting. Paper No. 063036

    Google Scholar 

  • Konda Naganathan G, Grimes L, Subbiah J, Calkins C, Samal A (2006b). VNIR imaging for beef tenderness prediction. In: Annual ASABE international meeting, OR. Paper No. 063036

    Google Scholar 

  • Konda Naganathan G, Grimes LM, Subbiah J, Calkins CR, Samal A, Meyer GE (2008) Visible/near-infrared hyperspectral imaging for beef tenderness prediction. Comput Electron Agric 64(2):225–233

    Article  Google Scholar 

  • Lin SP, Wang LH, Jacques SL, Tittel FK (1997) Measurement of tissue optical properties by the use of oblique incidence optical fiber reflectometry. Appl Optics 36:136–143

    Article  CAS  Google Scholar 

  • Lin BH, Variyam J, Allshouse J, Cromartie J (2003) Food and agricultural commodity consumption in the United States: looking ahead to 2020. Agr. Econ. Report No. 820. U.S. Department of Agriculture, Economic Research Service, Washington, DC, p 820

    Google Scholar 

  • Lipsey J (1999) Development of multibreed genetic evaluation. In: Proceedings, the range beef cow symposium XVI

    Google Scholar 

  • Liu L, Ngadi MO, Prasher SO, Gariépy C (2010) Categorization of pork quality using Gabor filter-based hyperspectral imaging technology. J Food Eng 99:284–293

    Article  Google Scholar 

  • Liu L, Ngadi MO, Prasher SO, Gariépy C (2012) Objective determination of pork marbling scores using the wide line detector. J Food Eng 110:497–504

    Article  Google Scholar 

  • McKenna DR, Roebert DL, Bates PK, Schmidt TB, Hale DS, Griffin DB, Savell JW, Brooks JC, Morgan JB, Montgomery TH, Belk KE, Smith GC (2002) National Beef Quality Audit—2000: survey of targeted cattle and carcass characteristics related to quality, quantity, and value of fed steers and heifers. J Anim Sci 80(5):1212–1222

    CAS  Google Scholar 

  • Mitsumoto M, Maeda S, Mitsuhashi T, Ozawa S (1991) Near infrared spectroscopy determination of physical and chemical characteristics in beef cuts. J Food Sci 56:1493–1496

    Article  CAS  Google Scholar 

  • Monroy M, Prasher S, Ngadi MO, Wang N, Karimi Y (2010) Pork meat quality classification using visible/near-infrared spectroscopic data. Biosyst Eng 107:271–276

    Article  Google Scholar 

  • Naes T, Hildrum KI (1997) Comparison of multivariate calibration and discriminant analysis in evaluating NIR spectroscopy for determination of meat tenderness. Appl Spectrosc 51:350–357

    Article  CAS  Google Scholar 

  • NPB (National pork board) (2002) Pork quality standards. Des Moines

    Google Scholar 

  • Park B, Chen YR, Hruschka WR, Shackelford SD, Koohmaraie M (1998) Near-infrared reflectance analysis for predicting beef longissimus tenderness. J Anim Sci 76:2115–2120

    CAS  Google Scholar 

  • Peng Y, Wu J (2008) Hyperspectral scattering profiles for prediction of beef tenderness. In: ASABE annual international meeting. ASABE Paper No. 080004

    Google Scholar 

  • Qiao J, Ngadi MO, Wang N, Gariépy C, Prasher SO (2007a) Pork quality and marbling level assessment using a hyperspectral imaging system. J Food Eng 83:10–16

    Article  Google Scholar 

  • Qiao J, Wang N, Ngadi MO, Gunenc A, Monroy M, Gariépy C, Prasher SO (2007b) Prediction of drip-loss, pH, and color for pork using a hyperspectral imaging technique. Meat Sci 76:1–8

    Article  CAS  Google Scholar 

  • Qiao J, Wang N, Ngadi MO, Gunenc A, Monroy M, Gariépy C, Prasher SO (2007c) Pork quality classification using a hyperspectral imaging system and neural network. J Food Eng 3(1):6

    Google Scholar 

  • Shackleford SD, Wheeler TL, Koohmaraie M (2005) On-line classification of US Select beef carcasses for longissimus tenderness using visible and near-infrared reflectance spectroscopy. Meat Sci 69:409–415

    Article  Google Scholar 

  • Subbiah J (2004) Nondestructive evaluation of beef palatability. Dissertation, Biosystems Engineering, Oklahoma State University

    Google Scholar 

  • Tao F, Peng Y, Li Y, Chao K, Dhakal S (2012) Simultaneous determination of tenderness and Escherichia coli contamination of pork using hyperspectral scattering technique. Meat Sci 90:851–857

    Article  Google Scholar 

  • USDA-ERS (2010) Economic Research Service (ERS), U.S. Department of Agriculture (USDA). Food availability (per capita) data system. http://www.ers.usda.gov/Data/FoodConsumption/. Accessed 4 July 2011

  • USDS-ERS (2011) United States Department of Agriculture, Economic Research Service. http://www.ers.usda.gov/Data/MeatPriceSpreads/. Accessed 4 July 2011

  • Vote DJ, Belk KE, Tatum JD, Scanga JA, Smith GC (2003) Online prediction of beef tenderness using a computer vision system equipped with a BeefCam module. J Anim Sci 81:457–465

    CAS  Google Scholar 

  • Wang LH, Jacques SL (1995) Use of a laser beam with an oblique angle of incidence to measure the reduced scattering coefficient of a turbid medium. Appl Optics 34:2362–2366

    Article  CAS  Google Scholar 

  • Webb NB, Kahlenberg OJ, Naumann HD (1964) Factors influencing beef tenderness. J Anim Sci 23:1027–1031

    Google Scholar 

  • Wyle AM, Cannell RC, Belk KE, Goldberg M, Rifle R, Smith GC (1999) An evaluation of the prototype portable HunterLab video imaging system (BeefCam) as a tool to predict tenderness of beef carcasses using objective measure of lean and fat color. Research reports. Department of Animal Science, Colorado State University, Fort Collins

    Google Scholar 

  • Wyle AM, Vote DJ, Roeber DL, Cannell RC, Belk KE, Scanga JA, Goldberg M, Tatum JD, Smith GC (2003) Effectiveness of the SmartMV prototype BeefCam System to sort beef carcasses into expected palatability groups. J Anim Sci 81:441–448

    CAS  Google Scholar 

  • Xia J, Weaver A, Gerrard DE, Yao G (2006) Monitoring sarcomere structure changes in whole muscle using diffuse light reflectance. J Biomed Opt 11(4):040504

    Article  Google Scholar 

  • Xia JJ, Berg EP, Lee JW, Yao G (2007) Characterizing beef muscles with optical scattering and absorption coefficients in VIS-NIR region. Meat Sci 75(1):78–83

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeyamkondan Subbiah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Konda Naganathan, G., Cluff, K., Samal, A., Calkins, C., Subbiah, J. (2015). Quality Evaluation of Beef and Pork. In: Park, B., Lu, R. (eds) Hyperspectral Imaging Technology in Food and Agriculture. Food Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2836-1_10

Download citation

Publish with us

Policies and ethics